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Abstract. The Legendre polytope is the convex hull of all pairwise differences of the
basis vectors, also known as the full root polytope of type A. We describe all flag
triangulations of this polytope that are uniform in the sense that the edges may be
described as a function of the relative order of the indices of the four basis vectors
involved. We also determine the refined face counts of these triangulations that keeps
track of the number of forward and backward arrows in each face.

Résumé. Le polytope de Legendre, aussi connu sous le nom polytope de racine pleine
de type A, est l’enveloppe convexe des différences par paire des vecteurs de base.
Nous décrivons toutes les triangulations drapeau de ce polytope qui sont uniformes
dans le sens que les arêtes ne dependent que de l’ordre relative des quatres vecteurs
de base impliqués. Nous déterminons aussi le compte raffiné de faces qui fait suivi le
nombre des arêtes vers l’avant et ceux en arrière dans chaque face.

1 Introduction

Triangulations of root polytopes and of products of simplices have been a subject of in-
tense study in recent years [1, 2, 3, 4, 8]. Motivated by an observation made in [6], the
authors recently [7] established that the Simion type B associahedron [13] may be real-
ized as a pulling triangulation of the Legendre polytope, defined as the convex hull of
all differences of pairs of basis vectors in Euclidean space. These vertices can be thought
of as arrows between numbered nodes. They also showed that all pulling triangula-
tions are flag. The Legendre polytope is the centrally symmetric variant of the type A
root polytope whose triangulations were studied by Gelfand, Graev and Postnikov [8].
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A question naturally arises: Are there other reasonably uniform triangulations of the
Legendre polytope?

In this work we fully answer this question. We consider flag triangulations that are
uniform in the sense that the flag condition depends only on the relative order on the
numbering of the basis vectors involved, and classify all such triangulations. The key
tool we use is a characterization of triangulations of a product of simplices by Oh and
Yoo [11] in terms of matching ensembles. We determine that there are three classes of
triangulations: variants of the lexicographic pulling triangulation, variants of the revlex
pulling triangulation, and variants of the triangulation representing the Simion type B
associahedron. All triangulations of the boundary of the Legendre polytope have the
same face numbers.

To distinguish between the three major classes, we introduce a refined face count
which keeps track of the number of forward and backward arrows in each face. Remark-
ably we find the refined face count in a triangulation belonging to the lexicographic class
yields the same face numbers for a fixed dimension, regardless how we fix the number
of forward and backward arrows. The variants of the Simion type B associahedron all
have the same refined face numbers, up to exchanging the forward and backward ar-
rows. Finally, the refined face count for the revlex triangulation and its variants leads to
considering an exponential generating function whose second partial derivative may be
expressed in terms of modified Bessel functions. Weighted generalizations of the Delan-
noy numbers play a crucial role in the refined face count in the revlex and Simion class,
whereas the Catalan numbers play a key role in the refined face count in the lex and the
Simion class.

2 Preliminaries

The Legendre polytope Pn [9] is the convex hull of the n(n + 1) vertices ej − ei where i 6= j
and {e1, e2, . . . , en+1} is the orthonormal basis of the Euclidean space Rn+1. It was first
studied by Cho [5], and it is called the “full” type A root polytope in the work of Ardila,
Beck, Hoşten, Pfeifle and Seashore [1]. It contains the root polytope P+

n , defined as
the convex hull of the origin and the set of points ej − ei, where i < j, first studied by
Gelfand, Graev and Postnikov [8] and later by Postnikov [12].

We use the shorthand notation (i, j) for the vertex ej − ei We may think of these
vertices as the set of all directed nonloop edges on the vertex set {1, 2, . . . , n + 1}. To
avoid confusion between edges and vertices of the Legendre polytope, we will refer to
the vertices of Pn as arrows, and we will use the notation Vn = {(i, j) : 1 ≤ i, j ≤
n + 1, i 6= j}.

A subset of arrows is contained in some face of Pn exactly when there is no i ∈
{1, 2, . . . , n+ 1} that is both the head and the tail of an arrow; see [9, Lemmas 4.2 and 4.4].
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Type Order of nodes Type B Lexicographic Revlex
associahedron pulling pulling

THTH i1 < j1 < i2 < j2 i1 j1 i2 j2 i1 j1 i2 j2 i1 j1 i2 j2

HTHT j1 < i1 < j2 < i2 j1 i1 j2 i2 j1 i1 j2 i2 j1 i1 j2 i2

THHT i1 < j1 < j2 < i2 i1 j1 j2 i2 i1 j1 j2 i2 i1 j1 j2 i2

HTTH j1 < i1 < i2 < j2 j1 i1 i2 j2 j1 i1 i2 j2 j1 i1 i2 j2

TTHH i1 < i2 < j1 < j2 i1 i2 j1 j2 i1 i2 j1 j2 i1 i2 j1 j2

HHTT j1 < j2 < i1 < i2 j1 j2 i1 i2 j1 j2 i1 i2 j1 j2 i1 i2

Table 1: Pairs of arrows that are edges in three triangulations of the boundary ∂Pn of
the Legendre polytope.

Equivalently, the faces are products of two simplices [7, Lemma 2.2]: we may write
them as ∆I × ∆J where I, J 6= ∅, I ∩ J = ∅ and ∆K denotes the convex hull of the set
{ei : i ∈ K} for K ⊆ {1, 2, . . . , n + 1}. Affine independent subsets of vertices of faces of
the Legendre polytope are described as follows. A set S = {(i1, j1), (i2, j2), . . . , (ik, jk)} is
a (k− 1)-dimensional simplex if and only if, disregarding the orientation of the directed
edges, the set S contains no cycle, that is, it is a forest [9, Lemma 2.4]. The analogous
observations were made for the root polytope P+

n in [8] and for products of simplices
in [10, Lemma 6.2.8] (see also [2, Lemma 2.1]).

In a recent paper [7], the authors have shown that the Simion type B associahe-
dron [13] is combinatorially equivalent to a pulling triangulation of the boundary of the
Legendre polytope. For an exact definition of a pulling triangulation we refer the reader
to [7]. Here we only recall the following key observation [7, Theorem 3.1]: every pulling
triangulation of the boundary of the Legendre polytope Pn is flag, that is, a subset of
vertices is a face exactly when each pair of vertices in the subset is an edge. Thus the tri-
angulation giving rise to a combinatorial equivalent of the Simion type B associahedron
is completely determined by the rules given in the associated column of Table 1.

The last two columns in Table 1 are the analogous rules for two other pulling triangu-
lations of the boundary of the Legendre polytope Pn, also discussed in [7]. These are the
lexicographic (lex) and revlex pulling orders, introduced in [9]. Their restriction to the
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root polytope P+
n are called the antistandard, respectively standard triangulations in [8].

The reader may take Table 1 as a definition of these flag complexes.

3 Classifying uniform flag triangulations of the Legendre
polytope

A common property of all three flag complexes described in Table 1 is that the edges are
defined in a uniform fashion:

Definition 3.1. A flag simplicial complex 4n on the vertex set Vn is a uniform flag complex
if determining whether or not a pair of vertices {(i1, j1), (i2, j2)} forms an edge depends only on
the equalities and inequalities between the values of i1, i2, j1 and j2.

To facilitate making statements, we introduce some new terminology and notation.
We use the letter T to mark the tail of each arrow and the letter H to mark the head. For
each pair of arrows on four nodes, we will indicate the relative order of the two heads
and two tails by writing down the appropriate letters left to right in the order as they
occur. We will refer to the resulting word as the type of the pair of arrows. After that
we will simply state in words the condition that a pair of arrows of a given type must
satisfy to be an edge of the triangulation. Three examples of this convention are given
in Table 1. Our main classification result is the following.

Theorem 3.2. Let 4n be a uniform flag complex on the vertex set Vn for some n ≥ 5 that
satisfies the necessary conditions stated in Proposition 3.3 below. Then the complex4n represents
a triangulation of the boundary ∂Pn of the Legendre polytope if and only if it satisfies exactly one
of the following conditions:

1. Both THTH and HTHT types of pairs of arrows do not nest, and both HTTH and THHT
types of arrows do not cross. Uniform flag triangulations induced by the lexicographic
pulling order belong to this class, hence we call it the lex class.

2. Both THTH and HTHT types of pairs of arrows nest, and both HTTH and THHT types
of arrows cross. Uniform flag triangulations induced by the revlex pulling order belong to
this class, hence we call it the revlex class.

3. Exactly one of the THTH and HTHT types of pairs of arrows nest. Furthermore, if both
THHT and HTTH types of pairs cross then both TTHH and HHTT types of pairs nest.
The Simion type B associahedron belongs to this class, and hence we call it the Simion
class.

The necessity part of Theorem 3.2 depends on a few technical propositions and the
following geometric observation.
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Proposition 3.3. Let 4n be a uniform flag complex on the vertex set Vn. Identify each vertex
(i, j) ∈ Vn with the vertex ej − ei of the Legendre polytope Pn. If the complex 4n represents a
triangulation of the boundary ∂Pn of the Legendre polytope then it satisfies the following criteria:

1. There is no edge of the form {(i, j), (j, k)} in the complex 4n.

2. For each three-element subset {i, j, k} of {1, 2, . . . , n + 1}, the two sets {(i, j), (i, k)} and
{(j, i), (k, i)} are edges in the complex 4n.

3. For each four-element subset {i1, i2, j1, j2} of {1, 2, . . . , n + 1}, exactly one of the two sets
{(i1, j1), (i2, j2)} and {(i1, j2), (i2, j1)} is an edge in the complex 4n.

The key tool in verifying sufficiency is the following result.

Theorem 3.4. Let 4n be a uniform flag complex on the vertex set Vn satisfying the conditions
of Proposition 3.3. LetM be the family of all faces that are matchings, that is, set

M = {{(i1, j1), (i2, j2), . . . , (ik, jk)} ∈ 4n : |{i1, j1, i2, j2, . . . , ik, jk}| = 2k}.

Identify each vertex (i, j) with the vertex ej − ei of the Legendre polytope. Then the complex 4n
represents a triangulation of the boundary ∂Pn of the Legendre polytope if and only if the family
of matchingsM satisfies the following two properties:

(SA) For each I, J ⊂ {1, 2, . . . , n + 1} satisfying I ∩ J = ∅ and |I| = |J| there is a unique
σ ∈ M such that σ ⊆ I × J and |σ| = |I|;

(LA) Assume I, J ⊂ {1, 2, . . . , n + 1} satisfies I ∩ J = ∅ and let σ be a non-empty matching
in M such that σ ⊆ I × J. Then for each k 6∈ I ∪ J there is an edge (i, j) ∈ σ such that
(σ− {(i, j)}) ∪ {(k, j)} ∈ M. Also, for each k 6∈ I ∪ J there is an edge (i, j) ∈ σ such
that (σ− {(i, j)}) ∪ {(i, k)} ∈ M.

The proof of Theorem 3.4 relies on a nontrivial revamping of the characterization of
triangulations of a product of two simplices given by S. Oh and H. Yoo [11]. See also [2]
and [3, Lemma 2.5]. In the proof at some point we use a slight generalization of [12,
Lemma 12.6]. The labels (SA) and (LA) refer to the terms support axiom and linkage axiom
used by S. Oh and H. Yoo. They also introduce a closure axiom which is trivially verified
in our setting.

4 Tools for refined face enumeration

In this section we list a few tools we repeatedly used to prove our enumerative results.
Uniform triangulations of ∂Pn are defined by a set of six rules, independent of the di-
mension. For a fixed set of rules, we will simultaneously consider each triangulation
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4n determined on the vertex set Vn defined by these rules, for each n ≥ 0. Note that
V0 = ∅. Let F = (F0,F1, . . .) be a sequence of collections of arrows, where Fn is a
family of subsets of Vn. We define the associated generating function

F(F , x, y, t) = ∑
n,i,j≥0

f (Fn, i, j) · xiyjtn

where f (Fn, i, j) is the number of sets in Fn consisting of i forward arrows and j back-
ward arrows. Our interest is to compute this generating function when F is the collec-
tion (40,41, . . .). The number of cases to be considered can be reduced by extending
the notion of the dual and reflected dual triangulations to all families:

Lemma 4.1. Let F = (F0,F1, . . .) be a sequence of collections of arrows, where Fn ⊆ 2Vn .
Let F ∗ = (F ∗0 ,F ∗1 , . . .) be the dual family, obtained by reversing all arrows in all sets, and let
F = (F0,F1, . . .) be the reflected dual family, obtained by reversing each arrow, and replacing
each node i in Vn with n + 2− i. Then we have

F(F ∗, x, y, t) = F(F , y, x, t) and F(F , x, y, t) = F(F , x, y, t).

The families of uniform flag triangulations defined by a set of rules are coherent in
the sense that they are closed under the insertion and removal of isolated nodes. To
make this informal observation precise, consider the map πk : (N− {k})→N given by
πk(m) = m for m < k and πk(m) = m− 1 for m > k.

Definition 4.2. Let F = (F0,F1, . . .) be a collection of families of sets such that for each n
the family Fn consists of subsets of Vn. We call such a collection coherent if for each subset σ

of Vn and each k ∈ {1, 2, . . . , n + 1} that is not incident to any arrow in σ, the set πk(σ) =
{(πk(i), πk(j)) : (i, j) ∈ σ} belongs to Fn−1 if and only if σ belongs to Fn. In particular, for a
coherent collection F = (F0,F1, . . .), the empty set either belongs to all Fn or it belongs to none
of them.

By abuse of terminology we will say that F contains the empty set if all families Fn in
it contain it. Sets of arrows in coherent collections may be enumerated by counting only
the saturated sets in the families, which we now define.

Definition 4.3. For n ≥ 1, a subset σ of Vn is saturated if the set of endpoints of its arrows is the
set {1, 2, . . . , n + 1}. We also consider the empty set to be a saturated subset of V0 = ∅. Given
a coherent collection F = (F0,F1, . . .), we denote the family of saturated sets in Fn by F̂n.

Note that F̂0 = {∅} exactly when F contains the empty set. One of our key counting
tools is the following observation.
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Lemma 4.4. Given a coherent collection of families F of arrows, the face generating function
satisfies

F(F , x, y, t) = − t
(1− t)2 · δF0,{∅} +

1
(1− t)2 · F

(
F̂ , x, y,

t
1− t

)
, (4.1)

F(F̂ , x, y, z) =
z

1 + z
· δF̂0,{∅} +

1
(1 + z)2 · F

(
F , x, y,

z
1 + z

)
, (4.2)

where δ denotes the Kronecker delta function.

Using Lemma 4.4 it is always possible, albeit sometimes tedious, to compute the gen-
erating function of all faces. An interesting special case is counting all facets with a given
number of forward and backward arrows. The following statement is straightforward.

Lemma 4.5. Let4n be a uniform flag triangulation of the boundary ∂Pn of the Legendre polytope.
Then a face σ ∈ 4n is a facet if and only if it is saturated and contains no isolated nodes, that is,
every i ∈ {1, 2, . . . , n + 1} is incident to some element of σ.

In other words, as a subset of Vn, a facet is the set of edges of a forest with no isolated
nodes. Such a forest has n + 1 nodes and n arrows. If the number of forward arrows is i
then the number of backward arrows is n− i in such a forest, contributing a term xiyn−itn

to the generating function of all faces and the term xiyn−izn to generating function of all
saturated faces.

Corollary 4.6. Let F = (40,41, . . .) be a coherent family of uniform flag triangulations. Then
the facet generating function ∑n≥0 ∑n

i=0 f (4n, i, n− i)xiyn−izn may be obtained by substituting
x/w into x, y/w into y and wz into t in F(F , x, y, t) and then evaluating the resulting expres-
sion at w = 0. Alternatively it may also be obtained by substituting x/w into x, y/w into y and
wz into z in F(F̂ , x, y, z) and then evaluating the resulting expression at w = 0.

For any uniform flag triangulation of the boundary ∂Pn of the Legendre polytope,
the vertex sets consisting only of forward (backward) arrows form subcomplexes whose
face numbers are easier to count. We first review the rephrasing of a known result.

A useful way to express our results is in terms of the generating function for the
Catalan numbers:

C(u) = ∑
n≥0

Cn · un =
1−
√

1− 4u
2u

.

Proposition 4.7. Let F be a family of uniform flag triangulations defined by a set of rules that
contains the rule that HTHT types of pairs of arrows do not nest. Then the following two
identities hold:

F(F , 0, y, t) =
1− t−

√
1− (4y + 2)t + t2

2yt
, (4.3)

F(F̂ , 0, y, z) =
1

1 + z
· (C(yz(z + 1)) + z) . (4.4)



8 Richard Ehrenborg, Gábor Hetyei, and Margaret Readdy

Corollary 4.8. Let F be a family of uniform flag triangulations such that HTHT types of pairs
of arrows do not nest. Then the sum over all forests F consisting of k ≥ 1 backward arrows, no
forward arrows and no isolated nodes is

Gk(z) = ∑
F

z#nodes of F = Ck · zk+1 · (z + 1)k−1. (4.5)

Similarly, if the uniform flag triangulations F satisfies the requirement that THTH types of
pairs of arrows do not nest, then the sum over all forests F consisting of k ≥ 1 forward arrows,
no backward arrows and no isolated nodes also yields the identity (4.5).

We will also use the following refined variant of Proposition 4.7.

Proposition 4.9. Let F be a family of uniform flag triangulations defined by a set of rules that
contains the rule that HTHT type of pairs of arrows do not nest. For each n ≥ 0, let F (i)

n denote
the set of all faces where the sequence of heads and tails, listed in increasing order, satisfies the
condition that the i smallest nodes are heads and the next node is a tail. Then the two resulting

collections F (i) =
(
F (i)

0 ,F (i)
1 , . . .

)
and F̂ (i) =

(
F̂ (i)

0 , F̂ (i)
1 , . . .

)
satisfy

F(F (i), 0, y, t) =
yitiF(F , 0, y, t)i

(1− t)i+1 , (4.6)

F(F̂ (i), 0, y, z) =
1

1 + z
· (yz(1 + z)C(yz(z + 1)))i . (4.7)

When HTHT pairs of arrows do not nest, we obtain a very different expression enu-
merating the faces containing backward arrows only. We employ its dual form, obtained
after reversing all arrows, using a generalization of the Delannoy numbers. Recall a
Delannoy path from (0, 0) to (a, b) is a lattice path consisting of North steps (0, 1), East
steps (1, 0) and NE steps (1, 1). The number of Delannoy paths from (0, 0) to (a, b) is the
Delannoy number Da,b.

Definition 4.10. Given two non-negative integers a and b, the Delannoy polynomial Da,b(x)
is the total weight of all Delannoy paths from (0, 0) to (a, b), where each step contributes a factor
of x. Thus the coefficient of xj in Da,b(x) is the number of Delannoy paths from (0, 0) to (a, b)
having j steps.

Proposition 4.11. Let F be a family of uniform flag triangulations defined by a set of rules
requiring that THTH type of pairs of arrows nest. Then the collection F̂ of families of saturated
faces satisfies

F(F̂ , x, 0, z) = 1 + xz · ∑
a,b≥0

Da,b(x) · za+b. (4.8)
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In particular, the contribution to F(F̂ , x, 0, z) of all saturated faces having a + 1 tails and b + 1
heads is Da,b(x) · xza+b+1.

In our formulas we will often use the following bivariate generating function of the
Delannoy polynomials. We set

D(u, v, x) = ∑
a,b≥0

uavb · Da,b(x) =
1

1− x(u + v + uv)
. (4.9)

5 Face enumeration for uniform flag triangulations

The following theorem covers half of the uniform flag triangulations in the Simion class.
The analogous result for the remaining triangulations may be easily obtained using
Lemma 4.1.

Theorem 5.1. Let F be a collection of uniform flag triangulations belonging to the Simion class
and let F̂ be the collection of families of saturated faces. If THTH types of pairs of arrows do not
nest and HTHT types of pairs of arrows nest then the following identity holds:

F(F̂ , x, y, z) =
C(yz(z + 1)) + z

1 + z
+

xz · (1 + zC(yz(z + 1))) · C(yz(z + 1))2

(1 + z) · (1− 2C(yz(z + 1))xz− C(yz(z + 1))2xz2)
.

By combining Theorem 5.1 and Lemma 4.4 it is possible to give the generating func-
tion of all faces. Extracting the coefficients from the facet generating function yields the
following result.

Theorem 5.2. Let 4n be a uniform flag triangulation of the boundary ∂Pn of the Legendre
polytope belonging to the Simion class satisfying the property that THTH type of pairs of arrows
nest and HTHT type of arrows do not nest. Then for i ≥ 1, the number of facets of4n consisting
of i forward arrows and n− i backward arrows is given by

f (4n, i, n− i) = 2i−1 · (i + 1) · (2n− i)!
(n− i)! · (n + 1)!

. (5.1)

The number of facets of the triangulation 4n consisting of no forward arrows and n backward
arrows is given by the Catalan number Cn.

Next we look at the revlex class.

Theorem 5.3. Let F be a family of uniform flag triangulations in the revlex class. Then the
collection F̂ of families of saturated faces satisfies

F(F̂ , x, y, z) = 1 + ∑
a,b≥0

(x · Da,b(x) + y · Da,b(y)) · za+b+1 (5.2)

+ xy · ∑
a′,b′,a′′,b′′≥0

Da′,b′(x) · Da′′,b′′(y) · za′+b′+a′′+b′′+2 · C(a′, b′, a′′, b′′, z)
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where

C(a′, b′, a′′, b′′, z) =
(

a′ + b′′ + 2
a′ + 1

)
·
(

a′′ + b′ + 2
b′ + 1

)
· z (5.3)

+

(
a′ + b′′ + 1

b′′

)
·
(

a′′ + b′ + 1
b′

)
+

(
a′ + b′′ + 1

a′

)
·
(

a′′ + b′ + 1
a′′

)
.

We obtain a more compact expression using the proof of Theorem 5.3 by introducing
the following generating function.

Definition 5.4. Let F̂ = (F̂0, F̂1, . . .) be a collection of families of arrows such that for each n
the family F̂n consists of saturated subsets of Vn. We define the node-enriched exponential
generating function of F̂ as follows:

1. The empty set (if it belongs to F̂0) contributes a factor of 1.

2. Each nonempty σ ∈ F̂n contributes a term

xiyj · ua+1 · vb+1

(a + 1)! · (b + 1)!
· tn,

where i is the number of forward arrows, j is the number of backward arrows, a + 1 is the
number of nodes that are left ends of arrows and b + 1 is the number of nodes that are right
ends of arrows.

The node-enriched exponential generating function of the saturated faces in a trian-
gulation in the revlex class has a compact expression in terms of the following exponen-
tial generating function of the Delannoy polynomials:

D̃(u, v, x) = ∑
a,b≥0

Da,b(x) · ua+1 · vb+1

(a + 1)! · (b + 1)!
. (5.4)

Theorem 5.5. Let F be a family of uniform flag triangulations in the revlex class. Then the
node-enriched exponential generating function of the collection F̂ of families of saturated faces is
given by

1 +
1
z
· D̃(uz, vz, x) +

1
z
· D̃(vz, uz, y) +

1
z
· D̃(uz, vz, x) · D̃(vz, uz, y)

+
1
z2 ·

∂

∂u
D̃(uz, vz, x) · ∂

∂v
D̃(vz, uz, y) +

1
z2 ·

∂

∂v
D̃(uz, vz, x) · ∂

∂u
D̃(vz, uz, y).

Theorem 5.5 motivates computing D̃(u, v, x) explicitly.
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Theorem 5.6. The exponential generating function D̃(u, v, x) is given by

D̃(u, v, x) = ∑
k≥0

(uv · (x2 + x))k

k!2
· ψk+1(ux) · ψk+1(vx)

where ψk+1(z) = dk

dzk

(
ez−1

z

)
.

Remark 5.7. It is a direct consequence of Theorem 5.6 that

∂

∂u
∂

∂v
D̃(u, v, x) = exp(x · (u + v)) · I0

(
2
√
(x2 + x) · uv

)
where I0(z) is the modified Bessel function of the first kind.

Using Corollary 4.6 we may count the facets.

Theorem 5.8. Let 4n be a uniform flag triangulation of the boundary ∂Pn of the Legendre
polytope that belongs to the revlex class. For 1 ≤ k ≤ n− 1, the number of facets consisting of k
forward arrows and n− k backward arrows, that is, f (4n, k, n− k), is given by

k

∑
i=1

n−k

∑
j=1

(
k− 1
i− 1

)(
n− k− 1

j− 1

) [(
n− k + i− j

i

)(
k− i + j

j

)
+

(
n− k + i− j

i− 1

)(
k− i + j

j− 1

)]
.

The number of facets with n forward arrows and no backward arrows; and the number of facets
with no forward arrows and n backward arrows are both equal to 2n−1.

Finally we turn our attention to the lex class.

Theorem 5.9. Let 4n be a uniform flag triangulation of the boundary ∂Pn of the Legendre
polytope in the lex class. Then the number of (k− 1)-dimensional faces in the triangulation 4n
consisting of i forward arrows and k− i backward arrows is given by

f (4n, i, k− i) =
fk−1(4n)

k + 1
=

1
k + 1

·
(

n + k
k

)
·
(

n
k

)
.

Furthermore, this quantity is independent of the parameter i.

Acknowledgements

The first and third authors thank the Institute for Advanced Study in Princeton, New
Jersey for supporting a research visit in Summer 2018.



12 Richard Ehrenborg, Gábor Hetyei, and Margaret Readdy

References
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