Séminaire Lotharingien de Combinatoire **82B** (2019) Article #15, 12 pp.

Spanning line configurations

Brendan Pawlowski^{*1} and Brendon Rhoades^{†2}

¹Department of Mathematics, University of Southern California ²Department of Mathematics, University of California, San Diego

Abstract. We define and study a variety $X_{n,k}$ which depends on two positive integers $k \leq n$. When k = n, the variety $X_{n,k}$ is homotopy equivalent to the *flag variety* $\mathcal{F}\ell(n)$ of complete flags in \mathbb{C}^n . We describe an affine paving of $X_{n,k}$, present its cohomology, and describe the cellular cohomology classes in terms of Schubert polynomials. Just as the geometry of $\mathcal{F}\ell(n)$ is governed by the combinatorics of permutations in S_n , the geometry of $X_{n,k}$ is governed by length n words on the alphabet $\{1, 2, \ldots, k\}$ in which each letter appears at least once. The space $X_{n,k}$ carries a natural action of S_n , and we relate the induced cohomology representation to Macdonald theory via the Delta Conjecture of Haglund, Remmel, and Wilson.

Keywords: Fubini word, flag variety, symmetric function, coinvariant ring

1 Introduction

In this extended abstract we introduce and study a variety $X_{n,k}$ depending on two positive integers $k \leq n$. Our goal is to provide a geometric context to study the *Delta Conjecture* of Haglund, Remmel, and Wilson [9] which extends the role played by the classical flag variety $\mathcal{F}\ell(n)$ in the study of diagonal coinvariants and the *Shuffle Theorem* [3]. We introduce our variety $X_{n,k}$ in Section 2 below; the remainder of the introduction is devoted to connections with the Delta Conjecture and related work of Haglund, Rhoades, and Shimozono [10] on generalized coinvariant rings. We solve the problem [10, Prob. 7.2] of finding a flag variety for the Delta Conjecture.

Consider the action of the symmetric group S_n on the polynomial ring $\mathbb{Z}[x_1, \ldots, x_n]$ by subscript permutation. The invariant subring $\mathbb{Z}[x_1, \ldots, x_n]^{S_n}$ is the ring of *symmetric polynomials*. Let $\mathbb{Z}[x_1, \ldots, x_n]^{S_n}_+$ be the family of symmetric polynomials with vanishing constant term. The *invariant ideal* $I_n \subseteq \mathbb{Z}[x_1, \ldots, x_n]$ is the ideal generated by $\mathbb{Z}[x_1, \ldots, x_n]^{S_n}_+$. If $e_d = \sum_{1 \le i_i < \cdots < i_d \le n} x_{i_1} \cdots x_{i_d}$ is the degree *d* elementary symmetric polynomial, we have $I_n = \langle e_1, e_2, \ldots, e_n \rangle$. The *coinvariant ring* is

$$R_n := \mathbb{Z}[x_1, \dots, x_n] / I_n = \mathbb{Z}[x_1, \dots, x_n] / \langle e_1, e_2, \dots, e_n \rangle.$$
(1.1)

^{*}bpawlows@usc.edu

[†]bprhoades@math.ucsd.edu

The ring R_n is a graded \mathbb{Z} -algebra with a graded action of S_n .

Let \mathbb{C}^n be the standard *n*-dimensional complex vector space. A (*complete*) flag in \mathbb{C}^n is a maximal sequence $V_{\bullet} = (0 = V_0 \subset V_1 \subset \cdots \subset V_n = \mathbb{C}^n)$ of nested subspaces of \mathbb{C}^n such that dim $(V_i) = i$ for $1 \leq i \leq n$. The flag variety $\mathcal{F}\ell(n)$ is the family of complete flags in \mathbb{C}^n . The identification $\mathcal{F}\ell(n) = \operatorname{GL}_n(\mathbb{C})/B$, where $B \subseteq \operatorname{GL}_n(\mathbb{C})$ is the upper triangular subgroup, endows $\mathcal{F}\ell(n)$ with the structure of a complex algebraic variety. Borel proved [2] that the (singular, integral) cohomology of $\mathcal{F}\ell(n)$ is presented by the coinvariant ring:

$$H^{\bullet}(\mathcal{F}\ell(n)) = R_n. \tag{1.2}$$

Algebraic properties of R_n and geometric properties of $\mathcal{F}\ell(n)$ are governed by combinatorial properties of permutations in S_n . In no small part for this reason, R_n is one of the most well-studied rings and $\mathcal{F}\ell(n)$ is one of the most well-studied varieties in algebraic combinatorics.

Consider a polynomial ring in two sets of *n* variables $\mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ over the rational field \mathbb{Q} . This ring carries a *diagonal* action of S_n , viz. $w.x_i = x_{w(i)}, w.y_i := y_{w(i)}$ for $w \in S_n$ and $1 \le i \le n$. The *diagonal coinvariant ring* [8] is the bigraded S_n -module

$$DR_n^{\mathbb{Q}} := \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n] / \langle \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n]_+^{S_n} \rangle$$
(1.3)

obtained by modding out by invariants with vanishing constant term. Setting the *y*-variables equal to zero recovers (up to ground ring) the classical coinvariant ring R_n which presents the cohomology of $\mathcal{F}\ell(n)$.

It is natural to ask for the bigraded S_n -isomorphism type of DR_n . We recall the basics of the Frobenius map connecting S_n -modules and symmetric functions.

The irreducible representations of S_n are in bijective correspondence with partitions of n. Given a partition $\lambda \vdash n$, let S^{λ} be the corresponding irreducible \mathfrak{S}_n -module. If V is any finite-dimensional S_n -module, there exist unique multiplicities $c_{\lambda} \geq 0$ so that $V \cong \bigoplus_{\lambda \vdash n} c_{\lambda}S^{\lambda}$. The *Frobenius image* of V is the symmetric function $\operatorname{Frob}(V) = \sum_{\lambda \vdash n} c_{\lambda}s_{\lambda}$, where s_{λ} is the Schur function.

Going further, if $V = \bigoplus_{i \ge 0} V_i$ is a graded S_n -module with each graded piece V_i finitedimensional, the graded Frobenius image is grFrob $(V;q) := \sum_{i \ge 0} \operatorname{Frob}(V_i) \cdot q^i$. Finally, if $V = \bigoplus_{i,j \ge 0} V_{i,j}$ is a bigraded S_n -module with each $V_{i,j}$ finite-dimensional, the bigraded Frobenius image is grFrob $(V;q,t) = \sum_{i,j \ge 0} \operatorname{Frob}(V_{i,j}) \cdot q^i t^j$.

Haiman [11] proved that the bigraded Frobenius image of DR_n is given by

$$\operatorname{grFrob}(DR_n; q, t) = \nabla e_n, \tag{1.4}$$

where ∇ is the Bergeron-Garsia nabla operator on symmetric functions and e_n is the elementary symmetric function. Finding the bigraded isomorphism type of DR_n therefore reduces to finding a positive formula for the Schur expansion of ∇e_n . While there is

not even a conjecture in this direction, Carlsson and Mellit [3] proved the *Shuffle Theorem* which gives a monomial expansion of ∇e_n .

The *Delta Conjecture* of Haglund, Remmel, and Wilson [9] predicts a generalization of the Shuffle Theorem which depends on two positive integers $k \le n$. It reads

$$\Delta_{e_{k-1}}' e_n = \operatorname{Rise}_{n,k}(\mathbf{x}; q, t) = \operatorname{Val}_{n,k}(\mathbf{x}; q, t).$$
(1.5)

Here $\Delta'_{e_{k-1}}$ is the primed *delta operator* labeled by e_{k-1} and Rise and Val are two formal power series arising from lattice path combinatorics depending on an infinite set of variables $\mathbf{x} = (x_1, x_2, ...)$ and two additional parameters q, t. The Delta Conjecture reduces to the Shuffle Theorem when k = n.

Although the Delta Conjecture is open in general, it is proven when one of the parameters q, t is set to zero. Combining results of [7, 10, 15, 16], we have

$$\Delta'_{e_{k-1}}e_n \mid_{t=0} = \operatorname{Rise}_{n,k}(\mathbf{x};q,0) = \operatorname{Rise}_{n,k}(\mathbf{x};0,q) = \operatorname{Val}_{n,k}(\mathbf{x};q,0) = \operatorname{Val}_{n,k}(\mathbf{x};0,q).$$
(1.6)

Let $C_{n,k}(\mathbf{x}; q)$ be the common symmetric function of Equation (1.6).

Haglund, Rhoades, and Shimozono [10] defined an extension of the coinvariant ring which applies to the Delta Conjecture. If $k \leq n$ are positive integers, let $I_{n,k} \subseteq \mathbb{Z}[x_1, \ldots, x_n]$ be the ideal

$$I_{n,k} := \langle x_1^k, x_2^k, \dots, x_n^k, e_n, e_{n-1}, \dots, e_{n-k+1} \rangle$$
(1.7)

and let $R_{n,k} := \mathbb{Z}[x_1, ..., x_n] / I_{n,k}$ be the corresponding quotient. The ring $R_{n,k}$ is a graded S_n -module. If we let $R_{n,k}^{\mathbb{Q}} := \mathbb{Q} \otimes_{\mathbb{Z}} R_{n,k}$, we have the graded Frobenius image [10]

$$\operatorname{grFrob}(R_{n,k}^{\mathbb{Q}};q) = (\operatorname{rev}_q \circ \omega)C_{n,k}(\mathbf{x};q), \tag{1.8}$$

where rev_q reverses the coefficient sequences of polynomials in q and ω is the symmetric function involution trading e_n and h_n .

Equation (1.8) says that the generalized coinvariant ring $R_{n,k}$ plays the same role for the Delta Conjecture as the classical coinvariant ring R_n for the Shuffle Theorem on the level of graded S_n -modules. Haglund, Rhoades, and Shimozono left open the problem [10, Prob. 7.2] of finding a corresponding generalization of the flag variety: a variety $X_{n,k}$ whose cohomology is presented by $R_{n,k}$. We solve this problem here.

A word $w_1 \dots w_n$ over the positive integers is *Fubini* (or *packed*) if for any i > 1 such that i appears as a letter in $w_1 \dots w_n$, so does i - 1. Let $W_{n,k}$ be the family of length n Fubini words with maximum letter k; when k = n we have $W_{n,k} = S_n$. The geometry of **our variety** $X_{n,k}$, **like the algebra of the ring** $R_{n,k}$, **is governed by the combinatorics of Fubini words in** $W_{n,k}$. In addition to presenting the cohomology of $X_{n,k}$, we generalize classical Schubert calculus theorems of Ehresmann [5] and Lascoux-Schützenberger [12] from the flag variety $\mathcal{F}\ell(n)$ to the more general spaces $X_{n,k}$. It is the hope of the authors that this will inspire a generalization of Schubert calculus with Fubini words as its basis.

Figure 1: A point in $X_{5,3}$.

2 The spanning moduli space

Our object of study is the following moduli space of line configurations ¹ which depends on two positive integers $k \le n$ and a field \mathbb{F} .

Definition 1. Let $k \leq n$ be positive integers and let \mathbb{F} be a field. We define

$$X_{n,k} := \{ (\ell_1, \dots, \ell_n) : \ell_i \subseteq \mathbb{F}^k \text{ a 1-dimensional subspace and } \ell_1 + \dots + \ell_n = \mathbb{F}^k \}$$
(2.1)

to be the set of all n-tuples of lines through the origin in \mathbb{F}^k whose span equals \mathbb{F}^k .

Warning. Do not confuse $X_{n,k}$ with the Grassmannian of k-dimensional subspaces of \mathbb{F}^n . These objects have very different combinatorial and geometric properties.

A point in the space $X_{5,3}$ is shown in Figure 1. We have an ordered quintuple of lines through the origin which together have full span \mathbb{F}^3 . We leave \mathbb{F} general for now, but we specialize to the finite field \mathbb{F}_q at the end of Section 3 and the complex field \mathbb{C} in Sections 4 to 6.

Let \mathbb{P}^{k-1} stand for the projective space of lines through the origin in \mathbb{F}^k and let $(\mathbb{P}^{k-1})^n$ be its *n*-fold Cartesian product. The natural inclusion $X_{n,k} \subset (\mathbb{P}^{k-1})^n$ realizes $X_{n,k}$ as a Zariski open subset of $(\mathbb{P}^{k-1})^n$, and therefore a smooth complex manifold when $\mathbb{F} = \mathbb{C}$.

The set $X_{n,k}$ carries an action of the symmetric group S_n by the rule

$$w.(\ell_1, \dots, \ell_n) := (\ell_{w(1)}, \dots, \ell_{w(n)})$$
(2.2)

for all $w \in S_n$ and $(\ell_1, \ldots, \ell_n) \in X_{n,k}$. When $\mathbb{F} = \mathbb{C}$, this action is continuous and so endows the (singular, integral) cohomology ring $H^{\bullet}(X_{n,k})$ with the structure of a graded S_n -module.

¹We use 'configuration' rather than 'arrangement' because we are considering *ordered* tuples of lines.

We view our moduli space $X_{n,k}$ as a generalization of the flag variety. To justify this, observe that when k = n, we have a natural surjection

$$X_{n,n} = GL_n/T \twoheadrightarrow GL_n/B = \mathcal{F}\ell(n), \tag{2.3}$$

where $T \subseteq GL_n$ is the diagonal torus. When $\mathbb{F} = \mathbb{C}$, this is a homotopy equivalence ², so that $X_{n,n}$ agrees with $\mathcal{F}\ell(n)$ up to homotopy and $H^{\bullet}(X_{n,n}) = H^{\bullet}(\mathcal{F}\ell(n))$. At the other extreme, the space $X_{n,1} = \{*\}$ is a single point.

3 The orbit set $X_{n,k}$

In order to understand the combinatorics of $X_{n,k}$ and the geometry of its embedding inside $(\mathbb{P}^{k-1})^n$, we will need matrices. If $Mat_{k\times n}$ is the affine space of $k \times n$ matrices over \mathbb{F} , we introduce the Zariski open subsets $\mathcal{U}_{n,k} \subseteq \mathcal{V}_{n,k}$ by

 $\mathcal{U}_{n,k} := \{ A \in \operatorname{Mat}_{k \times n} : A \text{ has no zero columns and has full rank} \},$ (3.1) $\mathcal{V}_{n,k} := \{ A \in \operatorname{Mat}_{k \times n} : A \text{ has no zero columns} \}.$ (3.2)

Let $T \subseteq GL_n$ be the diagonal subgroup and let $U \subseteq GL_k$ be the group of *lower* triangular $k \times k$ matrices with 1's on the diagonal. The product group $U \times T$ acts on both $\mathcal{U}_{n,k}$ and $\mathcal{V}_{n,k}$ by the rule (u, t).A := uAt for all $(u, t) \in U \times T$. We have the orbit set identifications $X_{n,k} = \mathcal{U}_{n,k}/T$ and $(\mathbb{P}^{k-1})^n = \mathcal{V}_{n,k}/T$.

Proposition 1. *The action of* $U \times T$ *on the set* $U_{n,k}$ *is free.*

What do the $U \times T$ -orbits in $U_{n,k}$ look like? Given any length n word $w = w_1 \dots w_n$, a position $1 \le j \le n$ is *initial* if w_j is the first occurrence of its letter. Let in(w) be the set of initial positions, so that $in(2331231) = \{1, 2, 4\}$. If $w \in W_{n,k}$ is Fubini, the *pattern matrix* PM(w) is the $k \times n$ matrix with entries in $\{0, 1, \star\}$ whose entries PM(w)_{*i*,*j*} (for $1 \le i \le k$ and $1 \le j \le n$) are as follows.

- We have $PM(w)_{i,i} = 1$ if and only if $w_i = i$.
- Suppose $j \in in(w)$ is an initial position of w and $w_j \neq i$. If $w_j > i$ and there exists j' < j with $w_{j'} = i$ then $PM(w)_{i,j} = \star$. Otherwise $PM(w)_{i,j} = 0$.
- Suppose *j* ∉ in(*w*) is not an initial position of *w* and *w_j* ≠ *i*. If the first occurrence of *i* in *w* = *w*₁...*w_n* is before the first occurrence of *w_j* in *w* = *w*₁...*w_n* then PM(*w*)_{*i*,*j*} = ★. Otherwise PM(*w*)_{*i*,*j*} = 0.

²It is a fiber bundle over a Hausdorff base space whose fiber – homeomorphic to the group of upper triangular matrices with 1's on the diagonal – is contractible.

In our example $w = 2331231 \in W_{7,3}$ the pattern matrix is

$$PM(w) = PM(2331231) = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & \star & \star & 0 & 1 & \star & \star \\ 0 & 1 & 1 & 0 & 0 & 1 & \star \end{pmatrix}.$$

The *dimension* dim(w) of a Fubini word $w \in W_{n,k}$ is the number of \star 's in its pattern matrix, so that dim(2331231) = 5.

A matrix $A \in U_{n,k}$ fits the pattern of a Fubini word $w \in W_{n,k}$ if A can be obtained by replacing the \star 's in PM(w) with field elements. The following is another application of linear algebra.

Proposition 2. For any $U \times T$ -orbit \mathcal{O} in $\mathcal{U}_{n,k}$, there exists a unique Fubini word $w \in \mathcal{W}_{n,k}$ and a unique matrix A which fits the pattern of w such that $A \in \mathcal{O}$.

Propositions 1 and 2 yield a disjoint union decomposition of $X_{n,k}$. Let $\widehat{C}_w \subseteq U_{n,k}$ be the set of matrices which fit the pattern of a Fubini word $w \in W_{n,k}$; this is an affine space of dimension dim(w). Define $C_w \subseteq X_{n,k}$ by

$$C_w := \text{image of } U\widehat{C}_w \text{ in } X_{n,k}. \tag{3.3}$$

We have

$$X_{n,k} = \bigsqcup_{w \in \mathcal{W}_{n,k}} C_w.$$
(3.4)

There is an enumerative result over the finite field \mathbb{F}_q . Recall the *q*-analogs

$$[n]_q := 1 + q + \dots + q^{n-1}, \quad [n]!_q := [n]_q [n-1]_q \dots [1]_q, \quad \begin{bmatrix} n \\ k \end{bmatrix}_q := \frac{[n]!_q}{[k]!_q [n-k]!_q}.$$
 (3.5)

The *q*-Stirling number $\text{Stir}_q(n,k)$ is defined recursively by $\text{Stir}_q(0,k) = \delta_{0,k}$ and

$$\operatorname{Stir}_{q}(n,k) = \operatorname{Stir}_{q}(n-1,k-1) + [k]_{q} \cdot \operatorname{Stir}_{q}(n-1,k).$$
(3.6)

The polynomial $[k]!_q \cdot \text{Stir}_q(n,k)$ is called the *Mahonian distribution* on $\mathcal{W}_{n,k}$. Any statistic stat : $\mathcal{W}_{n,k} \to \mathbb{Z}_{\geq 0}$ which satisfies $\sum_{w \in \mathcal{W}_{n,k}} q^{\text{stat}(w)} = [k]!_q \cdot \text{Stir}_q(n,k)$ is called a *Mahonian statistic*; see [1, 14, 15] for examples.

Proposition 3. The dimension statistic dim is Mahonian.

Propositions 1 to 3 combine to yield the following interpretation of the Mahonian distribution on $W_{n,k}$ in terms of finite fields. It is our analog of the result that the number of flags in \mathbb{F}_q^n is $[n]!_q$.

Corollary 1. Let q be a prime power. Over the field \mathbb{F}_q with q elements, there are $[k]!_q \cdot \operatorname{Stir}_q(n,k)$ orbits in the $U \times T$ -set $\mathcal{U}_{n,k}$.

Billey and Coskun [1] relate the Mahonian distribution on $W_{n,k}$ to *rank varieties*. The authors do not know a geometric connection between rank varieties and $X_{n,k}$.

4 A cellular decomposition and the Poincaré series of *X*_{*n*,*k*}

For the rest of the extended abstract, we work over the complex field \mathbb{C} . We exploit the decomposition (3.4) to understand the geometry of $X_{n,k}$.

Let X be a complex algebraic variety. A *cellular decomposition* (a.k.a. *affine paving*) of X is a filtration $X_{\bullet} = (X = X_0 \supset X_1 \supset \cdots \supset X_m = \emptyset)$ of X, where each X_i is a closed subvariety and each difference $X_i - X_{i+1}$ is nonempty and isomorphic (as a variety) to a disjoint union of affine spaces. If we express $X_i - X_{i+1} = \bigsqcup_j A_{ij}$ as such a disjoint union, the A_{ij} are called the *cells* of the decomposition. We say that the partition of X formed by the collection of all cells $\{A_{ij}\}$ *induces* the decomposition X_{\bullet} . The following generalizes Ehresmann's CW decomposition of $\mathcal{F}\ell(n)$.

Theorem 1. The set of cells $\{C_w : w \in W_{n,k}\}$ induces a cellular decomposition of $X_{n,k}$.

Theorem 1 determines the structure of $H^{\bullet}(X_{n,k})$ as a graded abelian group. Let $X_{n,k}^+ = X_{n,k} \cup \{\infty\}$ be the one-point compactification of $X_{n,k}$. The *Borel-Moore homology* $\overline{H}_{\bullet}(X_{n,k})$ is the homology of the pair $(X_{n,k'}^+ \{\infty\})$. By Theorem 1, $\overline{H}_d(X_{n,k})$ vanishes when d is odd and is free abelian with basis $\{[\overline{C}_w] : w \in W_{n,k}, 2 \cdot \dim(w) = d\}$ when d is even.

The reader might ask whether the cellular decomposition of Theorem 1 can be replaced by the less technical notion of a CW decomposition. This is impossible because the space $X_{n,k}$ is not compact. Indeed, we will show that the Hilbert series of the cohomology ring $H^{\bullet}(X_{n,k})$ is not always palindromic (it equals $2q^4 + 3q^2 + 1$ when n = 3 and k = 2). Since $X_{n,k}$ is smooth, this means that $X_{n,k}$ must be noncompact. ³

The variety $X_{n,k}$ is irreducible. To see this, observe that the (affine) cell C_w for $w = 123 \dots kk \dots k \in W_{n,k}$ is (Zariski) dense in $X_{n,k}$. Poincaré duality asserts the isomorphism of abelian groups $\overline{H}_d(X_{n,k}) \cong H^{\dim(X_{n,k})-d}(X_{n,k})$.

Theorem 2. Let $k \leq n$ be positive integers. The cohomology ring $H^{\bullet}(X_{n,k})$ is free abelian as a graded group, with \mathbb{Z} -basis given by the classes $\{[\overline{C_w}] : w \in \mathcal{W}_{n,k}\}$. Furthermore, the Poincaré polynomial of $X_{n,k}$ is given by

$$\sum_{d\geq 0} \operatorname{rank}(H^d(X_{n,k})) \cdot q^d = \operatorname{rev}_q([k]!_{q^2} \cdot \operatorname{Stir}_{q^2}(n,k)).$$
(4.1)

In particular, $\operatorname{rank}(H^{\bullet}(X_{n,k})) = |\mathcal{W}_{n,k}| = k! \cdot \operatorname{Stir}(n,k)$ where $\operatorname{Stir}(n,k)$ is the Stirling number of the second kind.

³The authors do not know whether the one-point compactification $X_{n,k}^+$ of $X_{n,k}$ admits a finite CW structure given by the cells { $C_w : w \in W_{n,k}$ } together with an additional 0-cell for the added point ∞ .

5 The cohomology of $X_{n,k}$

Theorem 2 describes the structure of $H^{\bullet}(X_{n,k})$ as a graded group. We go further and present $H^{\bullet}(X_{n,k})$ as a graded ring. The first step is an extension of the cellular decomposition of Theorem 1 from $X_{n,k}$ to the larger space $(\mathbb{P}^{k-1})^n$.

Recall that the space $\mathcal{V}_{n,k}$ of $k \times n$ matrices with no zero columns carries an action of the product group $U \times T$. Let $w = w_1 \dots w_n$ be an arbitrary word in $[k]^n$ (which may not be Fubini). The notion of 'pattern matrix' may be extended to define PM(w) as the $k \times n$ matrix over $\{0, 1, \star\}$ whose entries are the same as in the Fubini case, except that any index $1 \le i \le n$ which does not appear indexes a row of zeros. We refer the reader to [13, Sec. 5] for a more precise definition. As an example, if k = 4 we have

$$PM(441121) = \begin{pmatrix} 0 & 0 & 1 & 1 & \star & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & \star & 0 & \star \end{pmatrix}.$$

As before, we say that a $k \times n$ matrix *fits the pattern* of a word $w \in [k]^n$ if it can be obtained by replacing the \star 's in PM(w) with complex numbers. If \hat{C}_w is the set of matrices which fit the pattern of w, we define $C_w \subseteq (\mathbb{P}^{k-1})^n$ by the rule

$$C_w := \text{image of } U\widehat{C}_w \text{ in } (\mathbb{P}^{k-1})^n.$$
(5.1)

Proposition 2 extends to the $U \times T$ -set $\mathcal{V}_{n,k}$ to give the disjoint union decomposition

$$(\mathbb{P}^{k-1})^n = \bigsqcup_{w \in [k]^n} C_w.$$
(5.2)

The decomposition (5.2) of $(\mathbb{P}^{k-1})^n$ extends the decomposition (3.4) of $X_{n,k}$ set theoretically. This statement can be strengthened to cellular decompositions as follows.

Lemma 1. There is a cellular decomposition $X_{\bullet} = (X_0 \supset X_1 \supset \cdots \supset X_m)$ of $(\mathbb{P}^{k-1})^n$ with cells $\{C_w : w \in [k]^n\}$ such that $X_i = \bigsqcup_{w \in [k]^n - \mathcal{W}_{n,k}} C_w = (\mathbb{P}^{k-1})^n - X_{n,k}$ for some $0 \le i \le m$.

Let $\iota : X_{n,k} \hookrightarrow (\mathbb{P}^{k-1})^n$ be the inclusion map. Lemma 1 and the general theory of cellular decompositions imply that the induced map $\iota^* : H^{\bullet}((\mathbb{P}^{k-1})^n) \twoheadrightarrow H^{\bullet}(X_{n,k})$ is surjective. In fact, if $J_{n,k} \subseteq H^{\bullet}((\mathbb{P}^{k-1})^n)$ is the ideal generated by the classes of cell closures $\{[\overline{C_w}] : w \in [k]^n - W_{n,k}\}$ corresponding to non-Fubini words, then ι^* induces an isomorphism of graded rings

$$H^{\bullet}(X_{n,k}) \cong H^{\bullet}((\mathbb{P}^{k-1})^n) / J_{n,k}.$$
(5.3)

To exploit the isomorphism (5.3) and present the cohomology of $X_{n,k}$, we need a better understanding of the classes $[\overline{C_w}]$ inside $H^{\bullet}((\mathbb{P}^{k-1})^n)$.

For $1 \le i \le n-1$, the *divided difference operator* ∂_i on $\mathbb{Z}[x_1, \ldots, x_n]$ is given by

$$\partial_i : f(x_1, \dots, x_n) \mapsto \frac{f(x_1, \dots, x_i, x_{i+1}, \dots, x_n) - f(x_1, \dots, x_{i+1}, x_i, \dots, x_n)}{x_i - x_{i+1}}.$$
 (5.4)

Schubert polynomials { $\mathfrak{S}_w : w \in S_n$ } are defined recursively by $\mathfrak{S}_{w_0} = x_1^{n-1}x_2^{n-2}\cdots x_{n-1}^1x_n^0$ when $w_0 = n(n-1)\dots 1$ and

$$\mathfrak{S}_{w_1\dots w_{i+1}w_i\dots w_n} = \partial_i(\mathfrak{S}_{w_1\dots w_iw_{i+1}\dots w_n}) \quad \text{when } w_i > w_{i+1}. \tag{5.5}$$

A word is *convex* if it does not have a subword of the form $\ldots i \ldots j \ldots i \ldots$ for $i \neq j$. If $w = w_1 \ldots w_n \in [k]^n$, the *convexification* $\operatorname{conv}(w)$ is the unique convex word with the same letter multiplicities as w in which the initial letters appear in the same order. We let $\sigma(w) \in S_n$ be the unique Bruhat-minimal permutation such that $\sigma(w).\operatorname{conv}(w) = w$. For example, if $w = 215235 \in [5]^6$ then $\operatorname{conv}(w) = 221553$ so that $\sigma(w) = 142365 \in S_6$.

Let $w = w_1 \dots w_n \in [k]^n$ be a word with *m* distinct letters. The *standardization* $st(w) \in S_{n+k-m}$ is given by replacing the letters in noninitial positions of *w* from left to right with $k + 1, k + 2, \dots, k + n - m$, and then appending the letters in [k] which do not appear in *w* to the end in increasing order. For example, if $w = 215235 \in [5]^6$ (so that m = 4) then $st(w) = 2156374 \in S_7$. We extend the Schubert polynomials to words as follows.

Definition 2. Let $k \leq n$ be positive integers and let $w \in [k]^n$ be a word. Define a polynomial $\mathfrak{S}_w \in \mathbb{Z}[x_1, \ldots, x_n]$ by

$$\mathfrak{S}_w := \sigma(w)^{-1} \mathfrak{S}_{\mathrm{st}(\mathrm{conv}(w))}.$$
(5.6)

For $1 \leq i \leq n$, let ℓ_i be the i^{th} tautological line bundle over the projective space product $(\mathbb{P}^{k-1})^n$. By the Künneth Theorem, we have the presentation

$$H^{\bullet}((\mathbb{P}^{k-1})^n) = \mathbb{Z}[x_1, \dots, x_n] / \langle x_1^k, \dots, x_n^k \rangle,$$
(5.7)

where x_i represents the Chern class $c_1(\ell_i^*) \in H^2((\mathbb{P}^{k-1})^n)$ (and so deg $(x_i) = 2$). This presentation interacts with the cellular decomposition of Lemma 1 as follows; the proof uses Fulton's theory of *degeneracy loci* [6].

Lemma 2. Let $k \leq n$ and let $w \in [k]^n$ be a word. The class $[\overline{C_w}] \in H^{\bullet}((\mathbb{P}^{k-1})^n)$ is represented by the polynomial \mathfrak{S}_w under the presentation (5.7).

The connection between $X_{n,k}$, the ring $R_{n,k}$ of Haglund, Rhoades, and Shimozono, and the Delta Conjecture is as follows.

Theorem 3. Let $k \leq n$ be positive integers. The cohomology of $X_{n,k}$ may be presented as

$$H^{\bullet}(X_{n,k}) = R_{n,k}.$$
(5.8)

Under this presentation, the variable x_i represents the Chern class $c_1(\ell_i^*) \in H^2(X_{n,k})$, where $\ell_i \to X_{n,k}$ is the *i*th tautological line bundle. If $w \in W_{n,k}$, the class $[\overline{C_w}] \in H^{\bullet}(X_{n,k})$ is represented by the polynomial \mathfrak{S}_w of Definition 2.

Proof. (Sketch.) Applying Lemmas 1 and 2, we have the presentation

$$H^{\bullet}(X_{n,k}) = \mathbb{Z}[x_1, \dots, x_n] / K_{n,k},$$
(5.9)

where $K_{n,k} := \langle \mathfrak{S}_w : w \in [k]^n - \mathcal{W}_{n,k} \rangle + \langle x_1^k, \dots, x_n^k \rangle$. For $1 \le i \le k$, let $w^i \in [k]^n$ be the unique weakly increasing word with letters $[k] - \{i\}$ whose first k - 1 letters are distinct. For example, the word $w^3 \in [6]^7$ is $w^3 = 1245666$. Then w^i is not Fubini, so that \mathfrak{S}_{w^i} is a generator of $K_{n,k}$. One shows that $\mathfrak{S}_{w^i} = e_{n-i+1}$, so that we have $I_{n,k} \subseteq K_{n,k}$.

The containment $I_{n,k} \subseteq K_{n,k}$ of ideals means that we have a canonical surjection of rings

$$\pi: R_{n,k} = \mathbb{Z}[x_1, \dots, x_n] / I_{n,k} \twoheadrightarrow \mathbb{Z}[x_1, \dots, x_n] / K_{n,k} = H^{\bullet}(X_{n,k}).$$
(5.10)

By Theorem 2, the target of π is a free \mathbb{Z} -module of rank $k! \cdot \text{Stir}(n, k)$. One shows that the domain $R_{n,k}$ is also a free \mathbb{Z} -module of rank $k! \cdot \text{Stir}(n,k)$; *Demazure characters* play a key role in this argument.

Since any surjection between \mathbb{Z} -modules of the same finite rank is an isomorphism, the map π is an isomorphism of rings and (5.8) is proven. The remainder of the theorem comes from the corresponding statements about $(\mathbb{P}^{k-1})^n$.

Line permutation endows the rational cohomology ring $H^{\bullet}(X_{n,k}; \mathbb{Q})$ with the structure of a graded S_n -module which is concentrated in even degree. Theorem 3 implies that

$$\operatorname{grFrob}(H^{\bullet}(X_{n,k};\mathbb{Q});\sqrt{q}) = \operatorname{grFrob}(R^{\mathbb{Q}}_{n,k};q) = (\operatorname{rev}_q \circ \omega)C_{n,k}(\mathbf{x};q),$$
(5.11)

justifying our assertion that $X_{n,k}$ is the flag variety for the Delta Conjecture.

Haglund, Rhoades, and Shimozono discovered extensions of various monomial bases of $\mathbb{Q} \otimes_{\mathbb{Z}} R_n$ to $\mathbb{Q} \otimes_{\mathbb{Z}} R_{n,k}$. They asked [10, Prob. 7.2] for an extension of the Schubert basis; such an extension (valid over the integers) is given as follows.

Corollary 2. The set $\{\mathfrak{S}_w : w \in \mathcal{W}_{n,k}\}$ descends to a \mathbb{Z} -basis of $R_{n,k}$.

The structure constants involved in the basis of Corollary 2 can in general be negative.

6 Stability for $X_{n,k}$

There are two ways to grow a pair of integers (n, k) subject to the condition $k \leq n$:

$$(n,k) \rightsquigarrow (n+1,k) \text{ and } (n,k) \rightsquigarrow (n+1,k+1).$$
 (6.1)

In this section we describe stability results for these two growth rules.

Let $\lambda = (\lambda_1, \lambda_2, ...)$ be a partition and n > 0. If $n \ge |\lambda| + \lambda_1$, the *padded partition* is $\lambda[n] := (n - |\lambda|, \lambda_1, \lambda_2, ...) \vdash n$. Any partition of *n* has the form $\lambda[n]$ for a unique

partition λ , so that any finite-dimensional S_n -module V has the form $V \cong \bigoplus_{\lambda} c_{\lambda} S^{\lambda[n]}$, where the direct sum is over *all* partitions λ .

Let $(V_n)_{n>0}$ be a sequence of finite-dimensional S_n -modules. For each n > 0 we can write $V_n \cong \bigoplus_{\lambda} c_{\lambda,n} S^{\lambda[n]}$ for some unique integers $c_{\lambda,n}$. We call the sequence V_n *multiplicity stable* [4] if for any partition λ , the sequence $c_{\lambda,n}$ is eventually constant.

Theorem 4. Fix a cohomological degree d. Either of the module sequences

...,
$$H^{d}(X_{n-1,k}; \mathbb{Q}), H^{d}(X_{n,k}; \mathbb{Q}), H^{d}(X_{n+1,k}; \mathbb{Q}), \ldots$$
 or (6.2)

...,
$$H^{d}(X_{n-1,k-1};\mathbb{Q}), H^{d}(X_{n,k};\mathbb{Q}), H^{d}(X_{n+1,k+1};\mathbb{Q}), \ldots$$
 (6.3)

is multiplicity stable.

Proof. (Sketch.) Both of these module sequences are identically zero when *d* is odd, so assume d = 2m is even.

Let SYT(*n*) be the family of standard Young tableaux with *n* boxes. Given a tableau $T \in SYT(n)$, let des(*T*) be the number of descents in *T* and let maj(*T*) be the major index of *T*. Work of Haglund, Rhoades, and Shimozono [10] yields the tableau formula

$$\operatorname{grFrob}(H^{\bullet}(X_{n,k};\mathbb{Q});\sqrt{q}) = \sum_{T \in \operatorname{SYT}(n)} q^{\operatorname{maj}(T)} \begin{bmatrix} n - \operatorname{des}(T) - 1\\ n - k \end{bmatrix}_q s_{\operatorname{shape}(T)}$$
(6.4)

for fixed $k \le n$. A tableau *T* only contributes to this sum when des(T) < k. Since m = d/2 is fixed, the representation stability asserted in the theorem follows from the standard combinatorial interpretation of the *q*-binomial $\begin{bmatrix} n-\text{des}(T)-1 \\ n-k \end{bmatrix}_q$ in terms of partitions inside a box of size $(n-k) \times (k-\text{des}(T)-1)$.

We also mention that there exist growth rules for Fubini words $W_{n,k} \to W_{n+1,k}$ and $W_{n,k} \to W_{n+1,k+1}$ which give rise to stability results for the word Schubert polynomials \mathfrak{S}_w . The space constraints of this extended abstract preclude us from expanding on this, but see [13] for more information.

Acknowledgements

The authors are grateful to Sara Billey, Thomas Lam, and Vic Reiner for helpful conversations. B. Rhoades was partially supported by NSF Grant DMS-1500838. The authors thank two anonymous referees for their careful reading of the manuscript and valuable suggestions which improved our exposition.

References

- S. Billey and I. Coskun. "Singularities of generalized Richardson varieties". Comm. Alg. 40.4 (2012), pp. 1466–1495. Link.
- [2] A. Borel. "Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts". *Ann. Math.* **57**.1 (1953), pp. 115–207. Link.
- [3] E. Carlsson and A. Mellit. "A proof of the shuffle conjecture". J. Amer. Math. Soc. **31**.3 (2018), pp. 661–697. Link.
- [4] T. Church, J. S. Ellenberg, and B. Farb. "FI-modules and stability for representations of symmetric groups". *Duke Math. J.* **164**.9 (2015), pp. 1833–1910. Link.
- [5] C. Ehresmann. "Sur la topologie de certains espaces homogènes". Ann. Math. 35.2 (1934), pp. 396–443. Link.
- [6] W. Fulton. "Flags, Schubert polynomials, degeneracy loci, and determinantal formulas". *Duke Math. J.* 65.3 (1992), pp. 381–420. Link.
- [7] A. Garsia, J. Haglund, J. Remmel, and M. Yoo. "A proof of the Delta Conjecture when q = 0". 2017. arXiv:1710.07078.
- [8] A. Garsia and M. Haiman. "Conjectures on the quotient ring by diagonal invariants". *J. Algebraic. Combin.* **3**.1 (1994), pp. 17–76. Link.
- [9] J. Haglund, J. Remmel, and A. T. Wilson. "The Delta Conjecture". *Trans. Amer. Math. Soc.* 370.6 (2018), pp. 4029–4057. Link.
- [10] J. Haglund, B. Rhoades, and M. Shimozono. "Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture". *Adv. Math.* **329** (2018), pp. 851–915. Link.
- [11] M. Haiman. "Vanishing theorems and character formulas for the Hilbert scheme of points in the plane". *Invent. Math.* **149**.2 (2002), pp. 371–407. Link.
- [12] A. Lascoux and M.-P Schützenberger. "Polynômes de Schubert". *Comptes Rendus de l'Académie des Sciences, Série I* 294.13 (1982), pp. 447–450.
- [13] B. Pawlowski and B. Rhoades. "A flag variety for the Delta Conjecture". Submitted. 2018. arXiv:1711.08301.
- [14] J. Remmel and A. T. Wilson. "An extension of MacMahon's Equidistribution Theorem to ordered set partitions". J. Combin. Theory Ser. A 134 (2015), pp. 242–277. Link.
- [15] B. Rhoades. "Ordered set partition statistics and the Delta Conjecture". J. Combin. Theory Ser. A 154 (2018), pp. 172–217. Link.
- [16] A. T. Wilson. "An extension of MacMahon's Equidistribution Theorem to ordered multiset partitions". *Electron. J. Combin.* 23.1 (2016), Art. P1.5, 21 pp. Link.