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Spanning line configurations
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Abstract. We define and study a variety Xn,k which depends on two positive integers
k ≤ n. When k = n, the variety Xn,k is homotopy equivalent to the flag variety F`(n)
of complete flags in Cn. We describe an affine paving of Xn,k, present its cohomology,
and describe the cellular cohomology classes in terms of Schubert polynomials. Just
as the geometry of F`(n) is governed by the combinatorics of permutations in Sn, the
geometry of Xn,k is governed by length n words on the alphabet {1, 2, . . . , k} in which
each letter appears at least once. The space Xn,k carries a natural action of Sn, and
we relate the induced cohomology representation to Macdonald theory via the Delta
Conjecture of Haglund, Remmel, and Wilson.
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1 Introduction

In this extended abstract we introduce and study a variety Xn,k depending on two pos-
itive integers k ≤ n. Our goal is to provide a geometric context to study the Delta
Conjecture of Haglund, Remmel, and Wilson [9] which extends the role played by the
classical flag variety F`(n) in the study of diagonal coinvariants and the Shuffle Theorem
[3]. We introduce our variety Xn,k in Section 2 below; the remainder of the introduc-
tion is devoted to connections with the Delta Conjecture and related work of Haglund,
Rhoades, and Shimozono [10] on generalized coinvariant rings. We solve the problem [10,
Prob. 7.2] of finding a flag variety for the Delta Conjecture.

Consider the action of the symmetric group Sn on the polynomial ring Z[x1, . . . , xn]
by subscript permutation. The invariant subring Z[x1, . . . , xn]Sn is the ring of symmet-
ric polynomials. Let Z[x1, . . . , xn]

Sn
+ be the family of symmetric polynomials with van-

ishing constant term. The invariant ideal In ⊆ Z[x1, . . . , xn] is the ideal generated by
Z[x1, . . . , xn]

Sn
+ . If ed = ∑1≤ii<···<id≤n xi1 · · · xid is the degree d elementary symmetric

polynomial, we have In = 〈e1, e2, . . . , en〉. The coinvariant ring is

Rn := Z[x1, . . . , xn]/In = Z[x1, . . . , xn]/〈e1, e2, . . . , en〉. (1.1)
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The ring Rn is a graded Z-algebra with a graded action of Sn.
Let Cn be the standard n-dimensional complex vector space. A (complete) flag in Cn

is a maximal sequence V• = (0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn) of nested subspaces of Cn

such that dim(Vi) = i for 1 ≤ i ≤ n. The flag variety F`(n) is the family of complete
flags in Cn. The identification F`(n) = GLn(C)/B, where B ⊆ GLn(C) is the upper
triangular subgroup, endows F`(n) with the structure of a complex algebraic variety.
Borel proved [2] that the (singular, integral) cohomology of F`(n) is presented by the
coinvariant ring:

H•(F`(n)) = Rn. (1.2)

Algebraic properties of Rn and geometric properties of F`(n) are governed by com-
binatorial properties of permutations in Sn. In no small part for this reason, Rn is one
of the most well-studied rings and F`(n) is one of the most well-studied varieties in
algebraic combinatorics.

Consider a polynomial ring in two sets of n variables Q[x1, . . . , xn, y1, . . . , yn] over the
rational field Q. This ring carries a diagonal action of Sn, viz. w.xi = xw(i), w.yi := yw(i)
for w ∈ Sn and 1 ≤ i ≤ n. The diagonal coinvariant ring [8] is the bigraded Sn-module

DRQ
n := Q[x1, . . . , xn, y1, . . . , yn]/〈Q[x1, . . . , xn, y1, . . . , yn]

Sn
+ 〉 (1.3)

obtained by modding out by invariants with vanishing constant term. Setting the y-
variables equal to zero recovers (up to ground ring) the classical coinvariant ring Rn
which presents the cohomology of F`(n).

It is natural to ask for the bigraded Sn-isomorphism type of DRn. We recall the basics
of the Frobenius map connecting Sn-modules and symmetric functions.

The irreducible representations of Sn are in bijective correspondence with partitions
of n. Given a partition λ ` n, let Sλ be the corresponding irreducible Sn-module. If V is
any finite-dimensional Sn-module, there exist unique multiplicities cλ ≥ 0 so that V ∼=⊕

λ`n cλSλ. The Frobenius image of V is the symmetric function Frob(V) = ∑λ`n cλsλ,
where sλ is the Schur function.

Going further, if V =
⊕

i≥0 Vi is a graded Sn-module with each graded piece Vi finite-
dimensional, the graded Frobenius image is grFrob(V; q) := ∑i≥0 Frob(Vi) · qi. Finally, if
V =

⊕
i,j≥0 Vi,j is a bigraded Sn-module with each Vi,j finite-dimensional, the bigraded

Frobenius image is grFrob(V; q, t) = ∑i,j≥0 Frob(Vi,j) · qitj.
Haiman [11] proved that the bigraded Frobenius image of DRn is given by

grFrob(DRn; q, t) = ∇en, (1.4)

where ∇ is the Bergeron-Garsia nabla operator on symmetric functions and en is the ele-
mentary symmetric function. Finding the bigraded isomorphism type of DRn therefore
reduces to finding a positive formula for the Schur expansion of ∇en. While there is
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not even a conjecture in this direction, Carlsson and Mellit [3] proved the Shuffle Theorem
which gives a monomial expansion of ∇en.

The Delta Conjecture of Haglund, Remmel, and Wilson [9] predicts a generalization of
the Shuffle Theorem which depends on two positive integers k ≤ n. It reads

∆′ek−1
en = Risen,k(x; q, t) = Valn,k(x; q, t). (1.5)

Here ∆′ek−1
is the primed delta operator labeled by ek−1 and Rise and Val are two formal

power series arising from lattice path combinatorics depending on an infinite set of
variables x = (x1, x2, . . . ) and two additional parameters q, t. The Delta Conjecture
reduces to the Shuffle Theorem when k = n.

Although the Delta Conjecture is open in general, it is proven when one of the pa-
rameters q, t is set to zero. Combining results of [7, 10, 15, 16], we have

∆′ek−1
en |t=0= Risen,k(x; q, 0) = Risen,k(x; 0, q) = Valn,k(x; q, 0) = Valn,k(x; 0, q). (1.6)

Let Cn,k(x; q) be the common symmetric function of Equation (1.6).
Haglund, Rhoades, and Shimozono [10] defined an extension of the coinvariant

ring which applies to the Delta Conjecture. If k ≤ n are positive integers, let In,k ⊆
Z[x1, . . . , xn] be the ideal

In,k := 〈xk
1, xk

2, . . . , xk
n, en, en−1, . . . , en−k+1〉 (1.7)

and let Rn,k := Z[x1, . . . , xn]/In,k be the corresponding quotient. The ring Rn,k is a graded
Sn-module. If we let RQ

n,k := Q⊗Z Rn,k, we have the graded Frobenius image [10]

grFrob(RQ
n,k; q) = (revq ◦ω)Cn,k(x; q), (1.8)

where revq reverses the coefficient sequences of polynomials in q and ω is the symmetric
function involution trading en and hn.

Equation (1.8) says that the generalized coinvariant ring Rn,k plays the same role for
the Delta Conjecture as the classical coinvariant ring Rn for the Shuffle Theorem on the
level of graded Sn-modules. Haglund, Rhoades, and Shimozono left open the problem
[10, Prob. 7.2] of finding a corresponding generalization of the flag variety: a variety
Xn,k whose cohomology is presented by Rn,k. We solve this problem here.

A word w1 . . . wn over the positive integers is Fubini (or packed) if for any i > 1 such
that i appears as a letter in w1 . . . wn, so does i − 1. Let Wn,k be the family of length n
Fubini words with maximum letter k; when k = n we haveWn,k = Sn. The geometry of
our variety Xn,k, like the algebra of the ring Rn,k, is governed by the combinatorics of
Fubini words in Wn,k. In addition to presenting the cohomology of Xn,k, we generalize
classical Schubert calculus theorems of Ehresmann [5] and Lascoux-Schützenberger [12]
from the flag variety F`(n) to the more general spaces Xn,k. It is the hope of the authors
that this will inspire a generalization of Schubert calculus with Fubini words as its basis.
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Figure 1: A point in X5,3.

2 The spanning moduli space

Our object of study is the following moduli space of line configurations 1 which depends
on two positive integers k ≤ n and a field F.

Definition 1. Let k ≤ n be positive integers and let F be a field. We define

Xn,k := {(`1, . . . , `n) : `i ⊆ Fk a 1-dimensional subspace and `1 + · · ·+ `n = Fk} (2.1)

to be the set of all n-tuples of lines through the origin in Fk whose span equals Fk.

Warning. Do not confuse Xn,k with the Grassmannian of k-dimensional subspaces of Fn. These
objects have very different combinatorial and geometric properties.

A point in the space X5,3 is shown in Figure 1. We have an ordered quintuple of lines
through the origin which together have full span F3. We leave F general for now, but
we specialize to the finite field Fq at the end of Section 3 and the complex field C in
Sections 4 to 6.

Let Pk−1 stand for the projective space of lines through the origin in Fk and let
(Pk−1)n be its n-fold Cartesian product. The natural inclusion Xn,k ⊂ (Pk−1)n realizes
Xn,k as a Zariski open subset of (Pk−1)n, and therefore a smooth complex manifold when
F = C.

The set Xn,k carries an action of the symmetric group Sn by the rule

w.(`1, . . . , `n) := (`w(1), . . . , `w(n)) (2.2)

for all w ∈ Sn and (`1, . . . , `n) ∈ Xn,k. When F = C, this action is continuous and so
endows the (singular, integral) cohomology ring H•(Xn,k) with the structure of a graded
Sn-module.

1We use ‘configuration’ rather than ‘arrangement’ because we are considering ordered tuples of lines.
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We view our moduli space Xn,k as a generalization of the flag variety. To justify this,
observe that when k = n, we have a natural surjection

Xn,n = GLn/T � GLn/B = F`(n), (2.3)

where T ⊆ GLn is the diagonal torus. When F = C, this is a homotopy equivalence 2, so
that Xn,n agrees with F`(n) up to homotopy and H•(Xn,n) = H•(F`(n)). At the other
extreme, the space Xn,1 = {∗} is a single point.

3 The orbit set Xn,k

In order to understand the combinatorics of Xn,k and the geometry of its embedding
inside (Pk−1)n, we will need matrices. If Matk×n is the affine space of k × n matrices
over F, we introduce the Zariski open subsets Un,k ⊆ Vn,k by

Un,k := {A ∈ Matk×n : A has no zero columns and has full rank}, (3.1)
Vn,k := {A ∈ Matk×n : A has no zero columns}. (3.2)

Let T ⊆ GLn be the diagonal subgroup and let U ⊆ GLk be the group of lower
triangular k × k matrices with 1’s on the diagonal. The product group U × T acts on
both Un,k and Vn,k by the rule (u, t).A := uAt for all (u, t) ∈ U× T. We have the orbit set
identifications Xn,k = Un,k/T and (Pk−1)n = Vn,k/T.

Proposition 1. The action of U × T on the set Un,k is free.

What do the U× T-orbits in Un,k look like? Given any length n word w = w1 . . . wn, a
position 1 ≤ j ≤ n is initial if wj is the first occurrence of its letter. Let in(w) be the set of
initial positions, so that in(2331231) = {1, 2, 4}. If w ∈ Wn,k is Fubini, the pattern matrix
PM(w) is the k× n matrix with entries in {0, 1, ?} whose entries PM(w)i,j (for 1 ≤ i ≤ k
and 1 ≤ j ≤ n) are as follows.

• We have PM(w)i,j = 1 if and only if wj = i.

• Suppose j ∈ in(w) is an initial position of w and wj 6= i. If wj > i and there exists
j′ < j with wj′ = i then PM(w)i,j = ?. Otherwise PM(w)i,j = 0.

• Suppose j /∈ in(w) is not an initial position of w and wj 6= i. If the first occurrence
of i in w = w1 . . . wn is before the first occurrence of wj in w = w1 . . . wn then
PM(w)i,j = ?. Otherwise PM(w)i,j = 0.

2It is a fiber bundle over a Hausdorff base space whose fiber – homeomorphic to the group of upper
triangular matrices with 1’s on the diagonal – is contractible.
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In our example w = 2331231 ∈ W7,3 the pattern matrix is

PM(w) = PM(2331231) =

0 0 0 1 0 0 1
1 ? ? 0 1 ? ?
0 1 1 0 0 1 ?

 .

The dimension dim(w) of a Fubini word w ∈ Wn,k is the number of ?’s in its pattern
matrix, so that dim(2331231) = 5.

A matrix A ∈ Un,k fits the pattern of a Fubini word w ∈ Wn,k if A can be obtained by
replacing the ?’s in PM(w) with field elements. The following is another application of
linear algebra.

Proposition 2. For any U × T-orbit O in Un,k, there exists a unique Fubini word w ∈ Wn,k
and a unique matrix A which fits the pattern of w such that A ∈ O.

Propositions 1 and 2 yield a disjoint union decomposition of Xn,k. Let Ĉw ⊆ Un,k be
the set of matrices which fit the pattern of a Fubini word w ∈ Wn,k; this is an affine space
of dimension dim(w). Define Cw ⊆ Xn,k by

Cw := image of UĈw in Xn,k. (3.3)

We have
Xn,k =

⊔
w∈Wn,k

Cw. (3.4)

There is an enumerative result over the finite field Fq. Recall the q-analogs

[n]q := 1 + q + · · ·+ qn−1, [n]!q := [n]q[n− 1]q · · · [1]q,
[

n
k

]
q

:=
[n]!q

[k]!q[n− k]!q
. (3.5)

The q-Stirling number Stirq(n, k) is defined recursively by Stirq(0, k) = δ0,k and

Stirq(n, k) = Stirq(n− 1, k− 1) + [k]q · Stirq(n− 1, k). (3.6)

The polynomial [k]!q · Stirq(n, k) is called the Mahonian distribution onWn,k. Any statistic
stat : Wn,k → Z≥0 which satisfies ∑w∈Wn,k

qstat(w) = [k]!q · Stirq(n, k) is called a Mahonian
statistic; see [1, 14, 15] for examples.

Proposition 3. The dimension statistic dim is Mahonian.

Propositions 1 to 3 combine to yield the following interpretation of the Mahonian
distribution on Wn,k in terms of finite fields. It is our analog of the result that the
number of flags in Fn

q is [n]!q.

Corollary 1. Let q be a prime power. Over the field Fq with q elements, there are [k]!q · Stirq(n, k)
orbits in the U × T-set Un,k.

Billey and Coskun [1] relate the Mahonian distribution on Wn,k to rank varieties. The
authors do not know a geometric connection between rank varieties and Xn,k.
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4 A cellular decomposition and the Poincaré series of Xn,k

For the rest of the extended abstract, we work over the complex field C. We exploit the
decomposition (3.4) to understand the geometry of Xn,k.

Let X be a complex algebraic variety. A cellular decomposition (a.k.a. affine paving) of
X is a filtration X• = (X = X0 ⊃ X1 ⊃ · · · ⊃ Xm = ∅) of X, where each Xi is a closed
subvariety and each difference Xi − Xi+1 is nonempty and isomorphic (as a variety) to a
disjoint union of affine spaces. If we express Xi − Xi+1 =

⊔
j Aij as such a disjoint union,

the Aij are called the cells of the decomposition. We say that the partition of X formed by
the collection of all cells {Aij} induces the decomposition X•. The following generalizes
Ehresmann’s CW decomposition of F`(n).

Theorem 1. The set of cells {Cw : w ∈ Wn,k} induces a cellular decomposition of Xn,k.

Theorem 1 determines the structure of H•(Xn,k) as a graded abelian group. Let
X+

n,k = Xn,k ∪ {∞} be the one-point compactification of Xn,k. The Borel-Moore homology
H̄•(Xn,k) is the homology of the pair (X+

n,k, {∞}). By Theorem 1, H̄d(Xn,k) vanishes when
d is odd and is free abelian with basis {[Cw] : w ∈ Wn,k, 2 ·dim(w) = d} when d is even.

The reader might ask whether the cellular decomposition of Theorem 1 can be re-
placed by the less technical notion of a CW decomposition. This is impossible because
the space Xn,k is not compact. Indeed, we will show that the Hilbert series of the coho-
mology ring H•(Xn,k) is not always palindromic (it equals 2q4 + 3q2 + 1 when n = 3 and
k = 2). Since Xn,k is smooth, this means that Xn,k must be noncompact. 3

The variety Xn,k is irreducible. To see this, observe that the (affine) cell Cw for w =
123 . . . kk . . . k ∈ Wn,k is (Zariski) dense in Xn,k. Poincaré duality asserts the isomorphism
of abelian groups H̄d(Xn,k) ∼= Hdim(Xn,k)−d(Xn,k).

Theorem 2. Let k ≤ n be positive integers. The cohomology ring H•(Xn,k) is free abelian as a
graded group, with Z-basis given by the classes {[Cw] : w ∈ Wn,k}. Furthermore, the Poincaré
polynomial of Xn,k is given by

∑
d≥0

rank(Hd(Xn,k)) · qd = revq([k]!q2 · Stirq2(n, k)). (4.1)

In particular, rank(H•(Xn,k)) = |Wn,k| = k! · Stir(n, k) where Stir(n, k) is the Stirling number
of the second kind.

3The authors do not know whether the one-point compactification X+
n,k of Xn,k admits a finite CW

structure given by the cells {Cw : w ∈ Wn,k} together with an additional 0-cell for the added point ∞.
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5 The cohomology of Xn,k

Theorem 2 describes the structure of H•(Xn,k) as a graded group. We go further and
present H•(Xn,k) as a graded ring. The first step is an extension of the cellular decom-
position of Theorem 1 from Xn,k to the larger space (Pk−1)n.

Recall that the space Vn,k of k× n matrices with no zero columns carries an action of
the product group U × T. Let w = w1 . . . wn be an arbitrary word in [k]n (which may
not be Fubini). The notion of ‘pattern matrix’ may be extended to define PM(w) as the
k× n matrix over {0, 1, ?} whose entries are the same as in the Fubini case, except that
any index 1 ≤ i ≤ n which does not appear indexes a row of zeros. We refer the reader
to [13, Sec. 5] for a more precise definition. As an example, if k = 4 we have

PM(441121) =


0 0 1 1 ? 1
0 0 0 0 1 0
0 0 0 0 0 0
1 1 0 ? 0 ?

 .

As before, we say that a k × n matrix fits the pattern of a word w ∈ [k]n if it can
be obtained by replacing the ?’s in PM(w) with complex numbers. If Ĉw is the set of
matrices which fit the pattern of w, we define Cw ⊆ (Pk−1)n by the rule

Cw := image of UĈw in (Pk−1)n. (5.1)

Proposition 2 extends to the U × T-set Vn,k to give the disjoint union decomposition

(Pk−1)n =
⊔

w∈[k]n
Cw. (5.2)

The decomposition (5.2) of (Pk−1)n extends the decomposition (3.4) of Xn,k set theo-
retically. This statement can be strengthened to cellular decompositions as follows.

Lemma 1. There is a cellular decomposition X• = (X0 ⊃ X1 ⊃ · · · ⊃ Xm) of (Pk−1)n with
cells {Cw : w ∈ [k]n} such that Xi =

⊔
w∈[k]n−Wn,k

Cw = (Pk−1)n − Xn,k for some 0 ≤ i ≤ m.

Let ι : Xn,k ↪→ (Pk−1)n be the inclusion map. Lemma 1 and the general theory of
cellular decompositions imply that the induced map ι∗ : H•((Pk−1)n) � H•(Xn,k) is
surjective. In fact, if Jn,k ⊆ H•((Pk−1)n) is the ideal generated by the classes of cell
closures {[Cw] : w ∈ [k]n −Wn,k} corresponding to non-Fubini words, then ι∗ induces
an isomorphism of graded rings

H•(Xn,k) ∼= H•((Pk−1)n)/Jn,k. (5.3)

To exploit the isomorphism (5.3) and present the cohomology of Xn,k, we need a better
understanding of the classes [Cw] inside H•((Pk−1)n).
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For 1 ≤ i ≤ n− 1, the divided difference operator ∂i on Z[x1, . . . , xn] is given by

∂i : f (x1, . . . , xn) 7→
f (x1, . . . , xi, xi+1, . . . , xn)− f (x1, . . . , xi+1, xi, . . . , xn)

xi − xi+1
. (5.4)

Schubert polynomials {Sw : w ∈ Sn} are defined recursively by Sw0 = xn−1
1 xn−2

2 · · · x1
n−1x0

n
when w0 = n(n− 1) . . . 1 and

Sw1...wi+1wi ...wn = ∂i(Sw1...wiwi+1...wn) when wi > wi+1. (5.5)

A word is convex if it does not have a subword of the form . . . i . . . j . . . i . . . for i 6= j.
If w = w1 . . . wn ∈ [k]n, the convexification conv(w) is the unique convex word with the
same letter multiplicities as w in which the initial letters appear in the same order. We
let σ(w) ∈ Sn be the unique Bruhat-minimal permutation such that σ(w).conv(w) = w.
For example, if w = 215235 ∈ [5]6 then conv(w) = 221553 so that σ(w) = 142365 ∈ S6.

Let w = w1 . . . wn ∈ [k]n be a word with m distinct letters. The standardization st(w) ∈
Sn+k−m is given by replacing the letters in noninitial positions of w from left to right with
k + 1, k + 2, . . . , k + n−m, and then appending the letters in [k] which do not appear in
w to the end in increasing order. For example, if w = 215235 ∈ [5]6 (so that m = 4) then
st(w) = 2156374 ∈ S7. We extend the Schubert polynomials to words as follows.

Definition 2. Let k ≤ n be positive integers and let w ∈ [k]n be a word. Define a polynomial
Sw ∈ Z[x1, . . . , xn] by

Sw := σ(w)−1.Sst(conv(w)). (5.6)

For 1 ≤ i ≤ n, let `i be the ith tautological line bundle over the projective space
product (Pk−1)n. By the Künneth Theorem, we have the presentation

H•((Pk−1)n) = Z[x1, . . . , xn]/〈xk
1, . . . , xk

n〉, (5.7)

where xi represents the Chern class c1(`
∗
i ) ∈ H2((Pk−1)n) (and so deg(xi) = 2). This

presentation interacts with the cellular decomposition of Lemma 1 as follows; the proof
uses Fulton’s theory of degeneracy loci [6].

Lemma 2. Let k ≤ n and let w ∈ [k]n be a word. The class [Cw] ∈ H•((Pk−1)n) is represented
by the polynomial Sw under the presentation (5.7).

The connection between Xn,k, the ring Rn,k of Haglund, Rhoades, and Shimozono,
and the Delta Conjecture is as follows.

Theorem 3. Let k ≤ n be positive integers. The cohomology of Xn,k may be presented as

H•(Xn,k) = Rn,k. (5.8)

Under this presentation, the variable xi represents the Chern class c1(`
∗
i ) ∈ H2(Xn,k), where

`i � Xn,k is the ith tautological line bundle. If w ∈ Wn,k, the class [Cw] ∈ H•(Xn,k) is
represented by the polynomial Sw of Definition 2.
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Proof. (Sketch.) Applying Lemmas 1 and 2, we have the presentation

H•(Xn,k) = Z[x1, . . . , xn]/Kn,k, (5.9)

where Kn,k := 〈Sw : w ∈ [k]n −Wn,k〉+ 〈xk
1, . . . , xk

n〉. For 1 ≤ i ≤ k, let wi ∈ [k]n be the
unique weakly increasing word with letters [k]−{i} whose first k− 1 letters are distinct.
For example, the word w3 ∈ [6]7 is w3 = 1245666. Then wi is not Fubini, so that Swi is a
generator of Kn,k. One shows that Swi = en−i+1, so that we have In,k ⊆ Kn,k.

The containment In,k ⊆ Kn,k of ideals means that we have a canonical surjection of
rings

π : Rn,k = Z[x1, . . . , xn]/In,k � Z[x1, . . . , xn]/Kn,k = H•(Xn,k). (5.10)

By Theorem 2, the target of π is a free Z-module of rank k! · Stir(n, k). One shows that
the domain Rn,k is also a free Z-module of rank k! · Stir(n, k); Demazure characters play a
key role in this argument.

Since any surjection between Z-modules of the same finite rank is an isomorphism,
the map π is an isomorphism of rings and (5.8) is proven. The remainder of the theorem
comes from the corresponding statements about (Pk−1)n.

Line permutation endows the rational cohomology ring H•(Xn,k; Q) with the struc-
ture of a graded Sn-module which is concentrated in even degree. Theorem 3 implies
that

grFrob(H•(Xn,k; Q);
√

q) = grFrob(RQ
n,k; q) = (revq ◦ω)Cn,k(x; q), (5.11)

justifying our assertion that Xn,k is the flag variety for the Delta Conjecture.
Haglund, Rhoades, and Shimozono discovered extensions of various monomial bases

of Q⊗Z Rn to Q⊗Z Rn,k. They asked [10, Prob. 7.2] for an extension of the Schubert
basis; such an extension (valid over the integers) is given as follows.

Corollary 2. The set {Sw : w ∈ Wn,k} descends to a Z-basis of Rn,k.

The structure constants involved in the basis of Corollary 2 can in general be negative.

6 Stability for Xn,k

There are two ways to grow a pair of integers (n, k) subject to the condition k ≤ n:

(n, k) (n + 1, k) and (n, k) (n + 1, k + 1). (6.1)

In this section we describe stability results for these two growth rules.
Let λ = (λ1, λ2, . . . ) be a partition and n > 0. If n ≥ |λ| + λ1, the padded partition

is λ[n] := (n − |λ|, λ1, λ2, . . . ) ` n. Any partition of n has the form λ[n] for a unique
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partition λ, so that any finite-dimensional Sn-module V has the form V ∼=
⊕

λ cλSλ[n],
where the direct sum is over all partitions λ.

Let (Vn)n>0 be a sequence of finite-dimensional Sn-modules. For each n > 0 we
can write Vn ∼=

⊕
λ cλ,nSλ[n] for some unique integers cλ,n. We call the sequence Vn

multiplicity stable [4] if for any partition λ, the sequence cλ,n is eventually constant.

Theorem 4. Fix a cohomological degree d. Either of the module sequences

. . . , Hd(Xn−1,k; Q), Hd(Xn,k; Q), Hd(Xn+1,k; Q), . . . or (6.2)

. . . , Hd(Xn−1,k−1; Q), Hd(Xn,k; Q), Hd(Xn+1,k+1; Q), . . . (6.3)

is multiplicity stable.

Proof. (Sketch.) Both of these module sequences are identically zero when d is odd, so
assume d = 2m is even.

Let SYT(n) be the family of standard Young tableaux with n boxes. Given a tableau
T ∈ SYT(n), let des(T) be the number of descents in T and let maj(T) be the major index
of T. Work of Haglund, Rhoades, and Shimozono [10] yields the tableau formula

grFrob(H•(Xn,k; Q);
√

q) = ∑
T∈SYT(n)

qmaj(T)
[

n− des(T)− 1
n− k

]
q
sshape(T) (6.4)

for fixed k ≤ n. A tableau T only contributes to this sum when des(T) < k. Since
m = d/2 is fixed, the representation stability asserted in the theorem follows from the
standard combinatorial interpretation of the q-binomial [n−des(T)−1

n−k ]
q

in terms of parti-

tions inside a box of size (n− k)× (k− des(T)− 1).

We also mention that there exist growth rules for Fubini words Wn,k → Wn+1,k and
Wn,k → Wn+1,k+1 which give rise to stability results for the word Schubert polynomials
Sw. The space constraints of this extended abstract preclude us from expanding on this,
but see [13] for more information.
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