The equivariant volumes of the permutahedron

Federico Ardila* ${ }^{* 1}$, Anna Schindler ${ }^{\dagger 2}$, and Andrés R. Vindas-Meléndez ${ }^{\ddagger 3}$
${ }^{1}$ Department of Mathematics, San Francisco State University
${ }^{2}$ Department of Mathematics, North Seattle College
${ }^{3}$ Department of Mathematics, University of Kentucky

Abstract

We consider the action of the symmetric group S_{n} on the permutahedron Π_{n}. We prove that if σ is a permutation of S_{n} which has m cycles of lengths l_{1}, \ldots, l_{m}, then the subset of Π_{n} fixed by σ is a polytope with normalized volume $n^{m-2} \operatorname{gcd}\left(l_{1}, \ldots, l_{m}\right)$. Resumen. Consideramos la acción del grupo simétrico S_{n} sobre el permutaedro Π_{n}. Demostramos que si σ es una permutación de S_{n} que tiene m ciclos de longitudes l_{1}, \ldots, l_{m}, entonces el subconjunto de Π_{n} que permanece fijo bajo la acción de σ es un politopo cuyo volumen normalizado es igual a $n^{m-2} \operatorname{mcd}\left(l_{1}, \cdots, l_{m}\right)$.

Keywords: permutahedron, volume, symmetric group, tree

1 Introduction

The n-permutahedron is the polytope in \mathbb{R}^{n} whose vertices are the permutations of $[n]$:

$$
\Pi_{n}:=\operatorname{conv}\left\{(\pi(1), \pi(2), \ldots, \pi(n)): \pi \in S_{n}\right\}
$$

The symmetric group S_{n} acts on $\Pi_{n} \subset \mathbb{R}^{n}$ by permuting coordinates; more precisely, a permutation $\sigma \in S_{n}$ acts on a point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Pi_{n}$, by

$$
\sigma \cdot x:=\left(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \ldots, x_{\sigma^{-1}(n)}\right)
$$

Definition 1.1. The fixed polytope of the permutahedron Π_{n} under a permutation σ of [n] is

$$
\Pi_{n}^{\sigma}=\left\{x \in \Pi_{n}: \sigma \cdot x=x\right\}
$$

Our main result is a generalization of the fact, due to Stanley [4], that $\operatorname{Vol} \Pi_{n}=n^{n-2}$; see Theorem 3.1.

[^0]

Figure 1: The fixed polytope $\Pi_{4}^{(12)}$ of the permutahedron Π_{4} under (12) $\in S_{4}$ is a hexagon.

Theorem 1.2. If σ is a permutation of $[n]$ whose cycles have lengths l_{1}, \ldots, l_{m}, then the normalized volume of the fixed polytope of Π_{n} under σ is

$$
\operatorname{Vol} \Pi_{n}^{\sigma}=n^{m-2} \operatorname{gcd}\left(l_{1}, \ldots, l_{m}\right)
$$

This is the first step towards describing the equivariant Ehrhart theory of the permutahedron, a question posed by Stapledon [6].

1.1 Normalizing the volume

The permutahedron and its fixed polytopes are not full-dimensional. We normalize volumes so that every primitive parallelotope has volume 1. This is the normalization under which the volume of Π_{n} equals n^{n-2}.

More precisely, let P be a d-dimensional polytope on affine d-plane $L \subset \mathbb{Z}^{n}$. Assume L is integral, in the sense that $L \cap \mathbb{Z}^{n}$ is a lattice translate of a d-dimensional lattice Λ. We call a lattice d-parallelotope in L primitive if its edges generate the lattice Λ; all primitive parallelotopes have the same volume. Then we define the volume of a d-polytope P in L to be $\operatorname{Vol}(P):=\operatorname{EVol}(P) / \operatorname{EVol}(\square)$ for any primitive parallelotope \square in L, where EVol denotes Euclidean volume.

The definition of $\operatorname{Vol}(P)$ makes sense even when P is not an integral polytope. This is important because the fixed polytopes of the permutahedron are not necessarily integral.

1.2 Notation

We identify each permutation $\pi \in S_{n}$ with the point $(\pi(1), \ldots, \pi(n))$ in \mathbb{R}^{n}. When we write permutations in cycle notation, we do not use commas to separate the entries
of each cycle. For example, we identify the permutation 246513 in S_{6} with the point $(2,4,6,5,1,3) \in \mathbb{R}^{6}$, and write it as (1245)(36) in cycle notation.

Our main goal is to find the volume of the fixed polytope Π_{n}^{σ} for a permutation $\sigma \in S_{n}$. We assume that σ has m cycles of lengths $l_{1} \geq \cdots \geq l_{m}$. In fact, for the goals of this paper, it suffices to assume

$$
\sigma=\left(\begin{array}{lll}
1 & 2 \ldots l_{1}
\end{array}\right)\left(l_{1}+1 l_{1}+2 \ldots l_{1}+l_{2}\right) \cdots\left(l_{1}+\cdots+l_{m-1}+1 \ldots n-1 n\right) .
$$

We let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of \mathbb{R}^{n}, and $e_{S}:=e_{s_{1}}+\cdots+e_{s_{k}}$ for $S=$ $\left\{s_{1}, \ldots, s_{k}\right\} \subseteq[n]$. Recall that the Minkowski sum of polytopes $P, Q \subset \mathbb{R}^{n}$ is the polytope $P+Q:=\{p+q: p \in P, q \in Q\} \subset \mathbb{R}^{n}$. [3]

1.3 Organization

Section 2 presents Theorem 2.11, which describes the fixed polytope Π_{n}^{σ} in terms of its vertices, its defining inequalities, and a Minkowski sum decomposition. Section 3 uses this to prove our main result, Theorem 1.2, on the normalized volume of Π_{n}^{σ}. This is an extended abstract; for complete statements and proofs, see [1].

2 Describing the fixed polytopes of the permutahedron

Proposition 2.1 ([7]). The permutahedron Π_{n} can be described in the following three ways:

1. (Inequalities) It is the set of points $x \in \mathbb{R}^{n}$ satisfying
(a) $x_{1}+x_{2}+\cdots+x_{n}=1+2+\cdots+n$, and
(b) for any proper subset $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, n\}$,

$$
x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{k}} \geq 1+2+\cdots+k
$$

2. (Vertices) It is the convex hull of the points $(\pi(1), \ldots, \pi(n))$ as π ranges over the permutations of $[n]$.
3. (Minkowski sum) It is the Minkowski sum: $\sum_{1 \leq j<k \leq n}\left[e_{k}, e_{j}\right]+\sum_{1 \leq k \leq n} e_{k}$.

The n-permutahedron is $(n-1)$-dimensional and every permutation of $[n]$ is indeed a vertex.
Our first goal is to prove the analogous result for the fixed polytopes of Π_{n}; we do so in Theorem 2.11.

2.1 Standardizing the permutation

We define the cycle type of a permutation σ to be the partition of n consisting of the lengths $l_{1} \geq \cdots \geq l_{m}$ of the cycles of σ.

Lemma 2.2. The volume of Π_{n}^{σ} only depends on the cycle type of σ.
We wish to measure the various fixed polytopes of Π_{n}, and by Lemma 2.2 we can focus our attention on the polytopes Π_{n}^{σ} fixed by a permutation of the form

$$
\sigma=\left(\begin{array}{llll}
1 & 2 \ldots & l_{1} \tag{2.1}
\end{array}\right)\left(l_{1}+1 l_{1}+2 \ldots l_{1}+l_{2}\right) \cdots\left(l_{1}+\cdots+l_{m-1}+1 \ldots n-1 n\right)
$$

for a partition $l_{1} \geq l_{2} \geq \cdots \geq l_{m}$ with $l_{1}+\cdots+l_{m}=n$. We do so from now on.

2.2 Towards the inequality description

Lemma 2.3. For a permutation $\sigma \in S_{n}$, the fixed polytope Π_{n}^{σ} consists of the points $x \in \Pi_{n}$ satisfying $x_{j}=x_{k}$ for any j and k in the same cycle of σ.

Corollary 2.4. If a permutation σ of $[n]$ has m cycles then Π_{n}^{σ} has dimension $m-1$.

2.3 Towards a vertex description

In this section we describe a set $\operatorname{Vert}(\sigma)$ of m ! points associated to a permutation σ of S_{n}. We will show in Theorem 2.11 that this is the set of vertices of the fixed polytope Π_{n}^{σ}. For a point $w \in \mathbb{R}^{n}$, let \bar{w} be the average of the σ-orbit of w, that is,

$$
\begin{equation*}
\bar{w}:=\frac{1}{|\sigma|} \sum_{i=1}^{|\sigma|} \sigma^{i} \cdot w, \tag{2.2}
\end{equation*}
$$

where $|\sigma|$ is the order of σ as an element of the symmetric group S_{n}.
Definition 2.5. Given $\sigma \in S_{n}$, we say a permutation $v=\left(v_{1}, \ldots, v_{n}\right)$ of $[n]$ is σ-standard if it satisfies the following property: for each cycle $\left(j_{1} j_{2} \cdots j_{r}\right)$ of $\sigma,\left(v_{j_{1}}, v_{j_{2}}, \ldots, v_{j_{r}}\right)$ is a sequence of consecutive integers in increasing order. We define the set of σ-vertices to be

$$
\operatorname{Vert}(\sigma):=\{\bar{w}: w \text { is a } \sigma \text {-standard permutation of }[n]\}
$$

These points should not be confused with the vertices of the ambient permutahedron Π_{n}. Let us illustrate this definition in an example and prove some preliminary results.

Example 2.6. For $\sigma=(1234)(567)(89)$, the σ-standard permutations in S_{9} are

$$
\begin{array}{ll}
(1,2,3,4,5,6,7,8,9), & (1,2,3,4,7,8,9,5,6) \\
(4,5,6,7,1,2,3,8,9), & (3,4,5,6,7,8,9,1,2), \\
(6,7,8,9,1,2,3,4,5), & (6,7,8,9,3,4,5,1,2),
\end{array}
$$

and the corresponding σ-vertices are

$$
\begin{array}{ll}
\frac{1+2+3+4}{4} e_{1234}+\frac{5+6+7}{3} e_{567}+\frac{8+9}{2} e_{89}, & \frac{1+2+3+4}{4} e_{1234}+\frac{7+8+9}{3} e_{567}+\frac{5+6}{2} e_{89} \\
\frac{4+5+6+7}{4} e_{1234}+\frac{1+2+3}{3} e_{567}+\frac{8+9}{2} e_{89}, & \frac{3+4+5+6}{4} e_{1234}+\frac{7+8+9}{3} e_{567}+\frac{1+2}{2} e_{89} \\
\frac{6+7+8+9}{4} e_{1234}+\frac{1+2+3}{3} e_{567}+\frac{4+5}{2} e_{89}, & \frac{6+7+8+9}{4} e_{1234}+\frac{3+4+5}{3} e_{567}+\frac{1+2}{2} e_{89}
\end{array}
$$

Let us give a more explicit description of \bar{w} in general, and of the σ-vertices in particular, which will be important in the proof of Theorem 2.11.
Lemma 2.7. For any $w \in \mathbb{R}^{n}$, the average of the σ-orbit of w is

$$
\bar{w}=\sum_{k=1}^{m} \frac{\sum_{j \in \sigma_{k}} w_{j}}{l_{k}} e_{\sigma_{k}}
$$

Notice that the entries of \bar{w} within each cycle σ_{k} are constant, bearing witness to the fact that \bar{w}, being the average of a σ-orbit, must be in the fixed polytope Π_{n}^{σ}.

Corollary 2.8. The set $\operatorname{Vert}(\sigma)$ of σ-vertices consists of the m ! points

$$
\overline{v_{\prec}}:=\sum_{k=1}^{m}\left(\frac{l_{k}+1}{2}+\sum_{j: \sigma_{j} \prec \sigma_{k}} l_{j}\right) e_{\sigma_{k}}
$$

as \prec ranges over the m ! possible linear orderings of $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$.

2.4 Towards a zonotope description

We will show in Theorem 2.11 that the fixed polytope Π_{n}^{σ} is the zonotope given by the following Minkowski sum.
Definition 2.9. Let M_{σ} denote the Minkowski sum

$$
\begin{align*}
M_{\sigma} & :=\sum_{1 \leq j<k \leq m}\left[l_{j} e_{\sigma_{k}}, l_{k} e_{\sigma_{j}}\right]+\sum_{k=1}^{m} \frac{l_{k}+1}{2} e_{\sigma_{k}} \\
& =\sum_{1 \leq j<k \leq m}\left[0, l_{k} e_{\sigma_{j}}-l_{j} e_{\sigma_{k}}\right]+\sum_{k=1}^{m}\left(\frac{l_{k}+1}{2}+\sum_{j<k} l_{j}\right) e_{\sigma_{k}} . \tag{2.3}
\end{align*}
$$

Proposition 2.10. The zonotope M_{σ} is combinatorially equivalent to the standard permutahedron Π_{m}, where m is the number of cycles of σ.

2.5 Three descriptions of the fixed polytope of the permutahedron

Theorem 2.11. Let σ be a permutation of $[n]$ whose cycles $\sigma_{1}, \ldots, \sigma_{m}$ have respective lengths l_{1}, \ldots, l_{m}. The fixed polytope Π_{n}^{σ} can be described in the following ways:
0. It is the set of points x in the permutahedron Π_{n} such that $\sigma \cdot x=x$.

1. It is the set of points $x \in \mathbb{R}^{n}$ satisfying
(a) $x_{1}+x_{2}+\cdots+x_{n}=1+2+\cdots+n$,
(b) for any proper subset $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset\{1,2, \ldots, n\}$,

$$
x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{k}} \leq 1+2+\cdots+k, \text { and }
$$

(c) for any i and j which are in the same cycle of $\sigma, x_{i}=x_{j}$.
2. It is the convex hull of the set $\operatorname{Vert}(\sigma)$ of σ-vertices, as described in Corollary 2.8.
3. It is the Minkowski sum M_{σ} of Definition 2.9

Consequently, the fixed polytope Π_{n}^{σ} is a zonotope that is combinatorially isomorphic to the permutahedron Π_{m}. It is $(m-1)$-dimensional and every σ-vertex is indeed a vertex of Π_{n}^{σ}.

Proof. Description 0. is the definition of the fixed polytope Π_{n}^{σ}, and we already observed in Lemma 2.3 that description 1. is accurate. Recall that we denoted the polytopes described in 2. and 3. by $\operatorname{conv}(\operatorname{Vert}(\sigma))$ and M_{σ}, respectively. It remains to prove that

$$
\Pi_{n}^{\sigma}=\operatorname{conv}(\operatorname{Vert}(\sigma))=M_{\sigma}
$$

We proceed in three steps as follows:
A. $\quad \operatorname{conv}(\operatorname{Vert}(\sigma)) \subseteq \Pi_{n}^{\sigma}$
B. $\quad M_{\sigma} \subseteq \operatorname{conv}(\operatorname{Vert}(\sigma))$
C. $\Pi_{n}^{\sigma} \subseteq M_{\sigma}$
A. $\quad \operatorname{conv}(\operatorname{Vert}(\sigma)) \subseteq \Pi_{n}^{\sigma}:$ It suffices to show that Π_{n}^{σ} contains any point in $\operatorname{Vert}(\sigma)$, say

$$
\overline{v_{\prec}}=\frac{1}{|\sigma|} \sum_{i=1}^{|\sigma|} \sigma^{i} \cdot v_{\prec}
$$

where \prec is a total order of $\sigma_{1}, \ldots, \sigma_{m}$ and v_{\prec} is the associated σ-standard permutation. Since v_{\prec} is a vertex of Π_{n}, we conclude that $\sigma^{i} \cdot v_{\prec}$ is a vertex of Π_{n} for all i, and hence their average $\overline{v_{\prec}}$ is in Π_{n}. Also, since $\sigma^{|\sigma|}=1$, we have that $\sigma \cdot \overline{v_{\prec}}=\overline{v_{\prec}}$. Therefore, $\overline{v_{\prec}}$ is in Π_{n}^{σ} by 0 ., as desired.
B. $\quad M_{\sigma} \subseteq \operatorname{conv}(\operatorname{Vert}(\sigma))$: It suffices to show that any vertex of M_{σ} is in $\operatorname{Vert}(\sigma)$.

For a polytope $P \subset \mathbb{R}^{n}$ and a linear functional $c \in\left(\mathbb{R}^{n}\right)^{*}$, we let P_{c} denote the face of P where c is maximized. In particular, for any given vertex v of M_{σ}, consider a linear functional $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in\left(\mathbb{R}^{n}\right)^{*}$ such that $v=\left(M_{\sigma}\right)_{c}$ is the unique point in M_{σ} maximizing c. For $k=1, \ldots, m$, let $c_{\sigma_{k}}:=\frac{1}{l_{k}} \sum_{i \in \sigma_{k}} c_{i}$. One can verify that
(a) $c_{\sigma_{j}} \neq c_{\sigma_{k}}$ for $j \neq k$, and
(b) $v=\overline{v_{\prec}}$ for the linear order \prec on $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$ where $\sigma_{j} \prec \sigma_{k}$ if and only if $c_{\sigma_{j}}<c_{\sigma_{k}}$. This shows that every vertex of M_{σ} is a σ-vertex, as desired.
C. $\quad \Pi_{n}^{\sigma} \subseteq M_{\sigma}:$ Any point $p \in \Pi_{n}^{\sigma}$ can be written as a convex combination $p=$ $\sum_{\tau \in S_{n}} \lambda_{\tau} \tau$ of the n ! permutations of [n], where $\lambda_{\tau} \geq 0$ for all τ and $\sum_{\tau \in S_{n}} \lambda_{\tau}=1$. Recall from (2.2) that \bar{w} represents the average of the σ-orbit of $w \in \mathbb{R}^{n}$. Since p is fixed by σ we have

$$
p=\bar{p}=\sum_{\tau \in S_{n}} \lambda_{\tau} \bar{\tau}
$$

It follows that $\Pi_{n}^{\sigma} \subseteq \operatorname{conv}\left\{\bar{\tau}: \tau \in S_{n}\right\}$. Therefore, to show that $\Pi_{n}^{\sigma} \subseteq M_{\sigma}$, it suffices to show that $\bar{\tau} \in M_{\sigma}$ for all permutations τ. To do so, let us first derive an alternative expression for $\bar{\tau}$.

Let us begin with the vertex id $=(1,2, \ldots, n)$ of Π_{n} corresponding to the identity permutation. As described in Corollary 2.8, this is the σ-standard permutation corresponding to the order $\sigma_{1} \prec \sigma_{2} \prec \cdots \prec \sigma_{m}$, so

$$
\begin{equation*}
\overline{\mathrm{id}}=\sum_{k=1}^{m}\left(\frac{l_{k}+1}{2}+\sum_{j<k} l_{j}\right) e_{\sigma_{k}} \tag{2.4}
\end{equation*}
$$

Notice that this is the translation vector for the Minkowski sum of (2.3).
Now, let us compute $\bar{\tau}$ for any permutation τ. Let

$$
l=\operatorname{inv}(\tau)=|\{(a, b): 1 \leq a<b \leq n, \tau(a)>\tau(b)\}|
$$

be the number of inversions of τ. Consider a minimal sequence id $=\tau_{0}, \tau_{1}, \ldots, \tau_{l}=\tau$ of permutations such that τ_{i+1} is obtained from τ_{i} by exchanging the positions of numbers p and $p+1$, thus introducing a single new inversion without affecting any existing inversions. Such a sequence corresponds to a minimal factorization of τ as a product of simple transpositions $(p p+1)$ for $1 \leq p \leq n-1$. We have $\operatorname{inv}\left(\tau_{i}\right)=i$ for $1 \leq i \leq l$.

Now we compute $\bar{\tau}$ by analyzing how $\overline{\tau_{i}}$ changes as we introduce new inversions, using that

$$
\begin{equation*}
\bar{\tau}-\overline{\mathrm{id}}=\left(\overline{\tau_{l}}-\overline{\tau_{l-1}}\right)+\cdots+\left(\overline{\tau_{1}}-\overline{\tau_{0}}\right) . \tag{2.5}
\end{equation*}
$$

If $a<b$ are the positions of the numbers p and $p+1$ that we switch as we go from τ_{i} to τ_{i+1}, then regarding τ_{i} and τ_{i+1} as vectors in \mathbb{R}^{n} we have

$$
\tau_{i+1}-\tau_{i}=e_{a}-e_{b}
$$

If σ_{j} and σ_{k} are the cycles of σ containing a and b, respectively, we have

$$
\begin{equation*}
\overline{\tau_{i+1}}-\overline{\tau_{i}}=\overline{e_{a}}-\overline{e_{b}}=\frac{e_{\sigma_{j}}}{l_{j}}-\frac{e_{\sigma_{k}}}{l_{k}}=\frac{1}{l_{j} l_{k}}\left(l_{k} e_{\sigma_{j}}-l_{j} e_{\sigma_{k}}\right) \tag{2.6}
\end{equation*}
$$

in light of Lemma 2.7. This is the local contribution to (2.5) that we obtain when we introduce a new inversion between a position a in cycle σ_{j} and a position b in cycle σ_{k} in our permutation. Notice that this contribution is 0 when $j=k$. Also notice that we will still have an inversion between positions a and b in all subsequent permutations, due to the minimality of the sequence. We conclude that

$$
\begin{equation*}
\bar{\tau}-\overline{\mathrm{id}}=\sum_{j<k} \frac{\operatorname{inv}_{j, k}(\tau)}{l_{j} l_{k}}\left(l_{k} e_{\sigma_{j}}-l_{j} e_{\sigma_{k}}\right) \tag{2.7}
\end{equation*}
$$

where

$$
\operatorname{inv}_{j, k}(\tau)=\mid\left\{(a, b): 1 \leq a<b \leq n, a \in \sigma_{j}, b \in \sigma_{k} \text { and } \tau(a)>\tau(b)\right\} \mid
$$

is the number of inversions in τ between a position in σ_{j} and a position in σ_{k} for $j<k$.
Equations (2.4) and (2.7) give us an alternative description for $\bar{\tau}$. This description makes it apparent that $\bar{\tau} \in M_{\sigma}$: Notice that $\left|\sigma_{j}\right|=l_{j}$ and $\left|\sigma_{k}\right|=l_{k}$ imply that $0 \leq$ $\operatorname{inv}_{j, k}(\tau) \leq l_{j} l_{k}$, so

$$
\bar{\tau}-\overline{\mathrm{id}} \in \sum_{1 \leq j<k \leq n}\left[0, l_{k} e_{\sigma_{j}}-l_{j} e_{\sigma_{k}}\right] ;
$$

combining this with (2.3) and (2.4) gives the desired result.

Figure 2: (a) A minimal sequence of permutations id $=\tau_{0}, \tau_{1}, \ldots, \tau_{9}=461352$ adding one inversion at a time and (b) the corresponding path from id to $\bar{\tau}$ in the zonotope M_{σ}.

Example 2.12. Figure 2 illustrates part C of the proof above for $n=6, \sigma=(123)(45)(6)$, and the permutation $\tau=461352$. This permutation has $\operatorname{inv}(\tau)=9$ inversions, and the columns of the left panel show a minimal sequence of permutations $\mathrm{id}=\tau_{0}, \tau_{1}, \ldots, \tau_{9}=$
τ where each τ_{i+1} is obtained from τ_{i} by swapping two consecutive numbers, thus introducing a single new inversion.

The rows of the diagram are split into three groups 1,2 , and 3 , corresponding to the support of the cycles of σ. Out of the $\operatorname{inv}(\tau)=9$ inversions of τ, there are $\operatorname{inv}_{1,2}(\tau)=3$ involving groups 1 and $2, \operatorname{inv}_{1,3}(\tau)=2$ involve groups 1 and 3 , and $\operatorname{inv}_{2,3}(\tau)=2$ involving groups 2 and 3 .

This sequence of permutations gives rise to a walk from $\overline{\mathrm{id}}$, which is the top right vertex of the zonotope M_{σ}, to $\bar{\tau}$. In the rightmost triangle, which is not drawn to scale, vertex i represents the point $e_{\sigma_{i}} / l_{i}$ for $1 \leq i \leq 3$. Whenever two numbers in groups $j<k$ are swapped in the left panel, to get from permutation τ_{i} to τ_{i+1}, we take a step in direction $e_{\sigma_{j}} / l_{j}-e_{\sigma_{k}} / l_{k}$ in the right panel, to get from point $\overline{\tau_{i}}$ to $\overline{\tau_{i+1}}$. This is the direction of edge $j k$ in the triangle, and its length is $1 / l_{j} l_{k}$ of the length of the generator $l_{k} e_{\sigma_{j}}-l_{j} e_{\sigma_{k}}$ of the zonotope. Then

$$
\bar{\tau}-\overline{\mathrm{id}}=\frac{3}{l_{1} l_{2}}\left(l_{2} e_{\sigma_{1}}-l_{1} e_{\sigma_{2}}\right)+\frac{2}{l_{1} l_{3}}\left(l_{3} e_{\sigma_{1}}-l_{1} e_{\sigma_{3}}\right)+\frac{2}{l_{2} l_{3}}\left(l_{3} e_{\sigma_{2}}-l_{2} e_{\sigma_{3}}\right) .
$$

Since $3=\operatorname{inv}_{1,2}(\tau) \leq l_{1} l_{2}=6,2=\operatorname{inv}_{1,3}(\tau) \leq l_{1} l_{3}=3$ and $2=\operatorname{inv}_{2,3}(\tau) \leq l_{2} l_{3}=2$, the resulting point $\bar{\tau}$ is in the zonotope M_{σ}.

3 The volumes of the fixed polytopes of the permutahedron

To compute the volume of Π_{n}^{σ} we use its description as a zonotope, recalling that a zonotope can be tiled by parallelotopes as follows. If A is a set of vectors, then $B \subseteq A$ is called a basis for A if B is linearly independent and $\operatorname{rank}(B)=\operatorname{rank}(A)$. We define the parallelotope $\square B$ to be the Minkowski sum of the segments in B, that is,

$$
\square B:=\left\{\sum_{b \in B} \lambda_{b} b: 0 \leq \lambda_{b} \leq 1 \text { for each } b \in B\right\} .
$$

Theorem 3.1 ([2, 4, 7]). Let $A \subset \mathbb{Z}^{n}$ be a set of lattice vectors of rank d.

1. The zonotope $Z(A)$ can be tiled using one translate of the parallelotope $\square B$ for each basis B of A. Therefore, the volume of the d-dimensional zonotope $Z(A)$ is

$$
\operatorname{Vol}(Z(A))=\sum_{\substack{B \subset A \\ B \text { basis }}} \operatorname{Vol}(\square B) .
$$

2. For each $B \subset \mathbb{Z}^{n}$ of rank $d, \operatorname{Vol}(\square B)$ equals the index of $\mathbb{Z} B$ as a sublattice of $(\operatorname{span} B) \cap$ \mathbb{Z}^{n}. Using the vectors in B as the columns of an $n \times d$ matrix, $\operatorname{Vol}(B)$ is the greatest common divisor of the minors of rank d.

By Theorem 2.11, the fixed polytope Π_{n}^{σ} is a translate of the zonotope generated by the set

$$
F_{\sigma}=\left\{l_{k} e_{\sigma_{j}}-l_{j} e_{\sigma_{k}} ; 1 \leq j<k \leq m\right\}
$$

This set of vectors has a nice combinatorial structure, allowing us to describe the bases B and the volumes $\operatorname{Vol}(\square B)$ combinatorially. We do this in the next two lemmas. For a tree T whose vertex set is $[m]$, let

$$
\begin{aligned}
& F_{T}=\left\{l_{k} e_{\sigma_{j}}-l_{j} e_{\sigma_{k}}: j<k \text { and } j k \text { is an edge of } T\right\}, \\
& E_{T}=\left\{\frac{e_{\sigma_{j}}}{l_{j}}-\frac{e_{\sigma_{k}}}{l_{k}}: j<k \text { and } j k \text { is an edge of } T\right\}
\end{aligned}
$$

Lemma 3.2 ([4]). The vector configuration

$$
F_{\sigma}:=\left\{l_{k} e_{\sigma_{j}}-l_{j} e_{\sigma_{k}}: 1 \leq j<k \leq m\right\}
$$

has exactly m^{m-2} bases: they are the sets F_{T} as T ranges over the spanning trees on $[m]$.
Lemma 3.3. For any tree T on $[m]$ we have

$$
\begin{aligned}
& \text { 1. } \operatorname{Vol}\left(\square F_{T}\right)=\prod_{i=1}^{m} l_{i}^{\operatorname{deg}_{T}(i)} \operatorname{Vol}\left(E_{T}\right), \\
& \text { 2. } \operatorname{Vol}\left(\square E_{T}\right)=\frac{\operatorname{gcd}\left(l_{1}, \ldots, l_{m}\right)}{l_{1} \cdots l_{m}},
\end{aligned}
$$

where $\operatorname{deg}_{T}(i)$ is the number of edges containing vertex i in T.
Proof. 1. Since $l_{k} e_{\sigma_{j}}-l_{j} e_{\sigma_{k}}=l_{j} l_{k}\left(\frac{e_{\sigma_{j}}}{l_{j}}-\frac{e_{\sigma_{k}}}{l_{k}}\right)$ for each edge $j k$ of T, and volumes scale linearly with respect to each edge length of a parallelotope, we have

$$
\operatorname{Vol}\left(\square F_{T}\right)=\left(\prod_{j k \text { edge of } \mathrm{T}} l_{j} l_{k}\right) \operatorname{Vol}\left(\square E_{T}\right)=\prod_{i=1}^{m} l_{i}^{\operatorname{deg}_{T}(i)} \operatorname{Vol}\left(\square E_{T}\right)
$$

2. The parallelotopes $\square E_{T}$ are the images of the parallelotopes $\square A_{T}$ under the linear bijective map

$$
\begin{aligned}
\phi: \mathbb{R}^{m} & \rightarrow\left(\mathbb{R}^{n}\right)^{\sigma} \\
f_{i} & \mapsto \frac{e_{\sigma_{i}}}{l_{i}},
\end{aligned}
$$

where

$$
A_{T}:=\left\{f_{j}-f_{k}: j<k, j k \text { is an edge of } T\right\}
$$

Since the vector configuration $\left\{f_{j}-f_{k}: 1 \leq j<k \leq m\right\}$ is unimodular, all parallelotopes $\square A_{T}$ have unit volume. Therefore, the parallelotopes $\square E_{T}=\phi\left(\square A_{T}\right)$ have the same normalized volume, so $\operatorname{Vol}\left(E_{T}\right)$ is independent of T.

It follows that we can use any tree T to compute $\operatorname{Vol}\left(E_{T}\right)$ or, equivalently, $\operatorname{Vol}\left(F_{T}\right)$. We choose the tree $T=$ Claw $_{m}$ with edges $1 m, 2 m, \ldots,(m-1) m$. Writing the $m-1$ vectors of

$$
F_{\text {Claw }_{m}}=\left\{l_{m} e_{\sigma_{i}}-l_{i} e_{\sigma_{m}}: 1 \leq i \leq m-1\right\}
$$

as the columns of an $n \times(m-1)$ matrix, then $\operatorname{Vol}\left(F_{\text {Claw }_{m}}\right)$ is the greatest common divisor of the non-zero maximal minors of this matrix. This quantity does not change when we remove duplicate rows; the result is the $m \times(m-1)$ matrix

$$
\left[\begin{array}{ccccc}
l_{m} & 0 & 0 & \cdots & 0 \\
0 & l_{m} & 0 & \cdots & 0 \\
0 & 0 & l_{m} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & l_{m} \\
-l_{1} & -l_{2} & -l_{3} & \cdots & -l_{m-1}
\end{array}\right] .
$$

This matrix has m maximal minors, whose absolute values equal $l_{m}^{m-2} l_{1}, \ldots, l_{m}^{m-2} l_{m-1}$, l_{m}^{m-1}. Therefore,

$$
\operatorname{Vol}\left(\square F_{\operatorname{Claw}_{m}}\right)=l_{m}^{m-2} \operatorname{gcd}\left(l_{1}, \ldots, l_{m-1}, l_{m}\right)
$$

and part 1 then implies that

$$
\operatorname{Vol}\left(\square E_{\operatorname{Claw}_{m}}\right)=\frac{\operatorname{Vol}\left(\square F_{\mathrm{Claw}_{m}}\right)}{l_{1} \cdots l_{m-1} l_{m}^{m-1}}=\frac{\operatorname{gcd}\left(l_{1}, \ldots, l_{m}\right)}{l_{1} \cdots l_{m}}
$$

as desired.
Lemma 3.4. For any positive integer $m \geq 2$ and unknowns x_{1}, \ldots, x_{m}, we have

$$
\sum_{\text {T tree on }[m]} \prod_{i=1}^{m} x_{i}^{\operatorname{deg}_{T}(i)-1}=\left(x_{1}+\cdots+x_{m}\right)^{m-2}
$$

Sketch of proof. This is a variant of the analogous result for rooted trees [5, Theorem 5.3.4], which states that

$$
\sum_{\substack{(T, r) \text { rooted } \\ \text { tree on }[m]}} \prod_{i=1}^{m} x_{i}^{\operatorname{children}_{(T, r)}(i)}=\left(x_{1}+\cdots+x_{m}\right)^{m-1}
$$

where children ${ }_{(T, r)}(v)$ counts the children of v. It can be proved similarly, or derived directly from it.

Theorem 1.2. If σ is a permutation of $[n]$ whose cycles have lengths l_{1}, \ldots, l_{m}, then the normalized volume of the fixed polytope of Π_{n} under σ is

$$
\operatorname{Vol} \Pi_{n}^{\sigma}=n^{m-2} \operatorname{gcd}\left(l_{1}, \ldots, l_{m}\right)
$$

Proof. Since Π_{n}^{σ} is a translate of the zonotope for $F_{\sigma}:=\left\{l_{k} e_{\sigma_{j}}-l_{j} e_{\sigma_{k}}: 1 \leq j<k \leq m\right\}$, we invoke Theorem 3.1. Using Lemmas 3.2 to 3.4, it follows that

$$
\begin{aligned}
\operatorname{Vol} \Pi_{n}^{\sigma} & =\sum_{T \text { tree on }[m]} \operatorname{Vol}\left(\square F_{T}\right) \\
& =\sum_{T \text { tree on }[m]} \prod_{i=1}^{m} l_{i}^{\operatorname{deg}_{T}(i)-1} \operatorname{gcd}\left(l_{1}, \ldots, l_{m}\right) \\
& =\left(l_{1}+\cdots+l_{m}\right)^{m-2} \operatorname{gcd}\left(l_{1}, \ldots, l_{m}\right)=n^{m-2} \operatorname{gcd}\left(l_{1}, \ldots, l_{m}\right)
\end{aligned}
$$

Acknowledgements

We are grateful to Matthias Beck, Ben Braun, Anastasia Chavez, John Guo, Andrés Rodríguez, and Nicole Yamzon for their support and fruitful conversations.

References

[1] F. Ardila, A. Schindler, and A. R. Vindas-Meléndez. "The equivariant volumes of the permutahedron". 2018. arXiv:1803.02377.
[2] M. D'Adderio and L. Moci. "Ehrhart polynomial and arithmetic Tutte polynomial". European J. Combin. 33.7 (2012), pp. 1479-1483. Link.
[3] B. Grünbaum. Convex Polytopes. 2nd ed. Graduate Texts in Mathematics 221. Springer-Verlag, New York, 2003, pp. xvi+468.
[4] R. P. Stanley. "A zonotope associated with graphical degree sequences". Applied Geometry and Discrete Mathematics. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 4. Amer. Math. Soc., Providence, RI, 1991, pp. 555-570.
[5] R. P. Stanley. Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics 62 . With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge University Press, Cambridge, 1999, pp. xii+581.
[6] A. Stapledon. "Equivariant Ehrhart theory". Adv. in Math. 226.4 (2011), pp. 3622-3654. Link.
[7] G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics 152. Springer-Verlag, New York, 1995, pp. x+370.

[^0]: *federico@sfsu.edu. Partially supported by NSF Award DMS-1600609, NSF Award DMS-1440140 to MSRI, and the Simons Foundation.
 \dagger anna.schindler@seattlecolleges.edu. Partially supported by an ARCS Foundation Fellowship.
 \ddagger andres.vindas@uky.edu. Partially supported by NSF Graduate Research Fellowship DGE-1247392.

