Séminaire Lotharingien de Combinatoire **82B** (2019) Article #16, 12 pp.

The equivariant volumes of the permutahedron

Federico Ardila^{*1}, Anna Schindler^{†2}, and Andrés R. Vindas-Meléndez^{‡3}

¹Department of Mathematics, San Francisco State University

²Department of Mathematics, North Seattle College

³Department of Mathematics, University of Kentucky

Abstract. We consider the action of the symmetric group S_n on the permutahedron Π_n . We prove that if σ is a permutation of S_n which has *m* cycles of lengths l_1, \ldots, l_m , then the subset of Π_n fixed by σ is a polytope with normalized volume $n^{m-2} \operatorname{gcd}(l_1, \ldots, l_m)$.

Resumen. Consideramos la acción del grupo simétrico S_n sobre el permutaedro Π_n . Demostramos que si σ es una permutación de S_n que tiene *m* ciclos de longitudes l_1, \ldots, l_m , entonces el subconjunto de Π_n que permanece fijo bajo la acción de σ es un politopo cuyo volumen normalizado es igual a $n^{m-2} \operatorname{mcd}(l_1, \cdots, l_m)$.

Keywords: permutahedron, volume, symmetric group, tree

1 Introduction

The *n*-permutahedron is the polytope in \mathbb{R}^n whose vertices are the permutations of [n]:

$$\Pi_n := \operatorname{conv} \{ (\pi(1), \pi(2), \dots, \pi(n)) : \pi \in S_n \}.$$

The symmetric group S_n acts on $\Pi_n \subset \mathbb{R}^n$ by permuting coordinates; more precisely, a permutation $\sigma \in S_n$ acts on a point $x = (x_1, x_2, ..., x_n) \in \Pi_n$, by

$$\sigma \cdot x := (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \dots, x_{\sigma^{-1}(n)}).$$

Definition 1.1. *The* fixed polytope of the permutahedron Π_n under a permutation σ of [n] *is*

$$\Pi_n^{\sigma} = \{ x \in \Pi_n : \sigma \cdot x = x \}.$$

Our main result is a generalization of the fact, due to Stanley [4], that Vol $\Pi_n = n^{n-2}$; see Theorem 3.1.

^{*}federico@sfsu.edu. Partially supported by NSF Award DMS-1600609, NSF Award DMS-1440140 to MSRI, and the Simons Foundation.

[†]anna.schindler@seattlecolleges.edu. Partially supported by an ARCS Foundation Fellowship. [‡]andres.vindas@uky.edu. Partially supported by NSF Graduate Research Fellowship DGE-1247392.

Figure 1: The fixed polytope $\Pi_4^{(12)}$ of the permutahedron Π_4 under $(12) \in S_4$ is a hexagon.

Theorem 1.2. If σ is a permutation of [n] whose cycles have lengths l_1, \ldots, l_m , then the normalized volume of the fixed polytope of Π_n under σ is

$$\operatorname{Vol} \Pi_n^{\sigma} = n^{m-2} \operatorname{gcd}(l_1, \ldots, l_m).$$

This is the first step towards describing the equivariant Ehrhart theory of the permutahedron, a question posed by Stapledon [6].

1.1 Normalizing the volume

The permutahedron and its fixed polytopes are not full-dimensional. We normalize volumes so that every primitive parallelotope has volume 1. This is the normalization under which the volume of Π_n equals n^{n-2} .

More precisely, let *P* be a *d*-dimensional polytope on an affine *d*-plane $L \subset \mathbb{Z}^n$. Assume *L* is integral, in the sense that $L \cap \mathbb{Z}^n$ is a lattice translate of a *d*-dimensional lattice Λ . We call a lattice *d*-parallelotope in *L primitive* if its edges generate the lattice Λ ; all primitive parallelotopes have the same volume. Then we define the volume of a *d*-polytope *P* in *L* to be Vol(*P*) := EVol(*P*)/EVol(\Box) for any primitive parallelotope \Box in *L*, where EVol denotes Euclidean volume.

The definition of Vol(P) makes sense even when P is not an integral polytope. This is important because the fixed polytopes of the permutahedron are not necessarily integral.

1.2 Notation

We identify each permutation $\pi \in S_n$ with the point $(\pi(1), ..., \pi(n))$ in \mathbb{R}^n . When we write permutations in cycle notation, we do not use commas to separate the entries

of each cycle. For example, we identify the permutation 246513 in S_6 with the point $(2,4,6,5,1,3) \in \mathbb{R}^6$, and write it as (1245)(36) in cycle notation.

Our main goal is to find the volume of the fixed polytope Π_n^{σ} for a permutation $\sigma \in S_n$. We assume that σ has m cycles of lengths $l_1 \geq \cdots \geq l_m$. In fact, for the goals of this paper, it suffices to assume

 $\sigma = (1 \ 2 \ \dots \ l_1)(l_1 + 1 \ l_1 + 2 \ \dots \ l_1 + l_2) \cdots (l_1 + \dots + l_{m-1} + 1 \ \dots \ n-1 \ n).$

We let $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{R}^n , and $e_S := e_{s_1} + \cdots + e_{s_k}$ for $S = \{s_1, \ldots, s_k\} \subseteq [n]$. Recall that the Minkowski sum of polytopes $P, Q \subset \mathbb{R}^n$ is the polytope $P + Q := \{p + q : p \in P, q \in Q\} \subset \mathbb{R}^n$. [3]

1.3 Organization

Section 2 presents Theorem 2.11, which describes the fixed polytope Π_n^{σ} in terms of its vertices, its defining inequalities, and a Minkowski sum decomposition. Section 3 uses this to prove our main result, Theorem 1.2, on the normalized volume of Π_n^{σ} . This is an extended abstract; for complete statements and proofs, see [1].

2 Describing the fixed polytopes of the permutahedron

Proposition 2.1 ([7]). The permutahedron Π_n can be described in the following three ways:

- 1. (Inequalities) It is the set of points $x \in \mathbb{R}^n$ satisfying
 - (a) $x_1 + x_2 + \dots + x_n = 1 + 2 + \dots + n$, and
 - (b) for any proper subset $\{i_1, i_2, ..., i_k\} \subset \{1, 2, ..., n\}$,

$$x_{i_1} + x_{i_2} + \dots + x_{i_k} \ge 1 + 2 + \dots + k.$$

- 2. (Vertices) It is the convex hull of the points $(\pi(1), \ldots, \pi(n))$ as π ranges over the permutations of [n].
- 3. (Minkowski sum) It is the Minkowski sum: $\sum_{1 \le i \le k \le n} [e_k, e_i] + \sum_{1 \le k \le n} e_k$.

The *n*-permutahedron is (n-1)-dimensional and every permutation of [n] is indeed a vertex.

Our first goal is to prove the analogous result for the fixed polytopes of Π_n ; we do so in Theorem 2.11.

2.1 Standardizing the permutation

We define the *cycle type* of a permutation σ to be the partition of *n* consisting of the lengths $l_1 \ge \cdots \ge l_m$ of the cycles of σ .

Lemma 2.2. The volume of Π_n^{σ} only depends on the cycle type of σ .

We wish to measure the various fixed polytopes of Π_n , and by Lemma 2.2 we can focus our attention on the polytopes Π_n^{σ} fixed by a permutation of the form

$$\sigma = (1 \ 2 \ \dots \ l_1)(l_1 + 1 \ l_1 + 2 \ \dots \ l_1 + l_2) \cdots (l_1 + \dots + l_{m-1} + 1 \ \dots \ n-1 \ n) \quad (2.1)$$

for a partition $l_1 \ge l_2 \ge \cdots \ge l_m$ with $l_1 + \cdots + l_m = n$. We do so from now on.

2.2 Towards the inequality description

Lemma 2.3. For a permutation $\sigma \in S_n$, the fixed polytope \prod_n^{σ} consists of the points $x \in \prod_n$ satisfying $x_j = x_k$ for any j and k in the same cycle of σ .

Corollary 2.4. If a permutation σ of [n] has m cycles then $\prod_{n=1}^{\sigma}$ has dimension m-1.

2.3 Towards a vertex description

In this section we describe a set $Vert(\sigma)$ of m! points associated to a permutation σ of S_n . We will show in Theorem 2.11 that this is the set of vertices of the fixed polytope Π_n^{σ} . For a point $w \in \mathbb{R}^n$, let \overline{w} be the average of the σ -orbit of w, that is,

$$\overline{w} := \frac{1}{|\sigma|} \sum_{i=1}^{|\sigma|} \sigma^i \cdot w, \tag{2.2}$$

where $|\sigma|$ is the order of σ as an element of the symmetric group S_n .

Definition 2.5. Given $\sigma \in S_n$, we say a permutation $v = (v_1, \ldots, v_n)$ of [n] is σ -standard if it satisfies the following property: for each cycle $(j_1 \ j_2 \ \cdots \ j_r)$ of σ , $(v_{j_1}, v_{j_2}, \ldots, v_{j_r})$ is a sequence of consecutive integers in increasing order. We define the set of σ -vertices to be

$$\operatorname{Vert}(\sigma) := \{\overline{w} : w \text{ is a } \sigma \text{-standard permutation of } [n]\}.$$

These points should not be confused with the vertices of the ambient permutahedron Π_n . Let us illustrate this definition in an example and prove some preliminary results.

Example 2.6. For $\sigma = (1234)(567)(89)$, the σ -standard permutations in S_9 are

and the corresponding σ -vertices are

$$\frac{1+2+3+4}{4}e_{1234} + \frac{5+6+7}{3}e_{567} + \frac{8+9}{2}e_{89}, \quad \frac{1+2+3+4}{4}e_{1234} + \frac{7+8+9}{3}e_{567} + \frac{5+6}{2}e_{89},$$

$$\frac{4+5+6+7}{4}e_{1234} + \frac{1+2+3}{3}e_{567} + \frac{8+9}{2}e_{89}, \quad \frac{3+4+5+6}{4}e_{1234} + \frac{7+8+9}{3}e_{567} + \frac{1+2}{2}e_{89},$$

$$\frac{6+7+8+9}{4}e_{1234} + \frac{1+2+3}{3}e_{567} + \frac{4+5}{2}e_{89}, \quad \frac{6+7+8+9}{4}e_{1234} + \frac{3+4+5}{3}e_{567} + \frac{1+2}{2}e_{89}.$$

Let us give a more explicit description of \overline{w} in general, and of the σ -vertices in particular, which will be important in the proof of Theorem 2.11.

Lemma 2.7. For any $w \in \mathbb{R}^n$, the average of the σ -orbit of w is

$$\overline{w} = \sum_{k=1}^{m} \frac{\sum_{j \in \sigma_k} w_j}{l_k} e_{\sigma_k}.$$

Notice that the entries of \overline{w} within each cycle σ_k are constant, bearing witness to the fact that \overline{w} , being the average of a σ -orbit, must be in the fixed polytope Π_n^{σ} .

Corollary 2.8. The set $Vert(\sigma)$ of σ -vertices consists of the m! points

$$\overline{v_{\prec}} := \sum_{k=1}^m \left(rac{l_k+1}{2} + \sum_{j:\,\sigma_j \prec \sigma_k} l_j
ight) e_{\sigma_k}$$

as \prec ranges over the *m*! possible linear orderings of $\sigma_1, \sigma_2, \ldots, \sigma_m$.

2.4 Towards a zonotope description

We will show in Theorem 2.11 that the fixed polytope Π_n^{σ} is the zonotope given by the following Minkowski sum.

Definition 2.9. Let M_{σ} denote the Minkowski sum

$$M_{\sigma} := \sum_{1 \le j < k \le m} [l_j e_{\sigma_k}, l_k e_{\sigma_j}] + \sum_{k=1}^m \frac{l_k + 1}{2} e_{\sigma_k}$$
$$= \sum_{1 \le j < k \le m} [0, l_k e_{\sigma_j} - l_j e_{\sigma_k}] + \sum_{k=1}^m \left(\frac{l_k + 1}{2} + \sum_{j < k} l_j\right) e_{\sigma_k}.$$
(2.3)

Proposition 2.10. *The zonotope* M_{σ} *is combinatorially equivalent to the standard permutahedron* Π_m *, where m is the number of cycles of* σ *.*

2.5 Three descriptions of the fixed polytope of the permutahedron

Theorem 2.11. Let σ be a permutation of [n] whose cycles $\sigma_1, \ldots, \sigma_m$ have respective lengths l_1, \ldots, l_m . The fixed polytope \prod_n^{σ} can be described in the following ways:

- 0. It is the set of points x in the permutahedron Π_n such that $\sigma \cdot x = x$.
- 1. It is the set of points $x \in \mathbb{R}^n$ satisfying
 - (a) $x_1 + x_2 + \cdots + x_n = 1 + 2 + \cdots + n$,
 - (b) for any proper subset $\{i_1, i_2, ..., i_k\} \subset \{1, 2, ..., n\}$,

 $x_{i_1} + x_{i_2} + \cdots + x_{i_k} \leq 1 + 2 + \cdots + k$, and

- (c) for any *i* and *j* which are in the same cycle of σ , $x_i = x_j$.
- 2. It is the convex hull of the set $Vert(\sigma)$ of σ -vertices, as described in Corollary 2.8.
- 3. It is the Minkowski sum M_{σ} of Definition 2.9

Consequently, the fixed polytope Π_n^{σ} is a zonotope that is combinatorially isomorphic to the permutahedron Π_m . It is (m-1)-dimensional and every σ -vertex is indeed a vertex of Π_n^{σ} .

Proof. Description 0. is the definition of the fixed polytope Π_n^{σ} , and we already observed in Lemma 2.3 that description 1. is accurate. Recall that we denoted the polytopes described in 2. and 3. by conv(Vert(σ)) and M_{σ} , respectively. It remains to prove that

$$\Pi_n^{\sigma} = \operatorname{conv}(\operatorname{Vert}(\sigma)) = M_{\sigma}.$$

We proceed in three steps as follows:

A. $\operatorname{conv}(\operatorname{Vert}(\sigma)) \subseteq \Pi_n^{\sigma}$ B. $M_{\sigma} \subseteq \operatorname{conv}(\operatorname{Vert}(\sigma))$ C. $\Pi_n^{\sigma} \subseteq M_{\sigma}$

A. $\operatorname{conv}(\operatorname{Vert}(\sigma)) \subseteq \Pi_n^{\sigma}$: It suffices to show that Π_n^{σ} contains any point in $\operatorname{Vert}(\sigma)$, say

$$\overline{v_{\prec}} = rac{1}{|\sigma|} \sum_{i=1}^{|\sigma|} \sigma^i \cdot v_{\prec}$$
 ,

where \prec is a total order of $\sigma_1, \ldots, \sigma_m$ and v_{\prec} is the associated σ -standard permutation. Since v_{\prec} is a vertex of Π_n , we conclude that $\sigma^i \cdot v_{\prec}$ is a vertex of Π_n for all *i*, and hence their average $\overline{v_{\prec}}$ is in Π_n . Also, since $\sigma^{|\sigma|} = 1$, we have that $\sigma \cdot \overline{v_{\prec}} = \overline{v_{\prec}}$. Therefore, $\overline{v_{\prec}}$ is in Π_n^{σ} by 0., as desired.

B. $M_{\sigma} \subseteq \text{conv}(\text{Vert}(\sigma))$: It suffices to show that any vertex of M_{σ} is in $\text{Vert}(\sigma)$.

For a polytope $P \subset \mathbb{R}^n$ and a linear functional $c \in (\mathbb{R}^n)^*$, we let P_c denote the face of P where c is maximized. In particular, for any given vertex v of M_σ , consider a linear functional $c = (c_1, c_2, ..., c_n) \in (\mathbb{R}^n)^*$ such that $v = (M_\sigma)_c$ is the unique point in M_σ maximizing c. For k = 1, ..., m, let $c_{\sigma_k} := \frac{1}{l_k} \sum_{i \in \sigma_k} c_i$. One can verify that

(a) $c_{\sigma_i} \neq c_{\sigma_k}$ for $j \neq k$, and

(b) $v = \overline{v_{\prec}}$ for the linear order \prec on $\sigma_1, \sigma_2, \ldots, \sigma_m$ where $\sigma_j \prec \sigma_k$ if and only if $c_{\sigma_j} < c_{\sigma_k}$. This shows that every vertex of M_{σ} is a σ -vertex, as desired.

C. $\Pi_n^{\sigma} \subseteq M_{\sigma}$: Any point $p \in \Pi_n^{\sigma}$ can be written as a convex combination $p = \sum_{\tau \in S_n} \lambda_{\tau} \tau$ of the *n*! permutations of [n], where $\lambda_{\tau} \ge 0$ for all τ and $\sum_{\tau \in S_n} \lambda_{\tau} = 1$. Recall from (2.2) that \overline{w} represents the average of the σ -orbit of $w \in \mathbb{R}^n$. Since p is fixed by σ we have

$$p=\overline{p}=\sum_{\tau\in S_n}\lambda_{\tau}\overline{\tau}.$$

It follows that $\Pi_n^{\sigma} \subseteq \operatorname{conv}\{\overline{\tau} : \tau \in S_n\}$. Therefore, to show that $\Pi_n^{\sigma} \subseteq M_{\sigma}$, it suffices to show that $\overline{\tau} \in M_{\sigma}$ for all permutations τ . To do so, let us first derive an alternative expression for $\overline{\tau}$.

Let us begin with the vertex id = (1, 2, ..., n) of Π_n corresponding to the identity permutation. As described in Corollary 2.8, this is the σ -standard permutation corresponding to the order $\sigma_1 \prec \sigma_2 \prec \cdots \prec \sigma_m$, so

$$\overline{\mathrm{id}} = \sum_{k=1}^{m} \left(\frac{l_k + 1}{2} + \sum_{j < k} l_j \right) e_{\sigma_k}.$$
(2.4)

Notice that this is the translation vector for the Minkowski sum of (2.3).

Now, let us compute $\overline{\tau}$ for any permutation τ . Let

$$l = \operatorname{inv}(\tau) = |\{(a, b) : 1 \le a < b \le n, \ \tau(a) > \tau(b)\}|$$

be the number of inversions of τ . Consider a minimal sequence id $= \tau_0, \tau_1, \ldots, \tau_l = \tau$ of permutations such that τ_{i+1} is obtained from τ_i by exchanging the positions of numbers p and p + 1, thus introducing a single new inversion without affecting any existing inversions. Such a sequence corresponds to a minimal factorization of τ as a product of simple transpositions $(p \ p+1)$ for $1 \le p \le n-1$. We have $inv(\tau_i) = i$ for $1 \le i \le l$.

Now we compute $\overline{\tau}$ by analyzing how $\overline{\tau_i}$ changes as we introduce new inversions, using that

$$\overline{\tau} - \overline{\mathrm{id}} = (\overline{\tau_l} - \overline{\tau_{l-1}}) + \dots + (\overline{\tau_1} - \overline{\tau_0}).$$
(2.5)

If a < b are the positions of the numbers p and p + 1 that we switch as we go from τ_i to τ_{i+1} , then regarding τ_i and τ_{i+1} as vectors in \mathbb{R}^n we have

$$\tau_{i+1}-\tau_i=e_a-e_b.$$

If σ_i and σ_k are the cycles of σ containing *a* and *b*, respectively, we have

$$\overline{\tau_{i+1}} - \overline{\tau_i} = \overline{e_a} - \overline{e_b} = \frac{e_{\sigma_j}}{l_j} - \frac{e_{\sigma_k}}{l_k} = \frac{1}{l_j l_k} (l_k e_{\sigma_j} - l_j e_{\sigma_k})$$
(2.6)

in light of Lemma 2.7. This is the local contribution to (2.5) that we obtain when we introduce a new inversion between a position *a* in cycle σ_j and a position *b* in cycle σ_k in our permutation. Notice that this contribution is 0 when j = k. Also notice that we will still have an inversion between positions *a* and *b* in all subsequent permutations, due to the minimality of the sequence. We conclude that

$$\overline{\tau} - \overline{\mathrm{id}} = \sum_{j < k} \frac{\mathrm{inv}_{j,k}(\tau)}{l_j l_k} (l_k e_{\sigma_j} - l_j e_{\sigma_k})$$
(2.7)

where

$$\operatorname{inv}_{j,k}(\tau) = |\{(a,b) : 1 \le a < b \le n, a \in \sigma_j, b \in \sigma_k \text{ and } \tau(a) > \tau(b)\}|$$

is the number of inversions in τ between a position in σ_i and a position in σ_k for j < k.

Equations (2.4) and (2.7) give us an alternative description for $\overline{\tau}$. This description makes it apparent that $\overline{\tau} \in M_{\sigma}$: Notice that $|\sigma_j| = l_j$ and $|\sigma_k| = l_k$ imply that $0 \leq \operatorname{inv}_{j,k}(\tau) \leq l_j l_k$, so

$$\overline{\tau} - \overline{\mathrm{id}} \in \sum_{1 \leq j < k \leq n} [0, l_k e_{\sigma_j} - l_j e_{\sigma_k}];$$

combining this with (2.3) and (2.4) gives the desired result.

Figure 2: (a) A minimal sequence of permutations id = $\tau_0, \tau_1, ..., \tau_9 = 461352$ adding one inversion at a time and (b) the corresponding path from \overline{id} to $\overline{\tau}$ in the zonotope M_{σ} .

Example 2.12. Figure 2 illustrates part C of the proof above for n = 6, $\sigma = (123)(45)(6)$, and the permutation $\tau = 461352$. This permutation has $inv(\tau) = 9$ inversions, and the columns of the left panel show a minimal sequence of permutations $id = \tau_0, \tau_1, ..., \tau_9 =$

 τ where each τ_{i+1} is obtained from τ_i by swapping two consecutive numbers, thus introducing a single new inversion.

The rows of the diagram are split into three groups 1, 2, and 3, corresponding to the support of the cycles of σ . Out of the inv(τ) = 9 inversions of τ , there are inv_{1,2}(τ) = 3 involving groups 1 and 2, inv_{1,3}(τ) = 2 involve groups 1 and 3, and inv_{2,3}(τ) = 2 involving groups 2 and 3.

This sequence of permutations gives rise to a walk from id, which is the top right vertex of the zonotope M_{σ} , to $\overline{\tau}$. In the rightmost triangle, which is not drawn to scale, vertex *i* represents the point e_{σ_i}/l_i for $1 \le i \le 3$. Whenever two numbers in groups j < k are swapped in the left panel, to get from permutation τ_i to τ_{i+1} , we take a step in direction $e_{\sigma_j}/l_j - e_{\sigma_k}/l_k$ in the right panel, to get from point $\overline{\tau_i}$ to $\overline{\tau_{i+1}}$. This is the direction of edge *jk* in the triangle, and its length is $1/l_j l_k$ of the length of the generator $l_k e_{\sigma_i} - l_j e_{\sigma_k}$ of the zonotope. Then

$$\overline{\tau} - \overline{\mathrm{id}} = \frac{3}{l_1 l_2} (l_2 e_{\sigma_1} - l_1 e_{\sigma_2}) + \frac{2}{l_1 l_3} (l_3 e_{\sigma_1} - l_1 e_{\sigma_3}) + \frac{2}{l_2 l_3} (l_3 e_{\sigma_2} - l_2 e_{\sigma_3}).$$

Since $3 = inv_{1,2}(\tau) \le l_1 l_2 = 6$, $2 = inv_{1,3}(\tau) \le l_1 l_3 = 3$ and $2 = inv_{2,3}(\tau) \le l_2 l_3 = 2$, the resulting point $\overline{\tau}$ is in the zonotope M_{σ} .

3 The volumes of the fixed polytopes of the permutahedron

To compute the volume of Π_n^{σ} we use its description as a zonotope, recalling that a zonotope can be tiled by parallelotopes as follows. If *A* is a set of vectors, then $B \subseteq A$ is called a *basis* for *A* if *B* is linearly independent and rank(B) = rank(A). We define the parallelotope $\Box B$ to be the Minkowski sum of the segments in *B*, that is,

$$\Box B := \Big\{ \sum_{b \in B} \lambda_b b : 0 \le \lambda_b \le 1 \text{ for each } b \in B \Big\}.$$

Theorem 3.1 ([2, 4, 7]). Let $A \subset \mathbb{Z}^n$ be a set of lattice vectors of rank d.

1. The zonotope Z(A) can be tiled using one translate of the parallelotope $\Box B$ for each basis *B* of *A*. Therefore, the volume of the *d*-dimensional zonotope Z(A) is

$$\operatorname{Vol}(Z(A)) = \sum_{\substack{B \subseteq A\\ B \text{ basis}}} \operatorname{Vol}(\Box B).$$

2. For each $B \subset \mathbb{Z}^n$ of rank d, $Vol(\Box B)$ equals the index of $\mathbb{Z}B$ as a sublattice of $(\operatorname{span} B) \cap \mathbb{Z}^n$. Using the vectors in B as the columns of an $n \times d$ matrix, Vol(B) is the greatest common divisor of the minors of rank d.

By Theorem 2.11, the fixed polytope Π_n^{σ} is a translate of the zonotope generated by the set

$$F_{\sigma} = \left\{ l_k e_{\sigma_j} - l_j e_{\sigma_k} ; 1 \le j < k \le m \right\}.$$

This set of vectors has a nice combinatorial structure, allowing us to describe the bases *B* and the volumes Vol ($\Box B$) combinatorially. We do this in the next two lemmas. For a tree *T* whose vertex set is [*m*], let

$$F_T = \left\{ l_k e_{\sigma_j} - l_j e_{\sigma_k} : j < k \text{ and } jk \text{ is an edge of } T \right\},$$

$$E_T = \left\{ \frac{e_{\sigma_j}}{l_j} - \frac{e_{\sigma_k}}{l_k} : j < k \text{ and } jk \text{ is an edge of } T \right\}.$$

Lemma 3.2 ([4]). The vector configuration

$$F_{\sigma} := \left\{ l_k e_{\sigma_j} - l_j e_{\sigma_k} : 1 \le j < k \le m \right\}$$

has exactly m^{m-2} bases: they are the sets F_T as T ranges over the spanning trees on [m].

Lemma 3.3. For any tree T on [m] we have

1.
$$\operatorname{Vol}(\Box F_T) = \prod_{i=1}^m l_i^{\deg_T(i)} \operatorname{Vol}(E_T),$$

2. $\operatorname{Vol}(\Box E_T) = \frac{\operatorname{gcd}(l_1, \ldots, l_m)}{l_1 \cdots l_m},$

where $\deg_T(i)$ is the number of edges containing vertex *i* in *T*.

Proof. 1. Since $l_k e_{\sigma_j} - l_j e_{\sigma_k} = l_j l_k \left(\frac{e_{\sigma_j}}{l_j} - \frac{e_{\sigma_k}}{l_k}\right)$ for each edge *jk* of *T*, and volumes scale linearly with respect to each edge length of a parallelotope, we have

$$\operatorname{Vol}(\Box F_T) = \left(\prod_{jk \text{ edge of } T} l_j l_k\right) \operatorname{Vol}(\Box E_T) = \prod_{i=1}^m l_i^{\operatorname{deg}_T(i)} \operatorname{Vol}(\Box E_T).$$

2. The parallelotopes $\Box E_T$ are the images of the parallelotopes $\Box A_T$ under the linear bijective map

$$\begin{aligned} \phi : \mathbb{R}^m &\to \quad (\mathbb{R}^n)^\sigma \\ f_i &\mapsto \quad \frac{e_{\sigma_i}}{l_i}, \end{aligned}$$

where

$$A_T := \{f_j - f_k : j < k, jk \text{ is an edge of } T\}$$

Since the vector configuration $\{f_j - f_k : 1 \le j < k \le m\}$ is unimodular, all parallelotopes $\Box A_T$ have unit volume. Therefore, the parallelotopes $\Box E_T = \phi(\Box A_T)$ have the same normalized volume, so Vol(E_T) is independent of T.

It follows that we can use any tree *T* to compute $Vol(E_T)$ or, equivalently, $Vol(F_T)$. We choose the tree $T = Claw_m$ with edges 1m, 2m, ..., (m-1)m. Writing the m-1 vectors of

$$F_{\text{Claw}_m} = \{l_m e_{\sigma_i} - l_i e_{\sigma_m} : 1 \le i \le m - 1\}$$

as the columns of an $n \times (m-1)$ matrix, then Vol(F_{Claw_m}) is the greatest common divisor of the non-zero maximal minors of this matrix. This quantity does not change when we remove duplicate rows; the result is the $m \times (m-1)$ matrix

l_m	0	0	• • •	0]
0	l_m	0	•••	0
0	0	l_m	• • •	0
÷	÷	÷	·	:
0	0	0	•••	l_m
$-l_1$	$-l_{2}$	$-l_{3}$	•••	$-l_{m-1}$

This matrix has *m* maximal minors, whose absolute values equal $l_m^{m-2}l_1, \ldots, l_m^{m-2}l_{m-1}$, l_m^{m-1} . Therefore,

$$\operatorname{Vol}(\Box F_{\operatorname{Claw}_m}) = l_m^{m-2} \operatorname{gcd}(l_1, \ldots, l_{m-1}, l_m)$$

and part 1 then implies that

$$\operatorname{Vol}(\Box E_{\operatorname{Claw}_m}) = \frac{\operatorname{Vol}(\Box F_{\operatorname{Claw}_m})}{l_1 \cdots l_{m-1} l_m^{m-1}} = \frac{\operatorname{gcd}(l_1, \dots, l_m)}{l_1 \cdots l_m}$$

as desired.

Lemma 3.4. For any positive integer $m \ge 2$ and unknowns x_1, \ldots, x_m , we have

$$\sum_{T \text{ tree on } [m]} \prod_{i=1}^{m} x_i^{\deg_T(i)-1} = (x_1 + \dots + x_m)^{m-2}.$$

Sketch of proof. This is a variant of the analogous result for rooted trees [5, Theorem 5.3.4], which states that

$$\sum_{\substack{(T,r) \text{ rooted} \\ \text{tree on } [m]}} \prod_{i=1}^m x_i^{\text{children}_{(T,r)}(i)} = (x_1 + \dots + x_m)^{m-1}$$

where $\operatorname{children}_{(T,r)}(v)$ counts the children of v. It can be proved similarly, or derived directly from it.

	_
	- I.
	- I
	- I

Theorem 1.2. If σ is a permutation of [n] whose cycles have lengths l_1, \ldots, l_m , then the normalized volume of the fixed polytope of Π_n under σ is

$$\operatorname{Vol} \Pi_n^{\sigma} = n^{m-2} \operatorname{gcd}(l_1, \ldots, l_m).$$

Proof. Since Π_n^{σ} is a translate of the zonotope for $F_{\sigma} := \{l_k e_{\sigma_j} - l_j e_{\sigma_k} : 1 \le j < k \le m\}$, we invoke Theorem 3.1. Using Lemmas 3.2 to 3.4, it follows that

$$\operatorname{Vol} \Pi_n^{\sigma} = \sum_{T \text{ tree on } [m]} \operatorname{Vol}(\Box F_T)$$
$$= \sum_{T \text{ tree on } [m]} \prod_{i=1}^m l_i^{\deg_T(i)-1} \operatorname{gcd}(l_1, \dots, l_m)$$
$$= (l_1 + \dots + l_m)^{m-2} \operatorname{gcd}(l_1, \dots, l_m) = n^{m-2} \operatorname{gcd}(l_1, \dots, l_m).$$

Acknowledgements

We are grateful to Matthias Beck, Ben Braun, Anastasia Chavez, John Guo, Andrés Rodríguez, and Nicole Yamzon for their support and fruitful conversations.

References

- F. Ardila, A. Schindler, and A. R. Vindas-Meléndez. "The equivariant volumes of the permutahedron". 2018. arXiv:1803.02377.
- [2] M. D'Adderio and L. Moci. "Ehrhart polynomial and arithmetic Tutte polynomial". *European J. Combin.* **33**.7 (2012), pp. 1479–1483. Link.
- [3] B. Grünbaum. *Convex Polytopes*. 2nd ed. Graduate Texts in Mathematics 221. Springer-Verlag, New York, 2003, pp. xvi+468.
- [4] R. P. Stanley. "A zonotope associated with graphical degree sequences". Applied Geometry and Discrete Mathematics. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 4. Amer. Math. Soc., Providence, RI, 1991, pp. 555–570.
- [5] R. P. Stanley. *Enumerative Combinatorics. Vol.* 2. Cambridge Studies in Advanced Mathematics 62. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. Cambridge University Press, Cambridge, 1999, pp. xii+581.
- [6] A. Stapledon. "Equivariant Ehrhart theory". Adv. in Math. 226.4 (2011), pp. 3622–3654. Link.
- [7] G. M. Ziegler. *Lectures on Polytopes*. Graduate Texts in Mathematics 152. Springer-Verlag, New York, 1995, pp. x+370.