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Abstract. The divisor theory of graphs views a finite connected graph G as a dis-
crete version of a Riemann surface. Divisors on G are formal integral combinations
of the vertices of G, and linear equivalence of divisors is determined by the discrete
Laplacian operator for G. As in the case of Riemann surfaces, we are interested in the
complete linear system |D| of a divisor D—the collection of nonnegative divisors lin-
early equivalent to D. Unlike the case of Riemann surfaces, the complete linear system
of a divisor on a graph is always finite. We compute generating functions encoding
the sizes of all complete linear systems on G. We interpret our results in terms of
polyhedra associated with divisors and in terms of the invariant theory of the (dual of
the) Jacobian group of G. If G is a cycle graph, our results lead to a bijection between
complete linear systems and binary necklaces.

Keywords: Chip-firing, divisors on graphs, lattice points in polyhedra, invariant the-
ory, necklaces

1 Introduction.

Divisor theory preliminaries. Let G = (V, E) be a connected, undirected multigraph
with finite vertex set V and finite edge multiset E. Loops are allowed but our results are
not affected if they are removed.

We recall some of the theory of divisors on graphs, referring readers unfamiliar with
this theory to [1] or to Part 1 of the textbook [3]. A divisor on G is an element in the free
abelian group on the vertices of G,

Div(G) := ZV = {∑v∈V D(v)v : D(v) ∈ Z} .

The degree of a divisor D is the sum of its coefficients: deg(D) := ∑v∈V D(v). For
instance, if we consider v ∈ V as a divisor, then deg(v) = 1. We use the notation degG(v)
to refer to the ordinary degree of a vertex—the number of edges incident on v. The set
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of divisors of degree k is denoted by Divk(G). The (discrete) Laplacian operator of G is the
function L : ZV → ZV given by

L( f )(v) = ∑
vw∈E

( f (v)− f (w))

for each f ∈ ZV and v ∈ V. The divisor of a function f : V → Z, arising by analogy from
the theory of divisors on Riemann surfaces, is then

div( f ) := ∑
v∈V

(L( f )(v)) v ∈ Div(G).

The mapping v 7→ χv which sends each vertex to its corresponding characteristic func-
tion determines an isomorphism χ : Div(G) ' ZV , and we have χ ◦ div = L, which we
use to identify div with L.

Divisors of functions are called principal divisors, and they form an additive subgroup
of Div(G) denoted Prin(G). Divisors D and D′ are linearly equivalent if D−D′ ∈ Prin(G),
in which case we write D ∼ D′. The Picard group of G is then the group of divisors
modulo linear equivalence:

Pic(G) := Div(G)/ Prin(G).

Since principal divisors have degree zero, Pic(G) is graded by degree. Its degree k part
is denoted Pick(G). The degree-zero part of the Picard group is a subgroup called the
Jacobian group of G:

Jac(G) := Pic0(G) = Div0(G)/ Prin(G) ⊆ Pic(G).

We write [D] for the class of a divisor D modulo Prin(G). Fixing any vertex q ∈ V, there
is an isomorphism

Pic(G)→ Z⊕ Jac(G) (1.1)
[D] 7→ (deg(D), [D− deg(D)q]) .

Throughout this work, we fix an ordering v1, . . . , vn of V, which determines a basis
for Div(G) and a corresponding dual basis χv1 , . . . , χvn for ZV , allowing us to identify
both spaces with Zn. Thus, D ∈ Div(G) is identified with (D(v1), . . . , D(vn)), and for
any v ∈ V, we may refer to the v-th coordinate of a vector in Zn. With respect to the
chosen bases, div and L are represented by the n × n Laplacian matrix, which we also
denote by L. This matrix is given by

L = Deg(G)− A

where
Deg(G) = diag(degG(v1), . . . , degG(vn))
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and A is the adjacency matrix for G. The i, j-th entry of A is the number of edges
connecting vi to vj. It is symmetric since G is undirected. We then have the isomorphism

Pic(G) ' cok(L) = Zn/ imZ(L)
[∑n

i=1 aivi] 7→ (a1, . . . , an) + imZ(L).

Fixing any vertex q ∈ V, define the reduced Laplacian matrix for G with respect to q as
the (n− 1)× (n− 1) matrix L̃ formed by removing the row and column corresponding
to q from L. There is an isomorphism

Jac(G) ' Zn−1/ imZ(L̃) (1.2)
[D]→ D|q=0

where D|q=0 := ∑v∈V\{q} D(v)v. The inverse sends the class of the v-th standard basis
vector in Zn−1/ imZ(L̃) to [v− q] for each v 6= q. Isomorphisms (1.1) and (1.2) combine
to say that for D, D′ ∈ Div(G),

D ∼ D′ ⇐⇒
(
deg(D) = deg(D′) and D|q=0 = D′|q=0 mod imZ(L̃)

)
.

The kernel of the Laplacian matrix is the set of constant vectors, and the reduced
Laplacian has full rank n− 1. By the matrix-tree theorem, the number of spanning trees
of G is det(L̃), and thus by (1.2), it is also the order of Jac(G).

Partitioning effective divisors. A divisor E is effective if E(v) ≥ 0 for all v ∈ V, in
which case we write E ≥ 0. The complete linear system of a divisor D is its set of linearly
equivalent effective divisors:

|D| := {E ∈ Div(G) : E ≥ 0 and E ∼ D} .

Note that |D| depends only on the divisor class of D. Also, since linearly equivalent
divisors have the same degree, |D| is finite.

Fix q ∈ V, and for each [D] ∈ Jac(G), define

E[D] := ∪k≥0|D + kq| = {E ∈ Div(G) : E ≥ 0 and E− deg(E)q ∼ D} .

The E[D] partition the set of effective divisors as D runs over a set of representatives
for Jac(G). The collection E[0] is a semigroup, and each E[D] is a E[0] semi-module. Note
that E[D] depends on q.1

1For q′ ∈ V, writing D + kq = D + kq′ + k(q − q′) shows the dependence is “periodic” with period
equal to the order of [q− q′] ∈ Jac(G).
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Definition 1.1. The λ-sequence for [D] ∈ Jac(G) is the sequence with k-th term

λ[D](k) := #|D + kq|.

(It does not depend on the choice of representative of the class [D].) The λ-sequence
generating function is

Λ[D](z) := ∑
k≥0

λ[D](k)z
k.

Goal. The study of complete linear systems is fundamental to the divisor theory of both
Riemann surfaces and graphs. For instance, the Riemann-Roch Theorem2 in either area
can be interpreted as a statement about the existence of effective divisors. However,
unlike the case of Riemann surfaces, the complete linear system of a divisor on a graph
is always finite. Thus, it is natural to wonder about its cardinality. We know of no
prior work focused on this question. Moreover, there are special representatives for the
elements Jac(G) relative to the choice of a vertex q variously called G-parking functions
or q-reduced divisors (for example, see [3]). The structures we introduce here provide new
invariants to attach to these objects.

Our goal for this extended abstract is to provide a means of computing the λ-
sequence generating function Λ[D] for any graph G and divisor [D]. In Section 2, the
computation is achieved by introducing systems of primary and secondary divisors. In
Section 3, the primary and secondary divisors are related to standard theory for count-
ing lattice points in polyhedra. In Section 4, primary and secondary divisors are in-
terpreted as primary and secondary invariants for a certain representation of the dual
group Jac∗(G). Finally, in Section 5, we relate complete linear systems on cycle graphs
to binary necklaces. This final section also serves as a set of concrete examples for the
results in earlier sections.

2 Primary and secondary divisors

We first compute Λ[D] using primary and secondary divisors, defined as part of the follow-
ing theorem.

Theorem 2.1. Fix q ∈ V, and for each v ∈ V, let ordq(v) be the order of [v− q] in the finite
group Jac(G).

(1) (Existence) There exists a finite subset P ⊂ E[0] and for each [D] ∈ Jac(G), a finite subset
S[D] ⊂ E[D] such that each E ∈ E[D] can be written uniquely as

E = F + ∑
P∈P

aPP

2See [1] for the Riemann-Roch Theorem for graphs.
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with F ∈ S[D] and aP ∈ Z≥0 for all P ∈ P . The set P is called a set of primary divisors
for G, and S[D] is called the set of [D]-secondary divisors with respect to P .

(2) (Uniqueness) Sets P and {S[D]}[D]∈Jac(G) satisfy part (1) if and only if

P = {`vv : v ∈ V} and S[D] = {E ∈ E[D] : E(v) < `v for all v ∈ V},

where `v is any positive multiple of ordq(v) for all v ∈ V.

(3) With P and S[D] as above,
|S[D]|| Jac(G)| = ∏

v∈V
`v.

(4) Choose `i := `vi for j = 1, . . . , n in accordance with part (2), and let q = vn. Let A be a
set of standard representatives for the image of D|q=0 + imZ(L̃) under the natural projection
Zn−1 → ∏n−1

i=1 Z/`iZ. Then the corresponding secondary divisors are

S[D] = {(a1, . . . , an−1, an) : (a1, . . . , an−1) ∈ A, 0 ≤ an < `n} .

A standard argument then expresses the λ-sequence generating function as a rational
function in terms of primary and secondary divisors.

Corollary 2.2. Fix primary and secondary divisors as in Theorem 2.1. For each [D] ∈ Jac(G),

Λ[D](z) =
∑F∈S[D]

zdeg(F)

∏v∈V
(
1− z`v

) .

Theorem 2.1 has a direct proof, but in the next two sections we show how the theorem
is a consequence of standard results in the theory of lattice points in polyhedra and in
invariant theory, respectively.

3 Polyhedra

We now interpret the results of Section 2 in terms of lattice points in polyhedra naturally
associated with divisors. We first recall some relevant theory, using [2] as our reference.
An affine n-cone in Rn, or simply an n-cone, is a set of the form

K = { p + λ1ω1 + · · ·+ λmωm : λ1, . . . , λm ≥ 0}

where ω1, . . . , ωm, p ∈ Rn and the span of the ωi has dimension n. The ωi are called
generators of the cone. Any generator that is not a convex combination of the remaining
generators is called an extreme ray. The cone is pointed if it contains no line, and in that
case p is called its apex. We say K is rational if p, ω1, . . . , ωm ∈ Qn, and then, by rescaling,
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we may assume the ωi have integer coordinates. An n-cone is simplicial if it may be
written using n generators. Simplicial cones are necessarily pointed.

Equivalently, we may define a rational pointed n-cone in Rn to be an n-dimensional
intersection of finitely many half-planes of the form

{x ∈ Rn : a1x1 + · · ·+ anxn ≥ β}

where a1, . . . , an, β ∈ Z and such that the hyperplanes

{x ∈ Rn : a1x1 + · · ·+ anxn = β}

meet in a single point. In that case, we may express the cone as {x ∈ Rn : Ax ≥ b}
where A is an integral m× n matrix of rank n and b ∈ Zm.

If K is a simplicial n-cone in Rn with an integral generating set Ω = {ω1, . . . , ωn}
and apex p, define the fundamental parallelepiped for K with respect to Ω to be

Π := { p + ∑n
i=1 λiωi : 0 ≤ λ1, λ2, . . . , λn < 1} .

Every point α ∈ K ∩Zn has a unique expression as

α = p + π + m1ω1 + · · ·+ mnωn

with π ∈ Π and m1, . . . , mn ∈N.
Define the integer-point transform of a set S ⊂ Rn by

σS(~z ) = σS(z1, . . . , zn) := ∑
α∈S∩Zn

~z α

where ~z α := ∏n
i=1 zαi

i .
When

K = { p + λ1ω1 + · · ·+ λnωn : λ1, . . . , λn ≥ 0}

is a simplicial n-cone in Rn with ω1, . . . , ωn ∈ Zn and p ∈ Rn, then

σK(~z ) =
σΠ(~z )

∏n
i=1(1−~z ωi)

,

where Π is the fundamental parallelepiped of K with respect to the ωi.

Linear systems and polyhedra. Throughout this section, we fix the embedding

Rn−1 = Rn−1 × {0} ⊂ Rn.

Thus, if D ∈ Div(G) = Zn, then we may regard D|q=0 as an element of either Zn−1

or Zn. Similarly, given f ∈ Rn−1, we write L f in place of L
( f

0

)
.
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Two divisors D and D′ on G are linearly equivalent exactly when there is a func-
tion f ∈ ZV such that D′ = D + div( f ). In this context f is referred to as a firing script,
and we express the complete linear system for D as

|D| = {E ∈ Div(G) : E = D + L f ≥ 0 for some firing script f } .

The set of firing scripts appearing above for the complete linear system for D form the
polyhedron

QD := { f ∈ Rn : L f ≥ −D} ⊂ Rn.

However, the integer points of QD are not in bijection with elements of |D| since L has
a non-trivial kernel. The kernel is generated by the all-ones vector~1; so modulo ker(L),
each firing vector f = ( f1, . . . , fn) has the unique representative f − fn ·~1 with last
coordinate 0, leading us to define

PD := QD ∩ { f ∈ Rn : fn = 0} ⊂ Rn−1

so that QD = PD +R~1 ⊂ Rn. It is straightforward to see that the integer points PD ∩Zn−1

are in bijection with |D|:

f ∈ PD ∩Zn−1 ←→ D + L f ∈ |D|. (3.1)

Since |D| is finite, it follows that the polyhedron PD is bounded, and hence is a polytope.
(For a direct proof of boundedness, see [3, Proposition 2.20].)

If D ∼ D′ with D′ = D + L f , then the polyhedra associated with these divisors differ
by a translation: QD = L f + QD′ , and as discussed above, we may assume fn = 0 to
write PD = L̃ f + PD′ .

We extend the ideas presented above to interpret the results of Section 2 in terms of
counting lattice points in polyhedra.

Definition 3.1. The cone for a divisor D ∈ Div0(G) with respect to q is the set

KD := {( f , t) ∈ Rn ×R : L f + tq ≥ −D and fn = 0} ⊂ Rn−1 ×R.

Theorem 3.2. Let D ∈ Div0(G). Then KD is a rational simplicial n-cone with apex p :=
L̃−1(−D|q=0) ∈ Rn−1 × {0} ⊂ Rn and has the following properties:

(1) The set of integer points of KD is in bijection with E[D] via the mapping

ψD : KD ∩Zn ∼−→ E[D]

( f , k) 7→ D + kq + L f .

(2) The mapping ψ0 is a bijection between the generating set of integral extreme rays for KD and
the set of primary divisors for G. Furthermore, ψD is a bijection between integer points of the
fundamental parallelepiped and secondary divisors of [D] with respect to P .
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(3) Fix a generating set Ω for KD with fundamental parallelepiped Π and corresponding primary
and secondary divisors P = ψ0(Ω) and S[D] = ψD(Π ∩Zn) as in part (2). Then the λ-
sequence generating function for E[D] is

Λ[D](z) = σK(1, . . . , 1, z) =
σΠ(1, . . . , 1, z)

∏ω∈Ω(1− zdeg(ω))
,

where deg(ω) is the sum of the coordinates of ω. The numerator and denominator of the
expression on the right are the same as those appearing in Corollary 2.2.

4 Invariant theory

The results of Section 2 may also be interpreted in terms of the invariant theory for a
representation of the dual group Jac∗(G). Through this lens, primary and secondary
divisors become primary and secondary invariants, and Λ[D](z) is given a substantially
different expression as a Molien series.

We recall basic invariant theory for finite groups with [5] as reference. Given a ma-
trix A ∈ GL(Cn) and a polynomial f ∈ C[x] := C[x1, . . . , xn], define f ◦ A by

( f ◦ A)(x1, . . . , xn) = f (A~x)

where ~x is the column vector [x1, . . . , xn]t. Given a finite subgroup Γ of GL(Cn) and a
character χ : Γ→ C× := C \ {0}, define the χ-relative invariants of Γ to be elements of

C[x]Γχ := { f ∈ C[x] : f ◦ γ = χ(γ) f for all γ ∈ Γ} .

In the case χ = ε, the trivial character, C[x]Γ := C[x]Γε is a subring of C[x], graded by
degree, called the invariant subring of Γ. Its elements are simply called invariants of Γ. The
invariant subring C[x]Γ is generated by the homogeneous polynomials

1
|Γ| ∑

γ∈Γ
f ◦ γ

as f ranges over all monomials of degree at most |Γ|. For arbitrary χ, the relative invari-
ants C[x]Γχ form a C[x]Γ-module, generated by homogeneous polynomials of degree at
most |Γ|.

There exist algebraically independent homogeneous invariants p1, . . . , pn such that
C[x]Γ is a finitely-generated free module over C[p1, . . . , pn]. For any character χ, if
q1, . . . , qt are homogeneous polynomials forming a C-basis for C[x]Γχ modulo the sub-
module ∑t

i=1 piC[x]Γχ, then

C[x]Γχ =
t⊕

i=1

qiC[p1, . . . , pn].
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The pi are called primary invariants and are independent of χ. The qi are called secondary
(relative) invariants and depend on χ. The number of secondary invariants, t, also de-
pends on χ in general. Letting tε be the number of secondary invariants for the trivial
character, we have

tε|Γ| =
n

∏
i=1

deg(pi).

The Hilbert series for C[x]Γχ is

ΦΓ,χ(z) := ∑
d≥0

dimC(C[x]Γχ,d)z
d,

where C[x]Γχ,d is the d-th graded piece of C[x]Γχ. The Hilbert series is also known as the
(relative) Molien series for Γ due to a theorem of Molien which states that

ΦΓ,χ(z) =
1
|Γ| ∑

γ∈Γ

χ(γ)

det(In − zγ)
. (4.1)

Linear systems and Molien series. Order the vertices v1, . . . , vn of G, and fix q = vn. To
see the relevance of invariant theory to our problem, start with the sequence of projec-
tions

Zn = Div(G) Pic(G) Jac(G)

D [D] [D− deg(D)q] .

Apply the functor Hom( · , C×) to get a sequence of dual groups

Jac(G)∗ ↪→ Pic(G)∗ ↪→ (C×)n ⊂ GL(Cn),

identifying (C×)n with diagonal matrices having nonzero diagonal entries. Define ρ to
be the composition of these mappings:

ρ : Jac(G)∗ −−−→ GL(Cn)

χ 7→ diag(χ([v1 − q]), χ([v2 − q]), . . . , χ([vn−1 − q]), 1).

Theorem 4.1. Consider [D] ∈ Jac(G) as a character of Γ := im(ρ) ⊂ GL(Cn) via [D](ρ(χ)) :=
χ([D]) for each χ ∈ Jac(G)∗. Then

(1) {
xE := ∏n

i=1 xE(vi)
i : E ∈ E[D]

}
is a C-basis for the relative invariants C[x]Γ[D],

(2) C[x] =
⊕

[D′]∈Jac(G) C[x]Γ[D′], and
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(3) the correspondence E 7→ xE for effective divisors E gives a bijection between systems of
primary and [D]-secondary divisors and systems of monomial primary and [D]-relative in-
variants.

Computing Λ[D] thus becomes an application of Molien’s theorem.

Corollary 4.2. Let [D] ∈ Jac(G). The generating function for the λ-sequence for E[D] is given
by the Molien series

Λ[D](z) = ΦΓ,[D](z) =
1

| Jac(G)| ∑
χ∈Jac(G)∗

χ([D])

det(In − zρ(χ))
.

5 Cycle Graphs and Necklaces

We now turn to the special case of cycle graphs. Let Cn be the cycle graph with vertices
v1, . . . , vn, in order around the cycle, with q := vn. It is well-known that Jac(Cn) ' Z/nZ,
with generator [v1 − q] and such that [Dj] := j[v1 − q] = [vj − q] for j = 1, . . . , n. It
follows that ordq(vi) = n/ gcd(i, n) for all i. To apply Theorem 2.1, for convenience
take `vi = n for i = 1, . . . , n − 1 and `n = 1. The primary divisors are then P =
{nv1, nv2, . . . , nvn−1, q} and part (4) of Theorem 2.1 may be applied to the Hermite nor-
mal form for imZ(L̃) to find the secondary divisors for [Dj] ∈ Jac(Cn):

S[Dj]
=
{
(a1, a2, . . . , an−1, 0) : 0 ≤ ai < n for all i and an−1 = (−j + ∑n−2

i=1 iai) mod n
}

.

Consider the case where n = 3 and [D] = [D1] = [(1, 0,−1)]. As elements of Z3 '
Div(C3), the primary divisors are P = {(3, 0, 0), (0, 3, 0), (0, 0, 1)}, and the secondary di-
visors are S[D] = {(1, 0, 0), (0, 2, 0), (2, 1, 0)}. By Corollary 2.2, the λ-sequence generating
function is

Λ[D](z) =
z + z2 + z3

(1− z3)2(1− z)
= z + 2z2 + 3z3 + 5z4 + 7z5 + 9z6 + 12z7 + 15z8 + . . .

See for example the five elements of |D + 4k| corresponding to the term 5z4 in Figure 2.
Using Theorem 3.2, we may then compute the cone for D with respect to q:

KD = {(−2/3,−1/3, 0) + λ1(2, 1, 3) + λ2(1, 2, 3) + λ3(0, 0, 1) : λ1, λ2, λ3 ≥ 0} .

There are three integer points in the fundamental parallelepiped:

Π ∩Z3 = {(0, 0, 1), (0, 1, 2), (1, 1, 3)} .

Therefore, the integer-point transform of KD is

σK(z1, z2, z3) =
z3 + z2z2

3 + z1z2z3
3

(1− z2
1z2z3

3)(1− z1z2
2z3

3)(1− z3)
,
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and we find σK(1, 1, z) = Λ[D](z) in accordance with Theorem 3.2 (3).
Considering that (0, 0, 1) is an extreme ray, KD is determined by its lower face, which

we project onto its first two coordinates to define the cone K̃D ⊂ R2. Recalling that the
fundamental parallelepiped Π of KD is half-open, we see that Π∩Z3 is in bijection with
the integer points of the corresponding fundamental parallelogram Π̃ for K̃D. Figure 1
depicts K̃D and Π̃. Note the three integer points in Π̃ ∩Z2 corresponding to the three
secondary divisors for [D]. The intersection of KD with the plane at height k has integer
points in bijection with the elements of the complete linear system |D + kq|, and its
projection into R2 is the polytope PD+kq defined in Section 3. The case k = 7 is illustrated
in Figure 1.

1

1

2

2

3

3

4

4

5

5

6

6

Π̃

PD+7q

Figure 1: The cone K̃D, its fundamental parallelogram, and the polytope PD+7q for the
divisor D = (1, 0,−1) on C3.

Invariant theory. Let ω be a primitive n-th root of unity. Since Jac(Cn) is the cyclic group
of order n generated by [D1] = [v1− q], the dual group Jac∗(Cn) is also cyclic of order n,
generated by the character ψ determined by ψ([v1 − q]) = ω. As explained in Section 4,
we identify ψ with the diagonal matrix diag(ω, ω2, . . . , ωn−1, 1), and by Corollary 4.2,

Λ[Dj]
(z) =

1
n

n−1

∑
k=0

ω−jk

∏n−1
i=0 (1−ωikz)

for j = 1, . . . , n. In particular,

Λ[0](z) = Λ[Dn](z) =
1
n

n−1

∑
k=0

1
(1− zn/ gcd(n,k))gcd(n,k)

=
1
n ∑

d|n

φ(d)
(1− zd)n/d

where φ is the Euler totient function. The formula on the right is well-known from Polya
counting theory and yields the first part of the following surprising result.
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Theorem 5.1. On a cycle graph with n vertices, λ[0](k) counts the number of binary necklaces
with n black beads and k white beads. More generally, λ[Dj]

(k) is the number of binary necklaces
with n black beads and k white beads and with period divisible by (n + k)/ gcd(n, k, j).

In the case where n and k are coprime, we can say more. Let Nn,k denote the set of
necklaces with n black beads and k white beads. Represent a necklace in Nn,k by a rota-
tional equivalence class [(w1, . . . , wk)] where each nonnegative integer wi represents wi
white beads followed by a single black bead running counterclockwise in a cycle. For
each j and k, define

ϕj,k : |Dj + kq| → Nn,k

E 7→ [(E(v1), . . . , E(vn))].

Theorem 5.2. If gcd(k, n) = 1, then ϕj,k is a bijection.

Figure 2 illustrates all three bijections ϕ1,4, ϕ2,4, and ϕ3,4 for the case n = 3 and k = 4
depending upon which vertex is designated as q.

4

00

2

11

0

22

1

30

1

03

Figure 2: A complete linear system on C3 and the corresponding necklaces.
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