Triangulations of the product of spheres with few vertices

Alexander Wang* and Hailun Zheng ${ }^{\dagger}$
${ }^{1}$ Department of Mathematics, University of Michigan, Ann Arbor, MI, USA

Abstract

A small triangulation of sphere products can be found in lower dimensional cases by computer search and is known in few other cases: Klee and Novik constructed a balanced triangulation of $S^{1} \times S^{d-2}$ with $3 d$ vertices and a centrally symmetric triangulation of $S^{i} \times \mathrm{S}^{d-i-1}$ with $2 d+2$ vertices for all $d \geq 3$ and $1 \leq i \leq d-2$. In this paper, we provide an alternative centrally symmetric ($2 d+2$)-vertex triangulation of $\mathrm{S}^{i} \times \mathrm{S}^{d-i-1}$. We also construct the first balanced triangulation of $\mathrm{S}^{2} \times \mathrm{S}^{d-3}$ with $4 d$ vertices, using a sphere decomposition inspired by handle theory.

Keywords: sphere products, minimal triangulations of manifolds, balanced complexes, centrally symmetric complexes

1 Introduction

Minimal triangulations of manifolds are an important research object in combinatorial and computational topology. What is the minimal number of vertices required to triangulate a given manifold? How do we construct a vertex-minimal triangulation and is this triangulation unique?

In this paper, we focus on the triangulation of sphere products. From a result of Brehm and Kühnel (1987), it is known that a combinatorial triangulation of $\mathrm{S}^{i} \times \mathrm{S}^{d-i-1}$ has at least $2 d-i+2$ vertices. In 1986, Kühnel (1986) constructed a triangulation of $S^{1} \times S^{d-2}$ with $2 d+1$ vertices for odd d. Later, two groups of researchers, Bagchi and Datta (2008) as well as Chestnut et al. (2008), found in 2008 that Kühnel's construction is indeed the unique minimal triangulation for odd d. For even d, they showed that the minimal triangulation requires $2 d+2$ vertices and is not unique.

The minimal triangulations of other sphere products are less well-understood. The best general result is from Klee and Novik (2012), where a centrally symmetric triangulation of $S^{i} \times S^{d-i-1}$ with $2 d+2$ vertices is constructed as a subcomplex of the boundary of the $(d+1)$-cross-polytope. In general, a result of Brehm and Kühnel (1987) states that a triangulation of $\mathbb{S}^{i} \times \mathbb{S}^{j}$ requires at least $i+2 j+4$ vertices for $i \geq j$. In addition,

[^0]the minimal triangulation of $S^{2} \times S^{d-3}$ for $d \leq 6$ as well as the minimal triangulation of $S^{3} \times S^{3}$ are found by the computer program BISTELLAR Lutz (1999), which has shown that this lower bound is not always tight, as a triangulation of $S^{2} \times S^{2}$ requires at least 11 vertices. In this paper, we give an alternative centrally symmetric $(2 d+2)$-vertex triangulation of $\mathrm{S}^{2} \times \mathrm{S}^{d-3}$ for all $d \geq 5$. The construction is based on finding two shellable balls in the d-sphere whose intersection triangulates $S^{1} \times \mathbb{D}^{d-2}$, where \mathbb{D}^{d-2} is the $(d-2)$ dimensional disk. By an inductive argument, we also obtain the triangulation of other sphere products in higher dimensions, see Section 3.2.

In recent years, balanced triangulated manifolds have caught much attention. A ($d-1$)-dimensional simplicial complex is balanced provided that its graph is d-colorable. Many important classes of complexes arise as balanced complexes, such as barycentric subdivisions of regular CW complexes and Coxeter complexes. As taking barycentric subdivisions of a complex would generate a lot of new vertices, one would ask if there is a more efficient way to construct the balanced triangulated manifold from a nonbalanced one.

In much of the same spirit as Kühnel's construction, Klee and Novik (2016) provided a balanced triangulation of $S^{1} \times S^{d-2}$ with $3 d$ vertices for odd d and with $3 d+2$ vertices otherwise. Furthermore, Zheng (2017) showed that the number of vertices for the minimal triangulation is indeed $3 d$ for odd d and $3 d+2$ otherwise. However, as of yet, no small balanced triangulations of $S^{i} \times S^{d-i-1}$ for $2 \leq i \leq d-3$ exist in literature. In this paper, we construct the first balanced triangulation of $S^{2} \times S^{d-3}$ with $4 d$ vertices. The construction uses a sphere decomposition inspired by handle theory.

The extended abstract is structured as follows. In Section 2, we review the basics of simplicial complexes, balanced triangulations, and other relevant definitions. In Section 3 , we present our centrally symmetric $(2 d+2)$-vertex triangulation of $S^{2} \times S^{d-3}$ and construct other sphere products inductively. In Section 4, the balanced triangulation of $S^{2} \times S^{d-3}$ with $4 d$ vertices is constructed, followed by a discussion of its properties.

2 Preliminaries

A simplicial complex Δ with vertex set V is a collection of subsets $\sigma \subseteq V$, called faces, that is closed under inclusion, such that for every $v \in V,\{v\} \in \Delta$. For $\sigma \in \Delta$, let $\operatorname{dim} \sigma:=|\sigma|-1$ and define the dimension of $\Delta, \operatorname{dim} \Delta$, as the maximum dimension of the faces of Δ. A face $\sigma \in \Delta$ is said to be a facet provided that it is a face which is maximal with respect to inclusion. We say that a simplicial complex Δ is pure if all of its facets have the same dimension. If Δ is $(d-1)$-dimensional and $-1 \leq i \leq d-1$, then the f-number $f_{i}=f_{i}(\Delta)$ denotes the number of i-dimensional faces of Δ. The star and link of a face σ in Δ is defined as follows:

$$
\operatorname{st}(\sigma, \Delta):=\{\tau \in \Delta: \sigma \cup \tau \in \Delta\}, \quad \operatorname{lk}(\sigma, \Delta):=\left\{\tau \in \operatorname{st}_{\Delta} \sigma: \tau \cap \sigma=\varnothing\right\}
$$

When the context is clear, we may simply denote the star and link of σ as $\operatorname{st}(\sigma)$ and $\operatorname{lk}(\sigma)$ respectively. We also define the restriction of Δ to a vertex set W as $\Delta[W]:=\{\sigma \in \Delta$: $\sigma \subseteq W\}$. A subcomplex $\Omega \subset \Delta$ is said to be induced provided that for all faces $F \in \Delta$, if every vertex $v \in F$ is a vertex of Ω, then F is a face in Ω. The i-skeleton of a simplicial complex Δ is the subcomplex containing all faces of Δ which have dimension at most i. In particular, the 1-skeleton of Δ is the graph of Δ.

Denote by σ^{d} the d-simplex. A combinatorial ($d-1$)-sphere (respectively, a combinatorial $(d-1)$-ball) is a simplicial complex PL homeomorphic to $\partial \sigma^{d}$ (respectively, σ^{d-1}). A closed combinatorial ($d-1$)-manifold is a connected simplicial complex with the property that the link of each vertex is a combinatorial $(d-2)$-sphere. A simplicial complex Δ is a simplicial manifold, if the geometric realization of Δ is homeomorphic to a manifold. The boundary complex of a simplicial d-ball is a simplicial $(d-1)$-sphere. In general, a simplicial manifold need not be combinatorial.

A $(d-1)$-dimensional simplicial complex Δ is called balanced if the graph of Δ is d colorable; that is, there exists a coloring map $\kappa: V \rightarrow\{1,2, \cdots, d\}$ such that $\kappa(x) \neq \kappa(y)$ for all edges $\{x, y\} \in \Delta$. A simplicial complex is centrally symmetric or $c s$ if it is endowed with a free involution $\alpha: V(\Delta) \rightarrow V(\Delta)$ that induces a free involution on the set of all non-empty faces.

Let ∂C_{d}^{*} be the boundary complex of the d-cross-polytope. It is cs, and furthermore, it is a balanced vertex-minimal triangulation of the $(d-1)$-sphere. Label the vertex set of ∂C_{d}^{*} as $\left\{x_{1}, \ldots, x_{d}, y_{1}, \ldots, y_{d}\right\}$ such that x_{i}, y_{i} form a pair of antipodal vertices for all i. Every facet of ∂C_{d}^{*} can be written in the form $u_{1} u_{2} \ldots u_{d}$, where each $u_{i} \in\left\{x_{i}, y_{i}\right\}$. We say a facet has a switch at position i if u_{i} and u_{i+1} have different labels. Let $B(i, d)$ be the pure subcomplex of ∂C_{d}^{*} that contains all facets with at most i switches. For example, $B(0, d)$ consists of the two disjoint facets $\left\{x_{1}, \ldots, x_{d}\right\}$ and $\left\{y_{1}, \ldots, y_{d}\right\}$. If Γ is a subcomplex of ∂C_{d}^{*}, we let the complement of Γ in ∂C_{d}^{*} be the complex generated by those facets that are not in Γ. Denote by \mathcal{D}_{d} the dihedral group of order $2 d$.

The following lemma is essentially Theorem 1.2 in Klee and Novik (2012).
Lemma 2.1. For $0 \leq i<d-1$, the complex $B(i, d)$ satisfies the following properties:

1. $B(i, d)$ contains the entire i-skeleton of ∂C_{d}^{*} as a subcomplex.
2. The boundary of $B(i, d)$ is homeomorphic to $\mathbb{S}^{i} \times \mathbb{S}^{d-i-2}$.
3. $B(i, d)$ is a balanced centrally symmetric combinatorial manifold whose integral (co)homology groups coincide with those of S^{i}. Also, $B(0, d) \cong \mathbb{D}^{d-1} \times \mathbb{S}^{0}$ and $B(1, d) \cong \mathbb{D}^{d-2} \times S^{1}$.
4. The complement of $B(i, d)$ in ∂C_{d}^{*} is simplicially isomorphic to $B(d-i-2, d)$.
5. $B(i, d)$ admits a vertex-transitive action of $\mathbb{Z}_{2} \times \mathcal{D}_{d}$ if i is even and of $\mathcal{D}_{2 d}$ if i is odd.

Finally, we define shellability.
Definition 2.2. Let Δ be a pure d-dimensional simplicial complex. A shelling of Δ is a linear ordering of the facets $F_{1}, F_{2}, \ldots, F_{s}$ such that $F_{k} \cap\left(\cup_{i=1}^{k-1} F_{i}\right)$ is a pure $(d-1)$ dimensional complex for all $2 \leq k \leq s$, and Δ is called shellable if it has a shelling.

3 The cs triangulations of the sphere products

It is known that for $i \leq j$, the minimal triangulation of $\mathbb{S}^{i} \times \mathbb{S}^{j}$ requires at least $i+2 j+4$ vertices, see Brehm and Kühnel (1987). Such triangulations are constructed by Lutz (1999) in lower dimensional cases but not known in general. We aim at finding an alternative triangulation of $S^{2} \times S^{d-3}$ with $2 d+2$ vertices for $d \geq 5$. The following theorem is Theorem 7 in Kreck (2001).

Theorem 3.1. Let M be a simply connected codimension-1 submanifold of S^{d}, where $d \geq 5$. If M has the homology of $\mathbb{S}^{i} \times \mathbb{S}^{d-i-1}$ and $1<i \leq \frac{d-1}{2}$, then M is homeomorphic to $\mathbb{S}^{i} \times \mathbb{S}^{d-i-1}$.

Proposition 3.2. Fix d and $i \leq \frac{d-1}{2}$. Let D_{1} and D_{2} be two combinatorial d-balls such that

1. $\partial\left(D_{1} \cup D_{2}\right)$ is $(d-1)$-dimensional submanifold of a combinatorial d-sphere.
2. $D_{1} \cap D_{2}=\partial D_{1} \cap \partial D_{2}$ is a path-connected combinatorial $(d-1)$-manifold (with boundary) that has the same homology as S^{i-1}.
3. $\partial\left(D_{1} \cap D_{2}\right)$ has the same homology as $\mathrm{S}^{i-1} \times \mathrm{S}^{d-i-1}$.

Then $\partial\left(D_{1} \cup D_{2}\right)$ triangulates $S^{i} \times S^{d-i-1}$ for $d \geq 5$.
Proof: First note that $D_{1} \cup D_{2}$ is the union of two combinatorial d-balls that intersect along the combinatorial $(d-1)$-manifold $D_{1} \cap D_{2}$. Hence $D_{1} \cup D_{2}$ is a combinatorial d-manifold, and $\partial\left(D_{1} \cup D_{2}\right)$ is a combinatorial $(d-1)$-manifold.

Since $D_{1} \cap D_{2}=\partial D_{1} \cap \partial D_{2}$, we have that the intersection of $\overline{\partial D_{1} \backslash \partial D_{2}}$ and $D_{1} \cap D_{2}$ is exactly $\partial\left(D_{1} \cap D_{2}\right)$. We apply the Mayer-Vietoris sequence on $\left(\overline{\partial D_{1} \backslash \partial D_{2}}, D_{1} \cap D_{2}, \partial D_{1}\right)$, and by condition (2) we obtain that $\overline{\partial D_{1} \backslash \partial D_{2}}$ has the same homology as S^{d-i-1}.

Note that the intersection of

$$
\left(\overline{\partial D_{1} \backslash \partial D_{2}}\right) \cap\left(\overline{\partial D_{2} \backslash \partial D_{1}}\right)=\partial\left(\partial D_{1} \cap \partial D_{2}\right)=\partial\left(D_{1} \cap D_{2}\right) .
$$

We then apply the Mayer-Vietoris sequence to $\left(\overline{\partial D_{1} \backslash \partial D_{2}}, \overline{\partial D_{2} \backslash \partial D_{1}}, \partial\left(D_{1} \cup D_{2}\right)\right)$. By condition (3), we find that $\partial\left(D_{1} \cup D_{2}\right)$ has the same homology as $\mathbb{S}^{i} \times \mathbb{S}^{d-i-1}$.

Finally, the complex $D_{1} \cup D_{2}$ is simply connected, since the union of two simply connected open subsets $\operatorname{int} D_{1}, \operatorname{int} D_{2}$ with path-connected intersection $D_{1} \cap D_{2}$ is simply connected. We conclude from condition (1) and Theorem 3.1 that $\partial\left(D_{1} \cup D_{2}\right)$ triangulates $\mathrm{S}^{i} \times \mathrm{S}^{d-i-1}$.

The above proposition provides us with a general method of constructing a triangulation of $\mathbb{S}^{i} \times \mathbb{S}^{d-i-1}$.

3.1 A triangulation of $\mathrm{S}^{2} \times \mathrm{S}^{d-3}$

Let τ be a face of ∂C_{d}^{*} and let $\kappa(\tau)$ count the number of y labels in τ. Define Γ_{j} to be the union of facets τ in ∂C_{d}^{*} that have at most 2 switches and with $\kappa(\tau)=j$. Hence for $1 \leq j \leq d-1$, the complex Γ_{j} consists of d facets $\tau_{j}^{k}=\left\{x_{1}, \ldots, x_{d}\right\} \backslash\left\{x_{k}, \ldots x_{k+j-1}\right\} \cup$ $\left\{y_{k}, \ldots, y_{k+j-1}\right\}$ for $1 \leq k \leq d$.

Lemma 3.3. The complex $\cup_{k=0}^{i} \Gamma_{k}$ is a shellable $(d-1)$-ball for all $0 \leq i \leq\left\lceil\frac{d+1}{2}\right\rceil$.
Proof: The $(d-1)$-ball $\cup_{k=0}^{i} \Gamma_{k}$ has a shelling order $\left\{x_{1} \ldots x_{d}\right\}, \tau_{1}^{1}, \ldots, \tau_{1}^{d}, \ldots \tau_{i}^{1}, \ldots, \tau_{i}^{d}$.

We propose the candidates $D_{1}, D_{2} \subseteq \partial C_{d+1}^{*}$ that satisfy the conditions in Proposition 3.2.

Construction 3.4. For $d \geq 3$, define two simplicial d-balls D_{1}, D_{2} as a subcomplex of the octahedral d-sphere on vertex set $\left\{x_{1}, y_{1}, \ldots, x_{d+1}, y_{d+1}\right\}$ as follows:

1. For d is odd, let $m=\frac{d-1}{2}$. Define $D_{1}=\left(\cup_{k=0}^{m+1} \Gamma_{k}\right) *\left\{x_{d+1}\right\}$ and $D_{2}=\left(\cup_{k=m}^{d} \Gamma_{k}\right) *$ $\left\{y_{d+1}\right\}$. In particular, $D_{1} \cap D_{2}=\Gamma_{m} \cup \Gamma_{m+1}$ is cs.
2. For d is even, let $m=\frac{d}{2}$ and $\gamma:=\cup_{i=1}^{m} \tau_{m-1}^{i}$ be a subcomplex of Γ_{m-1}. By the definition, τ_{j}^{k} and τ_{d-j}^{k+j} are antipodal facets for any k, j. So $-\gamma=\cup_{i=m}^{d-1} \tau_{m+1}^{i} \subseteq \Gamma_{m+1}$. In this case we let

$$
D_{1}=\left(\left(\cup_{k=0}^{m} \Gamma_{k}\right) \cup(-\gamma)\right) *\left\{x_{d+1}\right\}, \quad D_{2}=\left(\left(\cup_{k=m}^{d} \Gamma_{k}\right) \cup \gamma\right) *\left\{y_{d+1}\right\}
$$

In particular, $D_{1} \cap D_{2}=\Gamma_{m} \cup \gamma \cup(-\gamma)$ is centrally symmetric.
Next we show that $\partial\left(D_{1} \cap D_{2}\right) \cong S^{1} \times S^{d-3}$. Given two facets $F_{1}, F_{2} \in \partial C_{d}^{*}$, let $d\left(F_{1}, F_{2}\right)$ be the distance from F_{1} to F_{2} in the facet-ridge graph of ∂C_{d}^{*}.

Lemma 3.5. Let Δ be a combinatorial ($d-1$)-manifold in ∂C_{d}^{*} whose facet-ridge graph is a $2 d$-cycle. Enumerate its facets as $\sigma_{1}, \sigma_{2}, \ldots \sigma_{2 d}$ such that σ_{i}, σ_{i+1} are adjacent for $1 \leq i \leq 2 d$. If $\sigma_{i}=-\sigma_{d+i}$ for all i, then Δ triangulates $S^{1} \times \mathbb{D}^{d-2}$.

Proof: Let $\sigma_{1}=\left\{u_{1}, \ldots, u_{d}\right\}$. By the assumption, $\sigma_{d+1}=\left\{-u_{1}, \ldots,-u_{d}\right\}$. Since $d\left(\sigma_{1}, \sigma_{d+1}\right)=d$ in ∂C_{d}^{*}, the sequence $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{d+1}$ gives the shortest path from σ_{1} to σ_{d+1}. So it follows that there is an ordering of the vertices, say $\left(u_{1}, \ldots, u_{d}\right)$, such that $\sigma_{i+1}=\sigma_{i} \backslash\left\{u_{i}\right\} \cup\left\{-u_{i}\right\}$. Together with $\sigma_{i}=-\sigma_{i+d}$ for all i, we see that $\Delta \cong B(1, d)$ as defined in Klee and Novik (2012). Hence as $B(1, d), \Delta$ also triangulates $S^{1} \times \mathbb{D}^{d-2}$.

Lemma 3.6. The complex $D_{1} \cap D_{2}$ constructed above triangulates $\mathrm{S}^{1} \times \mathbb{D}^{d-2}$.
Proof: For odd d and $m=\frac{d-1}{2}$, we enumerate the facets of $D_{1} \cap D_{2}=\Gamma_{m} \cup \Gamma_{m+1}$ as $\left(\sigma_{1} \ldots, \sigma_{2 d}\right):=$

$$
\left(\tau_{m}^{1}, \tau_{m+1}^{1}, \tau_{m}^{2}, \tau_{m+1}^{2}, \ldots, \tau_{m}^{d}, \tau_{m+1}^{d}\right)
$$

Each σ_{i} has exactly two adjacent facets $\sigma_{i-1}, \sigma_{i+1}$, and so the facet-ridge graph of $D_{1} \cup D_{2}$ is a $2 d$-cycle. Furthermore, $\tau_{m}^{j}=-\tau_{m+1}^{j+m}$ by the definition. So the claim follows from Lemma 3.5. The proof is similar for d is even.

Theorem 3.7. The complex $\partial\left(D_{1} \cup D_{2}\right)$ triangulates $S^{2} \times S^{d-3}$ for $d \geq 5$.
Proof: This follows from Lemmas 3.3, 3.6 and Proposition 3.2.
Property 3.8. For the complex $\partial\left(D_{1} \cup D_{2}\right)$ in Construction 3.4:

1. It has $2 d+2$ vertices.
2. It contains the 2 -skeleton of ∂C_{d+1}^{*}.
3. It admits vertex-transitive actions by the group $\mathbb{Z}_{2} \times \mathcal{D}_{d}$ if d is odd, and by \mathbb{Z}_{2} if d is even.

Remark 3.9. For d is odd, three types of vertex-transitive action on $\partial\left(D_{1} \cup D_{2}\right)$ are given by

- D maps x_{j} to y_{j}, and y_{j} to x_{j}, for $1 \leq j \leq d+1$.
- R fixes x_{d+1}, y_{d+1}, and maps x_{j}, y_{j} to x_{d-j+1}, y_{d-j+1} respectively, for $1 \leq j \leq d$.
- S fixes x_{d+1}, y_{d+1}, and maps x_{j}, y_{j} to x_{j+1}, y_{j+1} (modulo d) respectively.

Comparing with the group actions on $B(2, d+1)$ in Klee and Novik (2012), we see that $\partial\left(D_{1} \cup D_{2}\right)$ and $\partial B(2, d+1)$ are combinatorially distinct.

Remark 3.10. There are many other ways to construct $D_{1}^{\prime}, D_{2}^{\prime}$ as the subcomplex of ∂C_{d+1}^{*} that satisfies the conditions in Proposition 3.2. For example, when $d=2 m+1$, let $\tau=\left\{x_{1}, \ldots x_{d}\right\},-\tau=\left\{y_{1}, \ldots, y_{d}\right\}$. It is possible to construct a simplicial $(d-1)$-ball B in ∂C_{d}^{*} and simplicial d-balls

$$
D_{1}^{\prime}=\left(B \cup \Gamma_{m} \cup \Gamma_{m+1}\right) *\left\{x_{d+1}\right\}, D_{2}^{\prime}=\left((-B) \cup \Gamma_{m} \cup \Gamma_{m+1}\right) *\left\{y_{d+1}\right\}
$$

such that

$$
B \cup(-B)=\partial C_{d}^{*}, \quad B \supseteq\{\sigma:|\sigma \cap \tau| \geq m\}, \quad-B=\{\sigma:|\sigma \cap(-\tau)| \geq m\} .
$$

Furthermore, $D_{1}^{\prime} \cap D_{2}^{\prime}=\Gamma_{m} \cup \Gamma_{m+1}$. When $d=2 m, D_{1}^{\prime}$, D_{2}^{\prime} can also be defined in the same spirit as Construction 3.4.

3.2 The triangulation of other sphere products

The goal of this section is to construct a triangulation of $\mathbb{S}^{i} \times S^{d-i-1}$ as a subcomplex of ∂C_{d+2}^{*} from a given triangulation of $\mathbb{S}^{i-1} \times \mathbb{S}^{d-i-1}$ in ∂C_{d+1}^{*}, for $i \leq \frac{d-1}{2}$.

Proposition 3.11. Let D_{1} and D_{2} be cones over two combinatorial $(d-1)$-balls in ∂C_{d}^{*} whose coning points are x_{d+1}, y_{d+1} respectively. Furthermore,

1. The union of $D_{1} \backslash\left\{x_{d+1}\right\}$ and $D_{2} \backslash\left\{y_{d+1}\right\}$ covers ∂C_{d}^{*}.
2. $D_{1} \cap D_{2}$ is a path-connected combinatorial $(d-1)$-manifold that has the same homology as S^{i-1} for some $2 \leq i \leq d-2$.
3. $\partial\left(D_{1} \cap D_{2}\right)$ has the same homology as $\mathbb{S}^{i-1} \times \mathbb{S}^{d-i-1}$.

Let

$$
E_{1}=\left(\operatorname{st}\left(y_{d+1}, \partial C_{d+1}^{*}\right) \cup D_{1}\right) *\left\{x_{d+2}\right\}, \quad E_{2}=\left(\operatorname{st}\left(x_{d+1}, \partial C_{d+1}^{*}\right) \cup D_{2}\right) *\left\{y_{d+2}\right\} .
$$

Then the union of $E_{1} \backslash\left\{x_{d+2}\right\}$ and $E_{2} \backslash\left\{y_{d+2}\right\}$ covers $\partial C_{d+1}^{*}, E_{1} \cap E_{2}$ is a combinatorial dmanifold that has the same homology as \mathbb{S}^{i} and $\partial\left(E_{1} \cup E_{2}\right)$ triangulates $\mathbb{S}^{i+1} \times \mathbb{S}^{d-i-1}$.

Proof: By condition (1), $E_{1} \cap E_{2}=D_{1} \cup D_{2}$. Then we use the Mayer-Vietoris sequence on the triple $\left(D_{1}, D_{2}, D_{1} \cup D_{2}\right)$ and conclude from Theorem 3.1. The proof is similar to that of Proposition 3.2.

Construction 3.12. We take our base construction $\partial\left(D_{1}^{\prime} \cup D_{2}^{\prime}\right)$ as given in Remark 3.10 (Note that the complexes D_{1}, D_{2} in Construction 3.4 does not satisfy the condition that the union of $D_{1} \backslash\left\{x_{d+1}\right\}$ and $D_{2} \backslash\left\{y_{d+1}\right\}$ covers ∂C_{d}^{*}.) and apply the above proposition inductively. This gives us a family of cs triangulations of sphere products $\mathrm{S}^{2} \times \mathrm{S}^{d-3}, \mathrm{~S}^{3} \times \mathrm{S}^{d-3}$, $\ldots, S^{d-3} \times \mathrm{S}^{d-3}$. Each triangulation of $\mathrm{S}^{i} \times \mathrm{S}^{d-3}$ has $2 d+2 i-2$ vertices.

4 A balanced triangulation of $\mathrm{S}^{2} \times \mathrm{S}^{d-3}$

In this section, we present our main construction for a balanced triangulation of $\mathrm{S}^{2} \times \mathrm{S}^{d-3}$. The geometric intuition of our construction comes from handle theory. The sphere S^{d} admits the following decomposition, see Rourke and Sanderson (1982):

$$
\mathrm{S}^{d-1}=\left(\mathrm{S}^{1} \times \mathbb{D}^{d-2}\right) \cup\left(\mathbb{D}^{2} \times \mathrm{S}^{d-3}\right)
$$

Let S be a triangulated $(d-1)$-sphere that has the decomposition $S=B_{1} \cup_{\partial B_{1}=\partial B_{2}} B_{2}$, where $B_{1} \cong \mathrm{~S}^{1} \times \mathbb{D}^{d-2}, B_{2} \cong \mathbb{D}^{2} \times \mathrm{S}^{d-3}$, and $\partial B_{1} \cong \partial B_{2} \cong \mathrm{~S}^{1} \times \mathrm{S}^{d-3}$. Note that $\mathrm{S}^{2} \times \mathrm{S}^{d-3}$ admits the decomposition into $\left(\mathbb{D}^{2} \times \mathbb{S}^{d-3}\right) \cup\left(\mathbb{D}^{2} \times \mathbb{S}^{d-3}\right) \cong B_{2} \cup B_{2}$. Then, from S we can form a triangulation of $\mathrm{S}^{2} \times \mathrm{S}^{d-2}$ in the following way: take two copies of B_{2} and denote them as B_{2} and B_{2}^{\prime}. If ∂B_{2} is an induced subcomplex in B_{2}, then we glue B_{2} and B_{2}^{\prime} along their boundaries. The resulting complex is homeomorphic to $S^{2} \times S^{d-3}$. However, if ∂B_{2} is not an induced subcomplex of B_{2}, then usually we cannot glue B_{2} and B_{2}^{\prime} by identifying their boundaries directly and still obtain a triangulated manifold. An alternative method is to find a complex $N \cong \partial B_{2} \times \mathbb{D}^{1}$ with $\partial N=\partial B_{2} \cup \partial B_{2}^{\prime}$ so that N serves as a tubular neighborhood of both ∂B_{2} and ∂B_{2}^{\prime}. Finally the complex $B_{2} \cup N \cup B_{2}^{\prime}$ is a triangulation of $S^{2} \times S^{d-3}$.

Our approach of constructing a balanced triangulation of $S^{2} \times S^{d-3}$ is by finding suitable balanced candidates of B_{2} and N as described above.

Definition 4.1. Consider $\left(\Gamma_{1}, \sigma_{1}\right)$ and $\left(\Gamma_{2}, \sigma_{2}\right)$, where Γ_{i} is the boundary complex of the d-cross-polytope, and σ_{i} is a fixed facet of Γ_{i}. Let κ be the coloring map on $\Gamma_{1} \cup \Gamma_{2}$. If e_{i} is an edge in Γ_{i} but not in $\pm \sigma_{i}$ and $\kappa\left(e_{1}\right)=\kappa\left(e_{2}\right)$, then the \diamond-connected sum $\left(\Gamma_{1} \# \Gamma_{2}, \sigma_{1} \# \sigma_{2}\right)$ is obtained by deleting e_{i} from Γ_{i}, and gluing $\Gamma_{1}-e_{1}$ with $\Gamma_{2}-e_{2}$ by identifying $\operatorname{st}\left(e_{1}\right)\left[V\left(\sigma_{1}\right)\right]$ with $\operatorname{st}\left(e_{2}\right)\left[V\left(\sigma_{2}\right)\right]$, and $\operatorname{st}\left(e_{1}\right)\left[V\left(-\sigma_{1}\right)\right]$ with $\operatorname{st}\left(e_{2}\right)\left[V\left(-\sigma_{2}\right)\right]$.

The following properties of the \diamond-connected sum justify the notation $\left(\Gamma_{1} \# \Gamma_{2}, \sigma_{1} \# \sigma_{2}\right)$ in the definition.

Property 4.2. Let Γ_{1} and Γ_{2} be two d-crosspolytopes. Furthermore, Γ_{1} has antipodal facets $\sigma_{1}=$ $\left\{x_{1}, \ldots, x_{d}\right\},-\sigma_{1}=\left\{y_{1}, \ldots, y_{d}\right\}$, and Γ_{2} has antipodal facets $\sigma_{2}=\left\{x_{d+1}, \ldots, x_{2 d}\right\},-\sigma_{2}=$ $\left\{y_{d+1}, \ldots, y_{2 d}\right\}$. Then $\left(\Gamma_{1} \# \Gamma_{2}, \sigma_{1} \# \sigma_{2}\right)$ satisfies the following properties:

1. The complex is a balanced triangulation of S^{d-1}.
2. The restriction of $\left(\Gamma_{1} \# \Gamma_{2}, \sigma_{1} \# \sigma_{2}\right)$ to $V\left(\sigma_{1}\right) \cup V\left(\sigma_{2}\right)$ is the usual connected sum of simplices $\sigma_{1} \# \sigma_{2}$.
3. The link of every edge $e=\left\{x_{i}, y_{j}\right\}$ in $\left(\Gamma_{1} \# \Gamma_{2}, \sigma_{1} \# \sigma_{2}\right)$ is the boundary complex of a $(d-2)$ crosspolytope.

Figure 1: The \diamond-connected sum $\left(\Gamma_{1} \# \Gamma_{2}, \sigma_{1} \# \sigma_{2}\right)$: delete the edge $\left\{y_{3} x_{1}^{\prime}\right\}$ in both Γ_{1} and Γ_{2}, then glue Γ_{1} and Γ_{2} along the 4-cycle ($y_{3}, x_{2}^{\prime}, x_{1}^{\prime}, y_{2}$).

The above properties ensure that it is possible to take the \diamond-connected sum inductively. Also recall that if Γ is a pure simplicial complex, then as long as there exist two facets F and F^{\prime} on Γ and a map $\phi: F \rightarrow F^{\prime}$ so that v and $\phi(v)$ do not have a common neighbor for every $v \in F$, then we can remove F, F^{\prime} and identify ∂F with ∂F^{\prime} to get Γ^{ϕ}. This is called a handle addition. Similarly, assume that there are two edges e_{1} and e_{2} of the same color in $\left(\Gamma_{1} \# \ldots \# \Gamma_{k}, \sigma_{1} \# \ldots \# \sigma_{k}\right)$ but not in $A:=\sigma_{1} \# \sigma_{2} \ldots \# \sigma_{k}$ or $-A$. Note that st $\left(e_{i}\right)$ is a cross-polytope with antipodal facets $\operatorname{st}\left(e_{i}\right)[V(A)]$ and $\operatorname{st}\left(e_{i}\right)[V(-A)]$ for $i=1$, 2. If the identification maps

$$
\phi: \operatorname{st}\left(e_{1}\right)[V(A)] \rightarrow \operatorname{st}\left(e_{2}\right)[V(A)] \quad \text { and } \quad \phi^{\prime}: \operatorname{st}\left(e_{1}\right)[V(-A)] \rightarrow \operatorname{st}\left(e_{2}\right)[V(-A)]
$$

are well-defined, then the maps ϕ and ϕ^{\prime} naturally extend to a map

$$
\bar{\phi}: \operatorname{st}\left(e_{1}\right) \rightarrow \operatorname{st}\left(e_{2}\right)
$$

if for every $v \in \operatorname{st}\left(e_{1}\right), v$ and $\phi(v)$ (or $\left.\phi^{\prime}(v)\right)$ do not have a common neighbor. In this way we obtain a balanced simplicial complex $\left(\left(\Gamma_{1} \# \Gamma_{2} \ldots \# \Gamma_{k}\right)^{\bar{\phi}},\left(\sigma_{1} \# \sigma_{2} \ldots \# \sigma_{k}\right)^{\phi}\right)$ by removing e_{1}, e_{2} and identifying $\operatorname{lk}\left(e_{1}\right)$ with $\bar{\phi}\left(\operatorname{lk}\left(e_{1}\right)\right)=\operatorname{lk}\left(e_{2}\right)$. We call this the \diamond-handle addition.

We are now ready to construct a balanced triangulation of $S^{2} \times S^{d-3}$ with $4 d$ vertices. We will write $\Gamma_{1} \# \Gamma_{2}$ to denote the \diamond-connected sum if σ_{1} and σ_{2} are clear from the context. Also, to simplify notation, we will sometimes write $x_{1} \ldots x_{m}$ to denote the face $\left\{x_{1}, \ldots, x_{m}\right\}$.

Construction 4.3. Let $d \geq 3$. Take two d-crosspolytopes P and P^{\prime}. The vertex sets of P and P^{\prime} are $\left\{x_{1}, \ldots, x_{d}, y_{1}, \ldots, y_{d}\right\}$ and $\left\{x_{1}^{\prime}, \ldots, x_{d}^{\prime}, y_{1}^{\prime}, \ldots, y_{d}^{\prime}\right\}$ respectively. We let
$\sigma_{i}=x_{1} \ldots x_{i} y_{i+1} \ldots y_{d}$ for $1 \leq i \leq d$ and let $\sigma_{i}=y_{1} \ldots y_{i} x_{i+1} \ldots x_{d}$ for $d+1 \leq i \leq 2 d$. Then the complex $\Delta_{1}:=\cup_{i=1}^{2 d} \sigma_{i}$ is exactly $B(1, d)$. We further partition the boundary of P as $\partial P=\Delta_{1} \cup_{\partial \Delta_{1}} \Delta_{2}$. By Lemma 1.1, $\Delta_{2} \cong B(d-3, d)$ and $\Delta_{1} \cap \Delta_{2}$ is homeomorphic to $S^{1} \times S^{d-3}$.

Next, define a simplicial map $f: \partial P \rightarrow \partial P^{\prime}$ induced by the following bijection on the vertex sets:

$$
x_{i} \mapsto x_{i+1}^{\prime}, y_{i} \mapsto y_{i+1}^{\prime} \text { for } 1 \leq i \leq d-1 ; x_{d} \mapsto y_{1}^{\prime}, y_{d} \mapsto x_{1}^{\prime}
$$

By Lemma 2.1, the complex Δ_{1} admits a vertex-transitive action by the dihedral group $\mathcal{D}_{2 d}$ of order $4 d$, where a generator is given by the map we have chosen (Theorem 1.2 of Klee and Novik (2012)). Hence f is a simplicial isomorphism and $f\left(\Delta_{1}\right) \cong B(1, d)$. For each i, there is a unique d-cross-polytope Γ_{i} containing σ_{i} and $f\left(\sigma_{i}\right)$ as antipodal facets. Next, we check that we can take the \diamond-connected sum of Γ_{i} and Γ_{i+1} inductively. Without loss of generality, assume that $1 \leq i \leq d$; otherwise, we can relabel by switching x and y. Note that for $i \leq d-2$,

$$
\sigma_{i} \cap \sigma_{i+1}=x_{1} x_{2} \ldots x_{i} y_{i+2} \ldots y_{d}, \text { and } f\left(\sigma_{i}\right) \cap f\left(\sigma_{i+1}\right)=x_{2}^{\prime} x_{3}^{\prime} \ldots x_{i+1}^{\prime} y_{i+3}^{\prime} \ldots y_{d}^{\prime} y_{1}^{\prime}
$$

The missing indices are $i+1$ and $i+2$ respectively, so we let $e_{i}=x_{i+1}^{\prime} y_{i+2}$. It follows that $\Gamma_{i} \cap \Gamma_{i+1}=\operatorname{st}\left(e_{i}, \Gamma_{i}\right)=\operatorname{st}\left(e_{i}, \Gamma_{i+1}\right)$ and hence the \diamond-connected sum is well defined. Similarly, $\Gamma_{d-1} \cap \Gamma_{d}=\operatorname{st}\left(\left\{x_{d}^{\prime}, x_{1}\right\}, \Gamma_{d}\right)$ and $\Gamma_{d} \cap \Gamma_{d+1}=\operatorname{st}\left(\left\{y_{1}^{\prime}, x_{2}\right\}, \Gamma_{d}\right)$. Inductively, we form a complex $\Gamma=\left(\left(\Gamma_{1} \# \Gamma_{2} \ldots \# \Gamma_{2 d}\right)^{\bar{\phi}}, \Delta_{1}\right)$ which contains Δ_{1} and $f\left(\Delta_{1}\right)$ as subcomplexes.

We partition Γ as $\Gamma=\Delta_{1} \cup f\left(\Delta_{1}\right) \cup N$, so that $N \cap \Delta_{1}=\partial \Delta_{1}$ and $N \cap f\left(\Delta_{1}\right)=\partial f\left(\Delta_{1}\right)$. N is then the tubular neighborhood that we would like to construct. Finally, let $\Sigma=$ $\Delta_{2} \cup_{\partial \Delta_{1}} N \cup_{\partial f\left(\Delta_{1}\right)} f\left(\Delta_{2}\right)$. (This is well defined as by Lemma 2.1, $\partial \Delta_{1} \cong \partial \Delta_{2}$.) As shown in Figure 2, when $d=3, \sigma$ gives the minimal balanced triangulation of $S^{0} \times S^{2}$.

Next to prove Σ indeed triangulates $S^{2} \times S^{d-3}$, we check that Σ satisfies all the conditions as described in Theorem 3.1.

Lemma 4.4. The complex Σ in Construction 4.3 is simply connected codimension-1 submanifold of S^{d} for $d \geq 5$.

Proposition 4.5. The complex Σ in Construction 4.3 is a balanced triangulation of $\mathrm{S}^{2} \times \mathrm{S}^{d-3}$ for $d \geq 3$.

Proof: Applying the Mayer-Vietoris sequence to the triple $\left(\Delta_{2} \cup f\left(\Delta_{2}\right), N, \Sigma\right)$, we find that Σ has the same homology as $S^{2} \times S^{d-3}$, and so the result follows by Lemma 4.4 and Theorem 3.1.

Property 4.6. For $d \geq 5$, the complex Σ in Construction 4.3 satisfies:

Figure 2: The complexes Δ_{1} and $f\left(\Delta_{1}\right)$ when $d=3$, and the resulting Γ constructed using the previously described sequence of connected sums.

1. $f_{0}(\Sigma)=4 d$;
2. $f_{1}(\Sigma)=4 d(2 d-3)$;
3. $f_{d-1}(\Sigma)=(d+2) 2^{d}-8 d$;
4. Aut (Σ) admits a vertex-transitive action of $\mathbb{Z}_{2} \times \mathcal{D}_{2 d}$.

Remark 4.7. Working with Lorenzo Venturello, we created a CROSSFLIP program for balanced complexes to attempt to reduce the number of vertices of a given triangulation. However, the complexity of finding shellable subcomplexes in the d-cross-polytope grows exponentially with d, and so the program is highly inefficient for $d>4$. Klee and Novik (2012) showed that a balanced triangulation of a non-sphere ($d-1$)-manifold requires at least $3 d$ vertices. It is not known that apart from the sphere bundle over the circle, if there are other manifolds that admit balanced triangulations with $3 d$ vertices.

5 Acknowledgements

The authors are partially supported by the Mathematics REU program at the University of Michigan during Summer 2018. We would also like to thank Lorenzo Venturello for his contributions to the computational aspect of this project.

References

B. Bagchi and B. Datta. Minimal triangulations of sphere bundles over the circle. J. Combin. Theory Ser. A, pages 737-752, 2008.
U. Brehm and W. Kühnel. Combinatorial manifolds with few vertices. Topology, pages 465-473, 1987.
J. Chestnut, J. Sapir, and E. Swartz. Enumerative properties of triangulations of spherical bundles over S^{1}. European J. Combin., pages 662-671, 2008.
I. Izmestiev, S. Klee, and I. Novik. Simplicial moves on balanced complexes. Advances in Mathematics, pages 82-114, 2017.
M. Juhnke-Kubitzke and L. Venturello. Balanced shellings and moves on balanced manifolds. 2018. URL arXiv:1804.06270.
S. Klee and I. Novik. Centrally symmetric manifolds with few vertices. Advances in Mathematics, pages 487-500, 2012.
S. Klee and I. Novik. Lower bound theorems and a generalized lower bound conjecture for balanced simplicial complexes. Mathematika, pages 441-477, 2016.
M. Kreck. An inverse to the poincaré conjecture. Fretschrift: Erich Lamprecht, Arch. Math. (Basel), pages 98-106, 2001.
W. Kühnel. Higher-dimensional analogues of czászárs torus. Results Math., pages 95-106, 1986.
W. Kühnel and G. Laßmann. The unique 3-neighbourly 4-manifolds with few vertices. J. Comb. Theory. A, pages 173-184, 1983.
F. Lutz. Triangulated Manifolds with Few Vertices and Vertex-Transitive Group Actions. Shaker Verlag, Aachen. PhD Thesis, TU Berlin, 1999.
I. Novik and E. Swartz. Socles of buchsbaum modules, complexes and posets. Advances in Mathematics, pages 2059-2084, 2009.
C. Rourke and B. Sanderson. Introduction to Piecewise-Linear Topology. Berlin Heidelberg New York: Springer-Verlag, 1982.
H. Zheng. Minimal balanced triangulations of sphere bundles over the circle. SIAM J. Disc. Math., pages 1259-1268, 2017.

[^0]: *alxwang@umich.edu
 \dagger hailunz@umich.edu

