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Abstract. We introduce a Hopf algebra structure on a family of reduced pipe dreams
with a natural surjection onto a commutative Hopf algebra of permutations. We then
study three Hopf subalgebras of permutations whose preimages by the surjection yield
three relevant Hopf subalgebras of pipe dreams. The first is the Loday–Ronco Hopf
algebra on binary trees, the second is related to a special family of lattice walks on the
quarter plane, and the third is a Hopf algebra on ν-trees related to ν-Tamari lattices.
The latter motivates a new notion of Hopf chains in the Tamari lattice with applications
in the theory of multivariate diagonal harmonics.

Résumé. Nous introduisons une structure d’algèbre de Hopf sur une famille d’arran-
gements de tuyaux, avec une surjection naturelle sur une algèbre de Hopf commutative
de permutations. Nous étudions ensuite trois sous-algèbres de Hopf de permutations
dont les préimages par la surjection donnent trois sous-algèbres de Hopf d’arrange-
ments de tuyaux intéressantes. La première est l’algèbre de Hopf de Loday–Ronco sur
les arbres binaires, la seconde est reliée à une famille spéciale de chemins dans le quart
de plan, et la troisième est une algèbre de Hopf sur des ν-arbres reliée aux treillis de
ν-Tamari. Cette dernière motive une nouvelle notion de chaînes de Hopf dans le treillis
de Tamari, avec des applications à la théorie des harmoniques diagonaux multivariés.
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1 Introduction

Pipe dreams are combinatorial objects related to reduced expressions of permutations in
terms of simple transpositions. They were introduced by N. Bergeron and S. Billey in [3]
to compute Schubert polynomials and later revisited in the context of Gröbner geometry
by A. Knutson and E. Miller [11], who coined the name pipe dreams in reference to a
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game involving pipe connections. In brief, a pipe dream is an arrangement of pipes, each
connecting an entry on the vertical axis to an exit on the horizontal axis, and remaining
in a triangular shape of the grid. Pipe dreams are grouped according to their exiting
permutation, given by the order in which the pipes appear along the horizontal axis.

This paper introduces a Hopf algebra structure on pipe dreams. Hopf algebras are
rather rigid structures which often reveal deep combinatorial properties and connections.
This paper contributes to this general philosophy: the Hopf algebra of pipe dreams will
give us insight on a special family of lattice walks on the quarter plane studied in [5], as
well as applications to the still emerging theory of multivariate diagonal harmonics [1].

Our compass for this construction is the Hopf algebra of J.-L. Loday and M. Ronco
on complete binary trees [12]. There is a strong correspondence [17, 13, 15] between
the complete binary trees with n internal nodes and the reduced pipe dreams with
exiting permutation 0n . . . 1. This correspondence allows to interpret the product and the
coproduct of the Loday–Ronco Hopf algebra in terms of pipe dreams. This interpretation
yields to an extension of the Loday–Ronco Hopf algebra on a bigger family Π consisting
of reduced pipe dreams with an elbow in the top left corner. We show that it results in
a free and cofree Hopf algebra structure (kΠ, ·,4), and that mapping a pipe dream to
its exiting permutation defines a surjective morphism from the Hopf algebra (kΠ, ·,4)
of pipe dreams to a commutative Hopf algebra (kS,�•,4•) of permutations.

We then study relevant Hopf subalgebras of kΠ obtained from pipe dreams whose
exiting permutations belong to a given Hopf subalgebra of kS. We obtain this way:

1. the Loday–Ronco Hopf algebra on complete binary trees [12],
2. a Hopf algebra related to a special family of lattice walks on the quarter plane [5],
3. a Hopf algebra on ν-trees connected to the ν-Tamari lattices [14].

Finally, one of our most important contributions is the application of the Hopf al-
gebra of dominant pipe dreams to the theory of multivariate diagonal harmonics. The
space of diagonal harmonics is an Sn-module of polynomials in two sets of variables
that satisfy some harmonic properties. The dimensions of these spaces led to numerous
important conjectures, including the (n + 1)n−1-conjecture by A. Garsia and M. Haiman
proved by M. Haiman using properties of the Hilbert scheme in algebraic geometry [10],
and the shuffle conjecture by J. Haglund et al. [9], recently proved by E. Carlsson and
A. Mellit in [6]. The module of diagonal harmonics has natural generalizations in three
or more sets of variables. Computational experiments by M. Haiman from the early
1990’s suggest explicit simple dimension formulas for the space of diagonal harmonics
and its alternating component in the trivariate case. F. Bergeron noticed that these for-
mulas coincide with formulas counting labeled and unlabeled intervals in the classical
Tamari lattice, and opened the door to a more systematic study of the r-variate case
in terms of certain suitable (r − 1)-chains in the Tamari lattice [2, 1]. In this paper we
present a milestone towards this understanding by introducing a new class of chains in
the Tamari lattice that was motivated by our Hopf algebra construction, see Theorem 20.
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2 The pipe dream Hopf algebra

2.1 A Hopf algebra on permutations

Let Sn be the set of permutations of [n] := {1, 2, . . . , n}, and S :=
⊔

n≥0 Sn. We consider
the graded vector space kS :=

⊕
n≥0 kSn, where kSn is the k-span of Sn.

Global descents and atomic permutations. Consider ω ∈ Sn. Index by {0, . . . , n}
from left to right the gaps before the first position, between two consecutive positions, or
after the last position of ω. A gap γ is a global descent if ω([γ]) = [n]r [n− γ]. In other
words, the first γ positions are sent to the last γ values. For example, the global descents
in the permutation ω = 635421 are 0, 1, 4, 5, 6. Note that the gaps 0 and n are always
global descents. A permutation with no other global descent is called atomic.

For two permutations µ ∈ Sm and ν ∈ Sn we define the permutation µ • ν ∈ Sm+n
by µ • ν(i) := µ(i) + n if 1 ≤ i ≤ m, and µ • ν(i) := ν(i − m) if m + 1 ≤ i ≤ m + n.
Observe that µ • ν has a global descent in position m. Conversely, given a permuta-
tion ω ∈ Sm+n with a global descent in position m, there exist a unique pair of permu-
tations µ ∈ Sm and ν ∈ Sn such that ω = µ • ν. Therefore any permutation ω ∈ S fac-
torizes in a unique way as a product ω = ω1 •ω2 • · · · •ω` of atomic permutations ωi.
For example, we have 635421 = 1 • 132 • 1 • 1. For such a factorization, we denote
by ω• := {ω1, ω2, . . . , ω`} the set of its atomic factors.

Coproduct on permutations. Consider a permutation ω ∈ S, and let ω = ω1 • · · · •ω`

be its unique factorization into atomic permutations. We define the coproduct4•(ω) by
4•(ω) := ∑`

i=0(ω1 • · · · •ωi)⊗ (ωi+1 • · · · •ω`), where an empty • -product is the neutral
element ε for •. This coproduct extends to kS by linearity and is clearly coassociative.

Example 1. For the permutation 635421 ∈ S6, we have 635421 = 1 • 132 • 1 • 1. Therefore,
4•(635421) = ε⊗ 635421 + 1⊗ 35421 + 4132⊗ 21 + 52431⊗ 1 + 635421⊗ ε.

Product on permutations. Consider two permutations π, ω ∈ S. Define π�• ε :=π

and ε�•ω :=ω. Assume now that π = µ • ν and ω = σ • τ where µ and σ are non-trivial
atomic permutations, and define π �• ω := µ • (ν�• ω) + σ • (π �• τ). This product
extends to kS by linearity and is clearly associative. This is the standard shuffle product,
but performed on the atomic factorizations of the factors.

Example 2. For the permutations 2431 = 132 • 1 ∈ S4 and 312 = 1 • 12 ∈ S3, we have
2431�• 312 = 5764312 + 5764312 + 5764231 + 7465312 + 7465231 + 7562431

The product • and the coproduct4• are compatible:4•(π�• ω) = 4•(π)�•4•(ω),
where the right hand side product has to be understood componentwise. This structure
is thus a graded and connected commutative Hopf algebra (kS,�•,4•). See [16].
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2.2 A Hopf algebra on pipe dreams

A pipe dream P is a filling of a triangular shape with crosses and elbows so that
all pipes entering on the left side exit on the top side [3, 11]. We only consider reduced
pipe dreams, where two pipes have at most one intersection. We also restrict to pipe
dreams with an elbow in the top left corner. In particular the pipe entering in the
topmost row always exits in the leftmost column. We label this pipe with 0 and the
other pipes with 1, 2, . . . , n in the order of their entry points from top to bottom. We
also label accordingly the rows and the columns of the pipe dream P from 0 to n. We
denote by ωP ∈ Sn the order of the exit points of the non-zero pipes of P from left
to right. In other words, the pipe entering at row i > 0 exits at column ω−1

P (i) >
0. See Figure 1. For a permutation ω ∈ Sn, we denote by Π(ω) the set of reduced
pipe dreams P with an elbow in the top left corner and such that ωP = ω. We
let Πn :=

⊔
ω∈Sn Π(ω) and Π :=

⊔
n∈N Πn. We consider the graded vector space kΠ =⊕

n≥0 kΠn, where kΠn is the k-span of Πn.

Horizontal and vertical packing. Let P ∈ Πn and k ∈ {0, . . . , n}. We color plain red
the pipes entering in the rows 1, 2, . . . , k and dashed blue the pipes entering in the rows
k+ 1, k+ 2, . . . , n. The horizontal packing Lk(P) is obtained by removing all blue pipes and
contracting the horizontal parts of the red pipes that were contained in a cell (i.e. red
horizontal steps that are crossed vertically by a blue pipe). The vertical packing Lk(P)
is defined symmetrically: it keeps the pipes exiting through the columns 1, 2, . . . , k and
contracts the vertical steps that are crossed horizontally by the pipes exiting through the
columns k + 1, k + 2, . . . , n. The remaining pipes need to be relabeled from 1 to k.
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Figure 1: Horizontal packing at k = 3 (left) and vertical packing at k = 4 (right).

Coproduct on pipe dreams. Consider a reduced pipe dream P ∈ Πn, and a global
descent γ of the permutation ωP. Since γ is a global descent of ωP, the relevant pipes
of P are split into two disjoint tangled sets of pipes: those entering in the first n− γ rows
(plain red) and those exiting in the first γ columns (dashed blue). The horizontal and
vertical packings Ln−γ(P) and Lγ(P) should thus be regarded as a way to untangle these
two disjoint sets of pipes. We denote by 4γ,n−γ(P) the tensor product Lγ(P)⊗ Ln−γ(P)
and we say that 4γ,n−γ untangles P. This operation is illustrated on Figure 2 (left). If γ

is not a global descent of ωP, then the pipes of P are not split by γ, and we therefore
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Figure 2: Untangling a pipe dream (left). Inserting a pipe dream (right).

define 4γ,n−γ(P) = 0. Finally, we define the coproduct on Π as 4 := ∑m,n∈N4m,n. See
Figure 3. Extended by linearity, the map 4 : kΠ → kΠ⊗ kΠ defines a comultiplica-
tion on kΠ.

Proposition 3 ([4, Props. 1.2.2 & 1.2.3]). The coproduct 4 defines a coassociative graded coal-
gebra structure on kΠ. The map ω : (kΠ,4)→ (kS,4•) is a graded morphism of coalgebras.
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Figure 3: Coproduct of a pipe dream.

Product on pipe dreams. Let P ∈ Πm and Q ∈ Πn be two pipe dreams, and let γ be a
global descent of ωP. We denote by P�γ Q the pipe dream of Πm+n obtained from P by
• inserting n columns after column γ and n rows after row m− γ,
• filling with Q the triangle of boxes located both in one of the rows γ, . . . , n + γ and

in one of the columns m− γ, . . . , m + n− γ,
• filling with crosses the remaining boxes located in a new column,
• filling with crosses the remaining boxes located in a new row.

We say that�γ inserts Q at gap γ in P. This operation is illustrated in Figure 2 (right).
Consider now a word s on the alphabet {p, q} with m letters p and n letters q. We call

p-blocks (resp. q-blocks) the blocks of consecutive letters p (resp. q). We say that s is a P/Q-
shuffle if all p-blocks appear at global descents of ωQ while all q-blocks appear at global
descents of ωP. E.g. , for ωP = 53412 = 1 • 12 • 12 and ωQ = 635421 = 1 • 132 • 1 • 1,
then qpqqqppqppq and qpppqqqqqpp are P/Q-shuffles, while qqqppqqqppp is not.

For a P/Q-shuffle s with ` q-blocks, we denote by P ?s Q the pipe dream obtained by
• untangling Q at all gaps of ωQ marked by p-blocks in s, resulting to Q1, . . . , Q`,
• inserting successively the pipe dreams Q1, . . . , Q` in P at the positions of the q-

blocks in s (it does not matter in which order we insert the pipe dreams Q1, . . . , Q`).
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We say that ?s tangles the pipe dreams P and Q according to the P/Q-shuffle s. We
define the product of P ∈ Πm and Q ∈ Πn by P ·Q = ∑s P ?s Q, where s ranges over all
possible P/Q-shuffles. See Figure 4. Note that it always contains P�0 Q and P�m Q
corresponding to the P/Q-shuffles qn pm and pmqn.

Proposition 4 ([4, Props. 1.2.6 & 1.2.7]). The product · defines an associative graded algebra
structure on kΠ. The map ω : (kΠ, ·)→ (kS,�•) is a graded morphism of algebras.
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Figure 4: Product of two pipe dreams.

Hopf structure. We now describe the properties of the product · and coproduct 4.

Proposition 5 ([4, Props. 1.2.8 & 1.2.9]). The product · and coproduct4 endow the family Π of
all pipe dreams with a graded Hopf algebra structure. The map ω : (kΠ, ·,4)→ (kS,�•,4•)
is a morphism of graded Hopf algebras.

A pipe dream P ∈ Πn is �0-decomposable if it can be written as P = Q �0 R for
some Q ∈ Πr and R ∈ Πn−r where 0 < r < n. Otherwise, we say P is�0-indecomposable.
Define Λn := {P ∈ Πn | P is�0-indecomposable} and Λ :=

⋃
n∈N Λn.

Theorem 6 ([4, Thms. 1.2.11 & 1.3.15]). The algebra kΠ is free with generators Λ. The dual
Hopf algebra kΠ∗ is free with generators Λ∗ := {P∗ | P ∈ Λ}.

2.3 Some relevant subalgebras

Recall from Section 2.1 that a permutation ω ∈ S has a unique factorization into atomic
permutations ω = ν1 • ν2 • · · · • ν` and that we denote by ω• := {ν1, ν2, . . . , ν`} the set
of atomic permutations that appear in its factorization. Given a subset S of atomic
permutations, we define Sn〈S〉 := {ω ∈ Sn | ω• ⊆ S} and S〈S〉 :=

⊔
n∈N Sn〈S〉, from

which we derive Πn〈S〉 := {P ∈ Πn | ωP ∈ Sn〈S〉} and Π〈S〉 :=
⊔

n∈N Πn〈S〉.
Theorem 7 ([4, Thm. 2.1.1]). For any set S of atomic permutations,
• the subspace kS〈S〉 defines a Hopf subalgebra of (kS,�•,4•),
• the subspace kΠ〈S〉 defines a Hopf subalgebra of (kΠ, ·,4).

Theorem 8 ([4, Thm. 2.1.2]). The Hopf subalgebra kΠ〈S〉 is free and cofree. The generators
and cogenerators of kΠ〈S〉 are exactly the�0-indecomposable pipe dreams in Π〈S〉.

In the following, we exploit Theorem 7 to construct relevant subalgebras of (kΠ, ·,4).
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Hopf subalgebra kΠ〈1〉 and Loday–Ronco algebra. A pipe dream P ∈ Πn is reversing
if it reverses the order of its relevant pipes. That is, ωP = [n, n− 1, . . . , 1] = 1 • 1 • · · · • 1,
or equivalently P ∈ kΠ〈1〉. As observed in [17, 13, 15] reversing pipe dreams belong to
the Catalan family. In particular, there is a bijection Ψ from pipe dreams in kΠn〈1〉 to
complete binary trees with n internal nodes. Namely, given a reversing pipe dream P,
replace each elbow of P by a node in the tree, and connect each node with the next
node below it (if any) and with the next node to its right (if any). See Section 3.3 for
illustrations.

Proposition 9 ([4, Prop. 2.1.3]). The map Ψ is a Hopf algebra isomorphism between the Hopf
subalgebra kΠ〈1〉 of reversing pipe dreams and the Loday–Ronco Hopf algebra on binary trees [12].

Hopf subalgebra kΠ〈1, 12, 123, . . . 〉 and lattice walks on the quarter plane. We now
consider the subalgebra kΠ〈1, 12, 123, . . . 〉 corresponding to permutations whose atoms
are identity permutations of arbitrary size. Experimental computations show that the
dimensions of the graded components of this Hopf subalgebra are given by the se-
quence 1, 1, 3, 12, 57, 301, 1707, 10191, 63244, 404503, 2650293, . . . which coincides with the
sequence determined by the number of walks in a special family of walks in the quarter
plane considered by M. Bousquet-Mélou and M. Mishna in [5].

Conjecture 10 ([4, Conj. 2.2.1]). The dimension of kΠn〈1, 12, 123, . . . 〉 is equal the number of
walks in the quarter plane (within N2 ⊂ Z2) starting at (0, 0), ending on the horizontal axis,
and consisting of 2n steps taken from {(−1, 1), (1,−1), (0, 1)}.

Refining by the number of atomics gives the following stronger conjecture.

Conjecture 11 ([4, Conj. 2.2.3]). The following two families have the same cardinality:
1. Pipe dreams P such that ωP ∈ Sn is a permutation whose factorization into atomics

consists of k identity permutations.
2. Walks in the quarter plane starting at (0, 0) and ending on the horizontal axis, consisting

of 2n steps taken from {(−1, 1), (1,−1), (0, 1)} from which k of them are (0, 1).

Finally, this conjecture has a natural translation in the world of Dyck paths (see [4,
Sects. 2.2.2 & 2.2.3] for details on this translation). A pair of Dyck paths (π1, π2) is said
to be nested if π1 is weakly below π2. We say that a Dyck path π is
• bounce if it is of the form Ni1 Ei1 Ni2 Ei2 . . . Nik Eik for some positive integers i1, . . . , ik,
• steep if it contains no consecutive east steps EE, except at the end on top of the grid.

Conjecture 12 ([4, Conj. 2.2.8]). For any k ≤ n, there is a bijection between:
1. Nested pairs of Dyck paths (π1, π2) of size n such that π1 is a bounce path with k parts.
2. Nested pairs of Dyck paths (π′1, π′2) of size n such that π′2 is a steep path ending with k

east steps on top of the grid.

Evidences for this conjecture, and a discussion on its connection to the zeta map can
be found in [4, Sect. 2.2.4].
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3 Dominant pipe dreams, ν-Tamari lattices, and multivari-
ate diagonal harmonics

3.1 Dominant permutations and dominant pipe dreams

23 4 1Recall that the Rothe diagram of a permutation ω ∈ Sn is the set
Rω :=

{(
ω(i), j

) ∣∣ i > j and ω(i) < ω(j)
}

. If we represent this dia-
gram in matrix notation (i.e. the box (i, j) appears in row i and col-
umn j), then the Rothe diagram of ω is the set of boxes which are not
weakly below or weakly to the right of a box

(
ω(i), i

)
for all i ∈ [n]. A

permutation ω ∈ Sn is dominant if its Rothe diagram Rω is a partition
containing the top-left corner. Such a permutation is uniquely determined by its Rothe
diagram Rω, or equivalently by the Dyck path πω delimiting the boundary of its Rothe
diagram. Define Sdom

n := {ω ∈ Sn | ω is dominant} and Sdom :=
⊔

n∈N Sdom
n .

Proposition 13 ([4, Coro. 3.1.2]). The subspace kSdom is a Hopf subalgebra of (kS,�•,4•).
The dimension of the homogeneous component kSdom

n is the Catalan number Cn := 1
n+1(

2n
n ).

Finally, we pull back this Hopf subalgebra of dominant permutations of kS to a
Hopf subalgebra of kΠ via the Hopf morphism ω : kΠ → kS. A dominant pipe dream is
a pipe dream P whose permutation ωP is dominant. We denote the set of dominant pipe
dreams by Πdom

n :=
{

P ∈ Πn
∣∣ ωP ∈ Sdom

n
}

and Πdom :=
⊔

n∈N Πdom
n .

Corollary 14 ([4, Coro. 3.1.4]). The subspace kΠdom defines a Hopf subalgebra of (kΠ, ·,4).

3.2 ν-trees

We now consider the following family of combinatorial objects defined by C. Ceballos,
A. Padrol and C. Sarmiento in [7]. In the following, we consider a Dyck path drawn on
the semi-integer lattice (1/2, 1/2) + Z2 and points on the lattice Z2.

Definition 15 ([7]). Let ν be a Dyck path of size n drawn on the semi-integer lattice.
1. Two lattice points p, q inside the n × n grid and weakly above ν are said ν-incompatible

if p is located strictly southwest or northeast to q, and the smallest rectangle containing p
and q lies above ν. Otherwise, p and q are called ν-compatible.

2. A ν-tree is a maximal collection of pairwise ν-compatible lattice points, called nodes.
3. Two ν-trees are related by a rotation if they differ by only two nodes.

We let Θ(ν) the set of ν-trees and we let Θn :=
⊔

ν Θ(ν) and Θ :=
⊔

n∈N Θn.

A ν-tree T can be viewed as a tree in the graph-theoretical sense by connecting each
node p of T with the next node of T below it (if any), and with the next node of T to
its right (if any). For example, we obtain classical binary trees when ν = (NE)n is the
staircase Dyck path. See Section 2.3. We consider the graded space kΘ =

⊕
n≥0 kΘn,

where kΘn is the k-span of Θn and define a product and coproduct similar to Section 2.2.
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Horizontal and vertical packing. A leaf of a ν-tree T is called a diagonal leaf if it belongs
to the main diagonal of the n× n grid. A diagonal leaf b in T divides the path ν into
two paths ν` (on the left) and νr (on the right). Cutting the tree T along the path from b
to its root gives rise to two trees T̃` (on the left) and T̃r (on the right). We define the
vertical packing Lb(T) as the ν`-tree obtained by contracting all vertical segments of T̃` that
are above b. Similarly, the horizontal packing Lb(T) is the νr-tree obtained by contracting
all horizontal segments of T̃r that are on the left of b.

Lb




b




= Lb




b




=

Figure 5: The horizontal and vertical packings of a ν-tree at a diagonal leaf b.

Coproduct. We define the coproduct of a ν-tree T as 4(T) = ∑ Lb(T)⊗ Lb(T), where
the sum runs over all diagonal leaves b of T. See Figure 6.

4





 = ⊗ ε + ⊗ + ⊗ + ε⊗

Figure 6: The coproduct of a ν-tree.

Product. Let b = (b1, . . . , b`−1) be a tuple of `− 1 diagonal leaves of a ν-tree T which are
located in order along the main diagonal with possible repetitions. They partition ν into `
Dyck paths ν1, . . . , ν`. The tree T is subdivided into ` trees T̃1, . . . , T̃` by cutting along the
paths from the leaves bi to the root. Define Ti to be the νi-tree obtained by contracting
segments of T̃i that are either horizontal on the left of bi−1 or vertical above bi. By
convention, b0 and b` denote two extra leaves at coordinates (0, 0) and (n, n) respectively.

Given a µ-tree S and a ν-tree T we will define the product S · T as follows. If S
has ` diagonal leaves, we choose a tuple b = (b1, . . . , b`−1) of `− 1 leaves of T and we
“cut” T along b to produce ` trees T1, . . . , T` as described above. We then “glue" these
trees T1, . . . , T` on the ` diagonal leaves of S. The resulting tree S ?b T is a λ-tree for
some Dyck path λ obtained as a shuffle of µ and ν with cuts at diagonal leaves.

If S has ` diagonal leaves, we define the product of S and T by S · T = ∑b S ?b T,
where the sum ranges over all ordered tuples b = (b1, . . . , b`−1) of `− 1 diagonal leaves
in T with possible repetitions. An example of this product is illustrated in Figure 7.
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· = + + + · · ·+

Figure 7: The product of a µ-tree and a ν-tree.

3.3 Dominant pipe dreams versus ν-trees.

We now connect dominant pipe dreams with ν-trees and show that the
Hopf algebras considered in the previous two sections are isomorphic.
As illustrated on the right, we consider the map Ψ that sends a pipe
dream P ∈ Π(ω) with dominant permutation ω to a ν-tree T where ν = πω

is the Dyck path associated to ω. This ν-tree is defined as the set of lattice
points Ψ(P) given by the elbows of P located in the topmost row or leftmost
column, or inside the Rothe diagram of ωP.

Proposition 16 ([15, 7]). For any dominant permutation ω with corresponding Dyck path ν = πω,
the map Ψ is a bijection between the dominant pipe dreams in Π(ω) and the ν-trees of Θ(ν).

Theorem 17 ([4, Coro. 3.1.9]). The map Ψ is a Hopf algebra isomorphism between the Hopf
algebra (kΠdom, ·,4) of dominant pipe dreams and the Hopf algebra (kΘ, ·,4) of ν-trees.

3.4 Hopf chains and multivariate diagonal harmonics

We conclude this extended abstract with a surprising connection to the multivariate
diagonal harmonic spaces [1]. Let X = [xij] be a set of nr variables for i ∈ [r] and j ∈ [n].
We refer to r as the number of sets of variables and to n as the number of variables in
each of the sets. The symmetric group Sn acts on the polynomial ring C[X] by permuting
the n columns of the matrix X. Let Symn,r be the subring of polynomials f (X) invariant
under the action of Sn. The multivariate diagonal harmonic space DHn,r is the space

DHn,r =
{

p ∈ C[X] | f (∂)p = 0 for all f ∈ Symn,r such that f (0) = 0
}

,

where f (∂) is the partial differential operator obtained by replacing the variables xij by
∂/∂xij in f (X). This space is closed under the action of the symmetric group Sn, and
thus defines a representation of Sn. For small fixed values of r, the dimension of DHn,r
and the multiplicity of the sign representation Alt(DHn,r) satisfy beautiful formulas:

r r = 1 r = 2 r = 3 (conj.) r ≥ 4
dim

(
DHn,r

)
n! (n + 1)n−1 2n(n + 1)n−2 ?

dim
(
Alt(DHn,r)

)
1 1

n+1(
2n
n )

2
n(n+1)(

4n+1
n−1 ) ?
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When r = 2 (resp. r = 3), the dimension of Alt(DHn,r) is the number of elements
(resp. intervals) in the Tamari lattice. The dimension of DHn,r can be interpreted by
labeled versions of the latter. In fact, the spaces DHn,r and Alt(DHn,r) can be further
decomposed into homogeneous components invariant under the action of the symmetric
group. Let the degree of a monomial XA = ∏ x

aij
ij be degr(XA) =

(
∑n

j=1 a1j, . . . , ∑n
j=1 arj

)
.

The subspaces of DHn,r and Alt(DHn,r) of fixed degree are clearly invariant under the
action of Sn. The weighted sum of the dimensions of these subspaces for DHn,r and
Alt(DHn,r) give two polynomials in r variables q1, . . . , qr, whose evaluations at qi = 1
for all i recover their total dimensions. For r = 2, an expression of the resulting q, t-
polynomial for DHn,r in terms of Macdonald polynomials was conjectured by A. Garsia
and M. Haiman [8] and proved by M. Haiman in [10]. A combinatorial description of this
polynomial, involving a pair of statistics area and dinv on parking functions, is described
by the former shuffle conjecture of J. Haglund et al. [9] which was recently proved by
E. Carlsson and A. Mellit [6]. For r = 3, there is no known triple of statistics on labeled
and unlabeled intervals in the Tamari lattice that would match the tri-degree of DHn,3
and Alt(DHn,3). F. Bergeron and L.-F. Préville-Ratelle conjectured in [2] that length of
a longest chain in the interval and dinv are two of the statistics. Using combinatorial
objects arising from the pipe dream algebra, we now provide an interpretation of the
dimensions of DHn,r and Alt(DHn,r) and their q-Frobenius characteristic for any n ≤ 4.
The details on the definitions and the proof can be found in [4, Sect. 3.2.2].

Definition 18. A Hopf chain is a nested tuple (π1, π2, . . . , πr) of Dyck paths of size n such that:
1. π1 is the bottom diagonal path (NE)n,
2. for every 1 ≤ i < j < k ≤ r, the subtriple (πi, πj, πk) comes from an interval of dominant

pipe dreams. In other words, the pair (πj, πk) is an interval in the πi-Tamari lattice of [14].
We denote by HCn,r the set of Hopf chains of length r and size n.

Definition 19. The collar col(π) of a Hopf chain π = (π1, π2, . . . , πr) is one plus the maximal
number of distinct Dyck paths that can be inserted in π strictly between πr−1 and πr such that
the result is a Hopf chain.

Theorem 20 ([4, Thm. 3.2.5]). For degree n ≤ 4 and any number r of sets of variables, the
following two symmetric functions coincide:
• the q-Frobenius characteristic Φn,r(q) of DHn,r expanded in the elementary basis, and
• the sum over Hopf chains of HCn,r given by

Ψn,r(q) := ∑
π=(π1,π2,...,πr)

Hopf chain of HCn,r

qcol(π)etype(πr),

where type(πr) is the partition of the connected N steps lengths in πr.

Corollary 21 ([4, Coro. 3.2.6]). For n ≤ 4 and any r ∈ N, the dimension of Alt(DHn,r)
(resp. of DHn,r) is the number of Hopf chains (resp. labelled Hopf chains) of length r and size n.
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