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Abstract. We give a new interpretation of RSK correspondence of type D in terms of
affine crystals. We show that the crystal of quantum nilpotent subalgebra of Uq(Dn)

associated to a maximal Levi subalgebra of type An−1 has an affine D(1)
n -crystal struc-

ture, and it is isomorphic to a direct limit of perfect Kirillov-Reshetikhin crystal Bn,s

for s ≥ 1. An analogue of RSK correspondence for type D due to Burge is naturally
defined on this crystal and shown to be an isomorphism of affine crystals. We fur-
ther obtain a generalization of Greene’s formula for type D and as a byproduct a new
polytope realization of Bn,s.
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1 Introduction

Let g be a classical Lie algebra and let l be its proper maximal Levi subalgebra of type
A (or a sum of type A). Let u− be the negative nilradical of the parabolic subalgebra
p = l + b, where b is a Borel subalgebra of g. The enveloping algebra U(u−) is an
integrable l-module, which has a multiplicity-free decomposition [8], and the expansion
of its character

ch U(u−) = ∏
α∈Φ(u−)

(1− eα)−1 (1.1)

into irreducible l-characters (that is, Schur polynomials or a product of Schur polynomi-
als) gives the celebrated Cauchy identity when g is of type A, and Littlewood identities
when g is of type B, C, D, where Φ(u−) is the set of roots of u−.

The decomposition of U(u−) into l-modules has a purely combinatorial interpretation
by RSK correspondence and its variations, say κ (cf. [2, 5]). In [16], Lascoux showed that
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κ is an isomorphism of l-crystals, which immediately implies the same result for type B
and C [14] by using similarity of crystals . Furthermore, it is shown in [15] that the RSK
correspondence κ can be extended to an isomorphism of affine crystals of type A(1)

n when
g is of type An, and of type D(2)

n+1 and C(1)
n when g is of type Bn and Cn, respectively.

In this paper, we establish an analogue of the above result when g is of type D. First,
we consider the crystal Bi0 of i0-Lusztig data, where i0 is a reduced expression associated
to a specific convex order on the set of positive roots of g. The subcrystal B(Uq(u−)) of Bi0

consisting of Lusztig data on Φ(u−) has a nice combinatorial realization, and naturally
admits an affine crystal structure of type D(1)

n isomorphic to a direct limit of KR crystals
Bn,s for s ≥ 1. We give an explicit description of Bn,s ⊂ B(Uq(u−)) in terms of double
paths on Φ(u−), which yields a polytope realization of Bn,s (Theorem 3.10). Next, we
consider an analogue of RSK correspondence for type D due to Burge [2]. We prove
that it is an isomorphism of affine crystals of type D(1)

n , where a suitable affine crystal
structure is defined on the side of tableaux (Theorem 4.1). Furthermore, we present an
interesting formula for the shape of a semistandard tableau corresponding to a Lusztig
datum on Φ(u−) in terms of non-intersecting double paths on Φ(u−) (Theorem 4.4). A
full version of this paper including detailed proofs has appeared in [9].

2 PBW crystals

2.1 PBW basis and crystals

We refer the reader to [11, 10] for definitions of crystal base and crystal. Suppose that
g is of finite type and Uq(g) is the associated quantized enveloping algebra (see [7, 18]).
Let us briefly recall the notion of PBW basis and the crystal of Lusztig data which is
isomorphic to B(∞) (see [17, 19]). Let W be the Weyl group of g generated by the
simple reflections si for i ∈ I. Let w0 be the longest element in W of length N, and let
R(w0) = { i = (i1, . . . , iN) |w0 = si1 . . . siN } be the set of reduced expressions of w0. For
i ∈ I, let Ti be the Q(q)-algebra automorphism of Uq(g), which is given as T′′i,1 in [18].

For i ∈ R(w0),

Φ+ = {β1 := αi1 , β2 := si1(αi2), . . . , βN := si1 · · · siN−1(αiN)} (2.1)

is the set of positive roots of g. For c = (cβ1 , . . . , cβN) ∈ ZN
+ . For 1 ≤ k ≤ N, put fβk :=

Ti1 Ti2 · · · Tik−1( fik) and let bi(c) = f
(cβ1

)

β1
f
(cβ2 )

β2
· · · f

(cβN )

βN
. Then the set Bi := { bi(c) | c ∈

ZN
+ } is a Q(q)-basis of U−q (g) called a PBW basis.

Let A0 be the subring of Q(q) consisting of rational functions regular at q = 0. The
A0-lattice L(∞) of U−q (g) generated by Bi is independent of the choice of i and invariant
under ẽi, f̃i, and the induced crystal π(Bi) under a canonical projection π : L(∞) →
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L(∞)/qL(∞) is isomorphic to B(∞). We identify Bi := ZN
+ with a crystal π(Bi) under

the map c 7→ bi(c), and call c ∈ Bi an i-Lusztig datum.
Let w ∈ W be given with length r. There exists i = (i1, · · · , iN) ∈ R(w0) such that

w = si1 · · · sir by the properties of the Bruhat order. The Q(q)-subspace of U−q (g) spanned
by bi(c) for c ∈ Bi with ck = 0 for r + 1 ≤ k ≤ N is a subalgebra called the quantum
nilpotent subalgebra associated to w ∈W and denoted by U−q (w) (see for example, [13] and
references therein).

2.2 Description of f̃i

Let i ∈ R(w0) be given. For β ∈ Φ+, we denote by 1β the element in Bi where cβ = 1
and cγ = 0 for γ ∈ Φ+ \ {β}. The Kashiwara operators f̃i or f̃ ∗i on Bi for i ∈ I is not
easy to describe in general except

f̃ic = (cβ1 + 1, cβ2 , . . . , cβN) = c + 1αi , when β1 = αi,

f̃ ∗i c = (cβ1 , . . . , cβN−1 , cβN + 1) = c + 1αi , when βN = αi,
(2.2)

for c ∈ Bi [18].
Let us review the results in [21], which plays an important role in our paper. For

simplicity, let us assume that g is simply laced. Let σ = (σ1, σ2, . . . , σs) be a sequence
with σu ∈ {+ , − , · }. We replace a pair (σu, σu′) = (+,−), where u < u′ and σu′′ = ·
for u < u′′ < u′, with ( · , · ), and repeat this process as far as possible until we get a
sequence with no − placed to the right of +. We denote the resulting sequence by σred.
For another sequence τ = (τ1, . . . , τt), we denote by σ · τ the concatenation of σ and τ.

Recall that a total order ≺ on Φ+ is called convex if either γ ≺ γ′ ≺ γ′′ or γ′′ ≺ γ′ ≺ γ

whenever γ′ = γ + γ′′ for γ, γ′, γ′′ ∈ Φ+. It is well-known that there exists a one-to-one
correspondence between R(w0) and the set of convex orders on Φ+, where the convex
order ≺ associated to i = (i1, . . . , iN) ∈ R(w0) is given by

β1 ≺ β2 ≺ . . . ≺ βN, (2.3)

where βk is as in (2.1). Recall that there exists a reduced expression i′ obtained from
i by a 3-term braid move (ik, ik+1, ik+2) → (ik+1, ik, ik+1) with ik = ik+2 if and only if
{ βk, βk+1, βk+2 } forms the positive roots of type A2, where the corresponding convex
order ≺′ is given by replacing βk ≺ βk+1 ≺ βk+2 with βk+2 ≺′ βk+1 ≺′ βk. Also
there exists a reduced expression i′ obtained from i by a 2-term braid move (ik, ik+1) →
(ik+1, ik) if and only if βk and βk+1 are orthogonal, where the associated convex ordering
≺′ is given by replacing βk ≺ βk+1 with βk+1 ≺′ βk.

Given i ∈ I, suppose that i is simply braided for i ∈ I, that is, if one can obtain
i′ = (i′1, . . . , i′N) ∈ R(w0) with i′1 = i by applying a sequence of braid moves consisting
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of either a 2-term move or 3-term braid move (γ, γ′, γ′′) → (γ′′, γ′, γ) with γ′′ = αi.
Suppose that

Πs = {γs, γ′s, γ′′s } (2.4)

is the triple of positive roots of type A2 with γ′s = γs + γ′′s and γ′′s = αi corresponding to
the s-th 3-term braid move for 1 ≤ s ≤ t.

For c ∈ Bi, let σi(c) = (− · · · −︸ ︷︷ ︸
cγ′1

+ · · ·+︸ ︷︷ ︸
cγ1

· · · − · · · −︸ ︷︷ ︸
cγ′t

+ · · ·+︸ ︷︷ ︸
cγt

).

Theorem 2.1. [21, Theorem 4.6] Let i ∈ R(w0) and i ∈ I. Suppose that i is simply braided for
i. Let c ∈ Bi be given.

(1) If there exists + in σi(c)red and the leftmost + appears in cγs , then f̃ic = c− 1γs + 1γ′s .

(2) If there exists no + in σi(c)red, then f̃ic = c + 1αi .

3 Crystal of quantum nilpotent subalgebra

3.1 Crystal Bi0

From now on, we assume that g is of type Dn (n ≥ 4). We assume that the weight
lattice is P =

⊕n
i=1 Zεi, where { εi | 1 ≤ i ≤ n } is an orthonormal basis with respect to a

symmetric bilinear form ( , ). The set of positive roots is Φ+ = { εi ± εj | 1 ≤ i < j ≤ n }
and let αi be the i-th simple root given by αi = εi − εi+1 for i 6= n, and αn = εn−1 + εn.
Recall that W acts faithfully on P by si(εi) = εi+1, si(εk) = εk for 1 ≤ i ≤ n − 1 and
k 6= i, i + 1, and sn(εn−1) = −εn and sn(εk) = εk for k 6= n − 1, n. The fundamental
weights are vi = ∑i

k=1 εk for i = 1, . . . , n − 2, vn−1 = (ε1 + · · · + εn−1 − εn)/2 and
vn = (ε1 + · · · + εn−1 + εn)/2. Put J = I \ {n}. Let l be the Levi subalgebra of g

associated to { αi | i ∈ J } of type An−1. Then

Φ+ = Φ+(J) ∪Φ+
J ,

where Φ+
J = { εi − εj | 1 ≤ i < j ≤ n } is the set of positive roots of l and Φ+(J) =

{ εi + εj | 1 ≤ i < j ≤ n } is the set of roots of the nilradical u of the parabolic subalgebra
associated to l.

Throughout this paper, we consider a specific i0 ∈ R(w0), whose associated convex
order on Φ+ is given by

εi + εj ≺ εk − εl,

εi + εj ≺ εk+εl ⇐⇒ (j > l) or (j = l, i > k),

εi − εj ≺ εk−εl ⇐⇒ (i < k) or (i = k, j < l),

(3.1)
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for 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n. An explicit form of i0 is as follows. For
1 ≤ k ≤ n− 1, put

ik =


(n, n− 2, . . . , k + 1, k), if k is odd,
(n− 1, n− 2, . . . , k + 1, k), if k is even,
(n), if n is even and k = n− 1,

i′k =


(n− 1, n− 2, . . . , k + 1, k), if n is even and 1 ≤ k ≤ n− 1,
(n, n− 2, . . . , k + 1, k), if n is odd and 1 ≤ k ≤ n− 2,
(n), if n is odd and k = n− 1.

Let iJ = i1 · · · · · · · in−1 and iJ = i′1 · · · · · · · i′n−1. Then i0 as the concatenation iJ · iJ . We
write i0 = (i1, . . . , iN), where i1 = n, and put iJ = (i1, . . . , iM), iJ = (iM+1, . . . , iN) with
N = n2 − n and M = N/2. Throughout the paper, we set B := Bi0 . For c = (cβ) ∈ B, we
also write

cβk =

{
cji, if βk = εi + εj for 1 ≤ i < j ≤ n,

cji, if βk = εi − εj for 1 ≤ i < j ≤ n.

Proposition 3.1.

(1) The reduced word i0 is simply braided for any i ∈ I.

(2) For i ∈ I \ {n} and c ∈ B, we have σi(c) = σi,1(c) · σi,2(c) · σi,3(c), where

σi,1(c) =(− · · · −︸ ︷︷ ︸
cn i

+ · · ·+︸ ︷︷ ︸
cn i+1

− · · · −︸ ︷︷ ︸
cn−1 i

+ · · ·+︸ ︷︷ ︸
cn−1 i+1

· · · − · · · −︸ ︷︷ ︸
ci+2 i

+ · · ·+︸ ︷︷ ︸
ci+2 i

),

σi,2(c) =(− · · · −︸ ︷︷ ︸
ci i−1

+ · · ·+︸ ︷︷ ︸
ci+1 i−1

− · · · −︸ ︷︷ ︸
ci i−2

+ · · ·+︸ ︷︷ ︸
ci+1 i−2

· · · − · · · −︸ ︷︷ ︸
ci 1

+ · · ·+︸ ︷︷ ︸
ci+1 1

),

σi,3(c) =(− · · · −︸ ︷︷ ︸
ci+1 1

+ · · ·+︸ ︷︷ ︸
ci 1

− · · · −︸ ︷︷ ︸
ci+1 2

+ · · ·+︸ ︷︷ ︸
ci 2

· · · − · · · −︸ ︷︷ ︸
ci+1 i−1

+ · · ·+︸ ︷︷ ︸
ci i−1

− · · · −︸ ︷︷ ︸
ci+1 i

).

(3.2)

Here cab is assumed to be zero when it is not defined.

Remark 3.2. The crystal operator f̃i on B can be described in the same way as in Theorem 2.1
with σi(c) in Proposition 3.1 (see [9, Remark 3.3] for more details).

Set

BJ =
{

c = (cβ) ∈ B
∣∣ cβ = 0 unless β ∈ Φ+(J)

}
,

BJ =
{

c = (cβ) ∈ B
∣∣ cβ = 0 unless β ∈ ΦJ

}
.

(3.3)

which we regard them as subcrystals of B, where we assume that ẽnc = f̃nc = 0 with
εn(c) = ϕn(c) = −∞ for c ∈ BJ . The subcrystal BJ is the crystal of the quantum nilpotent
subalgebra U−q (wJ), where wJ = si1 · · · siM with iJ = (i1, . . . , iM), which can be viewed as
a q-deformation of U(u−) by definition.
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Corollary 3.3. The map B −→ BJ ⊗ BJ sending c to cJ ⊗ cJ is an isomorphism of g-crystals.

3.2 Subcrystal BJ

Let us consider the subcrystal BJ in more details. Let ∆n be the arrangements of dots in
the plane to represent the (n− 1)-th triangular number. We identify ∆n with Φ+(J) in
such a way that εk+1 + εl+1, εk+1 + εl and εk + εl for 1 ≤ k, l ≤ n− 1 are the vertices of a
triangle of minimal shape in ∆n as follows:

εk+εl+1•
εk+1+εl+1•

εk+εl•

(3.4)

We also identify c ∈ BJ with an array of cβ’s in c with cβ at the corresponding dot in ∆n.

Lemma 3.4. We have BJ = { c | ε∗i (c) = 0 (i ∈ J) }.

For s ≥ 1, let
BJ,s := { c ∈ BJ | ε∗n(c) ≤ s }, (3.5)

which is a subcrystal of BJ . By Lemma 3.4 and [11, Proposition 8.2] , we have

B(svn) ∼= BJ,s ⊗ Tsvn ,
⋃
s≥1

BJ,s = BJ , (3.6)

as g-crystals. By (3.6), BJ is a regular l-crystal, that is, any connected component with
respect to ẽi and f̃i for i ∈ J is isomorphic to the crystal of an integrable highest weight
Uq(l)-module, say BJ(λ) for some λ = ∑n

i=1 λiεi ∈ P with (λ, αi) ∈ Z+ for i ∈ J. Then
Proposition 3.1 enables us to decompose BJ into l-crystals directly as follows, and hence
the decomposition of Uq(wJ) into irreducible Uq(l)-modules.

Proposition 3.5. As an l-crystal, we have BJ ∼=
⊔

λ BJ(λ), where the union is over λ =

∑n
i=1 λiεi ∈ P such that 0 ≥ λ1 = λ2 ≥ λ3 = λ4 ≥ · · · .

3.3 Combinatorial description of ε∗n

Let us give an explicit combinatorial description of ε∗n on BJ , whose proof is obtained by
using the formula of Berenstein-Zelevinsky [1].

Definition 3.6. A path in ∆n is a sequence p = (γ1, . . . , γs) in Φ+(J) for some s ≥ 1 such
that

(1) γ1, . . . , γs ∈ Φ+(J),

(2) if γi = εk + εl+1 for some k < l, then γi+1 = εk+1 + εl+1 or εk + εl (see (3.4)),
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(3) γs = εk + εk+1 for some k.

For β ∈ Φ+(J), a double path at β in ∆n is a pair of paths p = (p1, p2) in ∆n of the same
length with p1 = (γ1, . . . , γs) and p2 = (δ1, . . . , δs) such that

(1) γ1 = δ1 = β,

(2) γi is located to the strictly left of δi for 2 ≤ i ≤ s,

(3) γs = εk+1 + εk+2, δs = εk + εk+1 for some k ≥ 1.

Example 3.7. The followings are some examples of double paths p at θ = ε1 + ε5 in ∆5.

•
θ�� ��

•~~ •~~
•~~ •~~ •

• • • •

•
θ�� ��

•~~ •~~
•   •   •

• • • •

•
θ�� ��

•~~ •   
•   • •~~

• • • •

For c ∈ BJ and a double path p, let ||c||p = ∑β lying on p cβ.

Theorem 3.8. For c ∈ BJ , ε∗n(c) = max{ ||c||p | p is a double path at θ in ∆n }, where θ =
ε1 + εn.

3.4 Realization of KR crystals Bn,s

Let ĝ be an affine Kac-Moody algebra of type D(1)
n with Î = { 0, 1, . . . , n } the index set

for the simple roots.

©

©
© ©

©

©
���

H
HH

�
��

HHH
· · ·α0

α1

α2 αn−2

αn−1

αn

For r ∈ {0, n}, let ĝr be the subalgebra of ĝ corresponding to { αi | i ∈ Î \ {r} }. Then
ĝ0 = g, and ĝ0 ∩ ĝn = l. Let P̂ =

⊕
i∈ Î ZΛi ⊕Zδ be the weight lattice of ĝ, where δ

is the positive imaginary null root and Λi is the i-th fundamental weight . We regard
P =

⊕n
i=1 Zεi as a sublattice of P̂/Zδ by putting ε1 = Λ1 − Λ0, ε2 = Λ2 − Λ1 − Λ0,

εk = Λk − Λk−1 for k = 3, . . . , n − 2, εn−1 = Λn−1 + Λn − Λn−2 and εn = Λn − Λn−1.
In particular, we have α0 = −ε1 − ε2 in P. If v′i are the fundamental weights for ĝn for
i ∈ Î \ {n}, then v′i = vi for i ∈ Î \ {0, n} and v′0 = −vn.

For c ∈ BJ , define

ẽ0c = c + 1ε1+ε2 , f̃0c =

{
c− 1ε1+ε2 , if cε1+ε2 > 0,
0, otherwise,

ϕ0(c) = max{ k | f̃ k
0 c 6= 0 }, ε0(c) = ϕ0(c)− (wt(c), α0).

(3.7)
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Lemma 3.9. The set BJ is a ĝ-crystal with respect to wt, εi, ϕi, ẽi, f̃i for i ∈ Î, where wt is the
restriction of wt : B −→ P to BJ .

Theorem 3.10. For s ≥ 1, BJ,s ⊗ Tsvn is a regular ĝ-crystal and BJ,s ⊗ Tsvn
∼= Bn,s, where Bn,s

is the Kirillov-Reshetikhin crystal of type D(1)
n associated to svn (cf.[3]).

Remark 3.11. By Theorem 3.8, we have BJ,s =
⋂
p

{
c ∈ BJ | ||c||p ≤ s

}
, where p runs over the

double paths in ∆n. This gives a polytope realization of the KR crystal Bn,s. Also, we note that by
construction, the crystal BJ is the direct limit of {BJ,s : s ∈ Z+}. By [4], {Bn,s} is a family of
perfect KR crystals. It is conjectured that {Bn,s} has the limit in the sense of [12], that is, {Bn,s}
is a coherent family.

4 RSK correspondence for type D and affine crystals

4.1 Burge correspondence

Let P be the set of partitions λ = (λi)i≥1, which are often identified with Young dia-
grams. Let λ′ = (λ′i)i≥1 be the conjugate of λ, and let λπ be the skew Young diagram
obtained by 180◦-rotation of λ. Let `(λ) denote the length of λ, and let Pn = { λ | `(λ) ≤
n }. Let [n] := { n < · · · < 1 } be a linearly ordered set. Let W be the set of finite words
in [n]. For a skew Young diagram λπ, let SST[n](λ

π) or simply SST(λπ) denote the set
of semistandard tableaux of shape λπ with entries in [n]. For T ∈ SST(λπ), let w(T)
be a word in W obtained by reading the entries of T row by row from top to bottom,
and from right to left in each row, and let sh(T) denote the shape of T. Note that we
use English convention for partitions and tableaux. Let T

↖
be the unique semistandard

tableau such that sh(T
↖
) ∈P and w(T

↖
) is Knuth equivalent to w(T). We define T

↘
in

a similar way such that sh(T
↘
) ∈ Pπ. Note that if sh(T

↖
) = ν, then sh(T

↘
) = νπ. For

a ∈ [n] and U ∈ SST(λ) with λ ∈ Pn, let a → U be the tableau obtained by applying
the Schensted’s column insertion of a into U. Similarly, for V ∈ SST(λπ) and b ∈ [n], let
V ← b be the tableau obtained by applying the Schensted’s column insertion of b into V
in a reverse way starting from the rightmost column. For w = w1 . . . wr ∈ W, we define
P(w) = (wr → (· · · (w2 → w1) · · · )). Note that P(w)

↘
= ((wr ← wr−1)← · · · ← w1).

Let us recall a variation of RSK correspondence for type D [2]. Set

T
↘

:=
⊔

λ∈Pn
λ′:even

SST(λπ), T
↖

:=
⊔

λ∈Pn
λ′:even

SST(λ),
(4.1)

where we say that λ′ is even if each part of λ′ is even Let Ω be the set of biwords
(a, b) ∈W×W such that
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(1) a = a1 · · · ar and b = b1 · · · br for some r ≥ 0,

(2) ai < bi for 1 ≤ i ≤ r,

(3) (a1, b1) ≤ · · · ≤ (ar, br),

where (a, b) < (c, d) if and only if (a < c) or (a = c and b > d) for (a, b), (c, d) ∈W×W.
We denote by c(a, b) the unique element in BJ corresponding to (a, b) ∈ Ω such that
cab = |{ k | (ak, bk) = (a, b) }|.

For (a, b) ∈ Ω with a = a1 · · · ar and b = b1 · · · br, we define a sequence of tableaux
Pr, Pr−1, . . . , P1 inductively as follows:

(1) let P1 be a vertical domino ar
br

,

(2) if Pk+1 is given for 1 ≤ k ≤ r− 1, then define Pk to be the tableau obtained by first
applying the column insertion to get Pk+1 ← bk, and then adding ak at the conner
of Pk+1 ← bk located above the box sh(Pk+1 ← bk)/sh(Pk+1).

We put P
↘
(a, b) := P1. It is not difficult to see from the definition that P

↘
(a, b) ∈

SST(λπ) for some λ ∈P such that λ′ is even.
For c ∈ BJ , let P

↘
(c) = P

↘
(a, b) where c = c(a, b). Since the map (a, b) 7→ P

↘
(a, b)

is a bijection from Ω to T
↘

[2], we have a bijection

κ
↘

: BJ // T
↘

, (4.2)

where κ
↘
(c) = P

↘
(c). Similarly, let Ω′ be the set of biwords (a, b) ∈ W×W satisfying

the same conditions as in Ω except that < is replaced by <′, where (a, b) <′ (c, d) if and
only if (b < d) or (b = d and a < c) for (a, b) and (c, d) ∈ W×W. We define c′(a, b) in
the same way as in c(a, b). Given (a, b) ∈ Ω′ with a = a1 · · · ar and b = b1 · · · br, define
a sequence of tableaux P1, P2, . . . , Pr inductively as follows:

(1) let P1 be a vertical domino a1
b1

,

(2) if Pk−1 is given for 2 ≤ k ≤ r, then define Pk to be the tableau obtained by first
applying the column insertion to get ak → Pk−1, and then adding bk at the conner
of ak → Pk−1 located below the box sh(ak → Pk−1)/sh(Pk−1),

and put P
↖
(a, b) := Pr. For c ∈ BJ , let P

↖
(c) = P

↖
(a, b) where c = c′(a, b). Then we

also have a bijection

κ
↖

: BJ // T
↖

, (4.3)

where κ
↖
(c) = P

↖
(c)



10 Il-Seung Jang and Jae-Hoon Kwon

4.2 Isomorphism of affine crystals

We regard [n] = { n < · · · < 1 } as the crystal of dual natural representation of l with
wt(k) = −εk. Then W is a regular l-crystal, where w = w1 . . . wr is identified with
w1 ⊗ · · · ⊗ wr. For λ ∈ Pn, SST(λ) is a regular l-crystal with lowest weight −∑n

i=1 λiεi,
where T is identified with w(T). In particular T

↘
and T

↖
are regular l-crystals.

Let us recall the ĝ0-crystal structure on T
↘

[15, Section 5.2]. Let T ∈ T
↘

be given. For
k ≥ 1, let tk be the entry in the top of the k-th column of T (enumerated from the right).
Consider σ = (σ1, σ2, . . .), where

σk =


+ , if tk > n− 1 or the k-th column is empty,
− , if the k-th column has both n− 1 and n as its entries,
· , otherwise.

Then ẽnT is obtained from T by removing n
n−1

in the column corresponding to the right-
most − in σred (see Section 2.2 for σred). If there is no such − sign, then we define
ẽnT = 0, and f̃nT is obtained from T by adding n

n−1
column corresponding to the left-

most + in σred. Hence T
↘

is a ĝ0-crystal with respect to wt, εi, ϕi, ẽi, f̃i (i ∈ Î \ {0}),
where εn(T) = max{ k | ẽk

nT 6= 0 } and ϕn(T) = εn(T) + (wt(T), αn).
Similarly, we have a ĝn-crystal structure on T

↖
[15, Section 5.2]. Let T ∈ T

↖
be given.

For k ≥ 1, let tk be the entry in the bottom of the k-th column of T (enumerated from the
left). Consider σ = (. . . , σ2, σ1), where

σk =


− , if tk < 2 or the k-th column is empty,
+ , if the k-th column has both 1 and 2 as its entries,
· , otherwise.

Then ẽ0T is given by adding 2
1

to the bottom of the column corresponding to the right-
most − in σred, and f̃0T is obtained from T by removing 2

1
in the column corresponding

to the left-most + in σred. If there is no such + sign, then we define f̃0T = 0. Hence T
↖

is
a ĝn-crystal with respect to wt, εi, ϕi, ẽi, f̃i (i ∈ Î \ {n}), where ϕ0(T) = max{ k | f̃ k

0 T 6=
0 } and ε0(T) = ϕ0(T)− (wt(T), α0).

Theorem 4.1. The bijection κ
↘

in (4.2) is an isomorphism of ĝ0-crystals, and the bijection κ
↖

in (4.3) is an isomorphism of ĝn-crystals.

Remark 4.2. It would be interesting to compare Theorem 4.1 with the result in [20].

For a semistandard tableau T of skew shape, let [T] denote the equivalence class of T
with respect to Knuth equivalence. Let T = { [T] | T ∈ T

↘ } = { [T] | T ∈ T
↖ }.
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If we define x̃i[T] = [x̃0T
↖
] when i = 0, x̃i[T] = [x̃nT

↘
] when i = n, and x̃i[T] = [x̃iT]

otherwise for i ∈ Î and x = e, f (we assume that [0] = 0), then the set T is a ĝ-crystal
with respect to ẽi, f̃i (i ∈ I), where wt, εi, and ϕi are induced from either T

↘
or T

↖
[15].

Corollary 4.3. The map κ : BJ −→ T sending c to [P
↖
(c)] = [P

↘
(c)] is an isomorphism of

ĝ-crystals.

4.3 Shape formula

For c ∈ BJ , let λ(c) = (λ1(c) ≥ . . . ≥ λ`(c)) be the partition corresponding to the
regular l-subcrystal of BJ including c, that is, λ(c) = sh(κ

↖
(c)) by Theorem 4.1. Note

that ` = 2[n
2 ] and λ2i−1(c) = λ2i(c) for 1 ≤ i ≤ [n

2 ].

Theorem 4.4. For c ∈ BJ and 1 ≤ l ≤ [n
2 ], we have

λ1(c) + λ3(c) + · · ·+ λ2l−1(c) = max
p1,...,pl

{ ||c||p1 + · · ·+ ||c||pl },

where p1, . . . , pl are mutually non-intersecting double paths in ∆n and each pi starts at the
(2i− 1)-th row of ∆n for 1 ≤ i ≤ l.

This formula can be viewed as an analogue of Greene’s formula for the shape of a
tableau corresponding to a biword under usual RSK given in terms of disjoint weakly
decreasing subwords [6].
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