Quantum nilpotent subalgebras of classical quantum groups and affine crystals

Il-Seung Jang*1 and Jae-Hoon Kwon ${ }^{\dagger 2}$
${ }^{1}$ Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea
${ }^{2}$ Department of Mathematical Sciences and RIM, Seoul National University, Seoul 08826, Korea

Abstract

We give a new interpretation of RSK correspondence of type D in terms of affine crystals. We show that the crystal of quantum nilpotent subalgebra of $U_{q}\left(D_{n}\right)$ associated to a maximal Levi subalgebra of type A_{n-1} has an affine $D_{n}^{(1)}$-crystal structure, and it is isomorphic to a direct limit of perfect Kirillov-Reshetikhin crystal $B^{n, s}$ for $s \geq 1$. An analogue of RSK correspondence for type D due to Burge is naturally defined on this crystal and shown to be an isomorphism of affine crystals. We further obtain a generalization of Greene's formula for type D and as a byproduct a new polytope realization of $B^{n, s}$.

Keywords: quantum groups, quantum nilpotent subalgebra, crystal graphs

1 Introduction

Let \mathfrak{g} be a classical Lie algebra and let \mathfrak{l} be its proper maximal Levi subalgebra of type A (or a sum of type A). Let \mathfrak{u}^{-}be the negative nilradical of the parabolic subalgebra $\mathfrak{p}=\mathfrak{l}+\mathfrak{b}$, where \mathfrak{b} is a Borel subalgebra of \mathfrak{g}. The enveloping algebra $U\left(\mathfrak{u}^{-}\right)$is an integrable l-module, which has a multiplicity-free decomposition [8], and the expansion of its character

$$
\begin{equation*}
\operatorname{ch} U\left(\mathfrak{u}^{-}\right)=\prod_{\alpha \in \Phi\left(\mathfrak{u}^{-}\right)}\left(1-e^{\alpha}\right)^{-1} \tag{1.1}
\end{equation*}
$$

into irreducible l-characters (that is, Schur polynomials or a product of Schur polynomials) gives the celebrated Cauchy identity when \mathfrak{g} is of type A, and Littlewood identities when \mathfrak{g} is of type B, C, D, where $\Phi\left(\mathfrak{u}^{-}\right)$is the set of roots of \mathfrak{u}^{-}.

The decomposition of $U\left(\mathfrak{u}^{-}\right)$into l-modules has a purely combinatorial interpretation by RSK correspondence and its variations, say κ (cf. [2, 5]). In [16], Lascoux showed that

[^0]κ is an isomorphism of l-crystals, which immediately implies the same result for type B and C [14] by using similarity of crystals. Furthermore, it is shown in [15] that the RSK correspondence κ can be extended to an isomorphism of affine crystals of type $A_{n}^{(1)}$ when \mathfrak{g} is of type A_{n}, and of type $D_{n+1}^{(2)}$ and $C_{n}^{(1)}$ when \mathfrak{g} is of type B_{n} and C_{n}, respectively.

In this paper, we establish an analogue of the above result when \mathfrak{g} is of type D. First, we consider the crystal $\mathbf{B}_{\mathbf{i}_{0}}$ of \mathbf{i}_{0}-Lusztig data, where \mathbf{i}_{0} is a reduced expression associated to a specific convex order on the set of positive roots of \mathfrak{g}. The subcrystal $B\left(U_{q}\left(\mathfrak{u}^{-}\right)\right)$of $\mathbf{B}_{\mathbf{i}_{0}}$ consisting of Lusztig data on $\Phi\left(\mathfrak{u}^{-}\right)$has a nice combinatorial realization, and naturally admits an affine crystal structure of type $D_{n}^{(1)}$ isomorphic to a direct limit of KR crystals $B^{n, s}$ for $s \geq 1$. We give an explicit description of $B^{n, s} \subset B\left(U_{q}\left(\mathfrak{u}^{-}\right)\right)$in terms of double paths on $\Phi\left(\mathfrak{u}^{-}\right)$, which yields a polytope realization of $B^{n, s}$ (Theorem 3.10). Next, we consider an analogue of RSK correspondence for type D due to Burge [2]. We prove that it is an isomorphism of affine crystals of type $D_{n}^{(1)}$, where a suitable affine crystal structure is defined on the side of tableaux (Theorem 4.1). Furthermore, we present an interesting formula for the shape of a semistandard tableau corresponding to a Lusztig datum on $\Phi\left(\mathfrak{u}^{-}\right)$in terms of non-intersecting double paths on $\Phi\left(\mathfrak{u}^{-}\right)$(Theorem 4.4). A full version of this paper including detailed proofs has appeared in [9].

2 PBW crystals

2.1 PBW basis and crystals

We refer the reader to $[11,10]$ for definitions of crystal base and crystal. Suppose that \mathfrak{g} is of finite type and $U_{q}(\mathfrak{g})$ is the associated quantized enveloping algebra (see [7,18]). Let us briefly recall the notion of PBW basis and the crystal of Lusztig data which is isomorphic to $B(\infty)$ (see $[17,19]$). Let W be the Weyl group of \mathfrak{g} generated by the simple reflections s_{i} for $i \in I$. Let w_{0} be the longest element in W of length N, and let $R\left(w_{0}\right)=\left\{\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \mid w_{0}=s_{i_{1}} \ldots s_{i_{N}}\right\}$ be the set of reduced expressions of w_{0}. For $i \in I$, let T_{i} be the $\mathbb{Q}(q)$-algebra automorphism of $U_{q}(\mathfrak{g})$, which is given as $T_{i, 1}^{\prime \prime}$ in [18].

For $\mathbf{i} \in R\left(w_{0}\right)$,

$$
\begin{equation*}
\Phi^{+}=\left\{\beta_{1}:=\alpha_{i_{1}}, \beta_{2}:=s_{i_{1}}\left(\alpha_{i_{2}}\right), \ldots, \beta_{N}:=s_{i_{1}} \cdots s_{i_{N-1}}\left(\alpha_{i_{N}}\right)\right\} \tag{2.1}
\end{equation*}
$$

is the set of positive roots of \mathfrak{g}. For $\mathbf{c}=\left(c_{\beta_{1}}, \ldots, c_{\beta_{N}}\right) \in \mathbb{Z}_{+}^{N}$. For $1 \leq k \leq N$, put $f_{\beta_{k}}:=$ $T_{i_{1}} T_{i_{2}} \cdots T_{i_{k-1}}\left(f_{i_{k}}\right)$ and let $b_{\mathbf{i}}(\mathbf{c})=f_{\beta_{1}}^{\left(c_{\beta_{1}}\right)} f_{\beta_{2}}^{\left(c_{\beta_{2}}\right)} \cdots f_{\beta_{N}}^{\left(c_{\beta_{N}}\right)}$. Then the set $B_{\mathbf{i}}:=\left\{b_{\mathbf{i}}(\mathbf{c}) \mid \mathbf{c} \in\right.$ $\left.\mathbb{Z}_{+}^{N}\right\}$ is a $\mathbb{Q}(q)$-basis of $U_{q}^{-}(\mathfrak{g})$ called a PBW basis.

Let A_{0} be the subring of $\mathbb{Q}(q)$ consisting of rational functions regular at $q=0$. The A_{0}-lattice $L(\infty)$ of $U_{q}^{-}(\mathfrak{g})$ generated by $B_{\mathbf{i}}$ is independent of the choice of \mathbf{i} and invariant under $\widetilde{e}_{i}, \widetilde{f}_{i}$, and the induced crystal $\pi\left(B_{\mathbf{i}}\right)$ under a canonical projection $\pi: L(\infty) \rightarrow$
$L(\infty) / q L(\infty)$ is isomorphic to $B(\infty)$. We identify $\mathbf{B}_{\mathbf{i}}:=\mathbb{Z}_{+}^{N}$ with a crystal $\pi\left(B_{\mathbf{i}}\right)$ under the map $\mathbf{c} \mapsto b_{\mathbf{i}}(\mathbf{c})$, and call $\mathbf{c} \in \mathbf{B}_{\mathbf{i}}$ an \mathbf{i}-Lusztig datum.

Let $w \in W$ be given with length r. There exists $i=\left(i_{1}, \cdots, i_{N}\right) \in R\left(w_{0}\right)$ such that $w=s_{i_{1}} \cdots s_{i_{r}}$ by the properties of the Bruhat order. The $\mathbb{Q}(q)$-subspace of $U_{q}^{-}(\mathfrak{g})$ spanned by $b_{\mathbf{i}}(\mathbf{c})$ for $\mathbf{c} \in \mathbf{B}_{\mathbf{i}}$ with $c_{k}=0$ for $r+1 \leq k \leq N$ is a subalgebra called the quantum nilpotent subalgebra associated to $w \in W$ and denoted by $U_{q}^{-}(w)$ (see for example, [13] and references therein).

2.2 Description of \tilde{f}_{i}

Let $\mathbf{i} \in R\left(w_{0}\right)$ be given. For $\beta \in \Phi^{+}$, we denote by $\mathbf{1}_{\beta}$ the element in $\mathbf{B}_{\mathbf{i}}$ where $c_{\beta}=1$ and $c_{\gamma}=0$ for $\gamma \in \Phi^{+} \backslash\{\beta\}$. The Kashiwara operators \widetilde{f}_{i} or \widetilde{f}_{i}^{*} on $\mathbf{B}_{\mathbf{i}}$ for $i \in I$ is not easy to describe in general except

$$
\begin{align*}
\widetilde{f}_{i} \mathbf{c} & =\left(c_{\beta_{1}}+1, c_{\beta_{2}}, \ldots, c_{\beta_{N}}\right)=\mathbf{c}+\mathbf{1}_{\alpha_{i}}, \quad \text { when } \beta_{1}=\alpha_{i} \tag{2.2}\\
\widetilde{f}_{i}^{*} \mathbf{c} & =\left(c_{\beta_{1}}, \ldots, c_{\beta_{N-1}}, c_{\beta_{N}}+1\right)=\mathbf{c}+\mathbf{1}_{\alpha_{i}}, \quad \text { when } \beta_{N}=\alpha_{i}
\end{align*}
$$

for $\mathbf{c} \in \mathbf{B}_{\mathbf{i}}$ [18].
Let us review the results in [21], which plays an important role in our paper. For simplicity, let us assume that \mathfrak{g} is simply laced. Let $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}\right)$ be a sequence with $\sigma_{u} \in\{+,-, \cdot\}$. We replace a pair $\left(\sigma_{u}, \sigma_{u^{\prime}}\right)=(+,-)$, where $u<u^{\prime}$ and $\sigma_{u^{\prime \prime}}=$. for $u<u^{\prime \prime}<u^{\prime}$, with (\cdot, \cdot), and repeat this process as far as possible until we get a sequence with no - placed to the right of + . We denote the resulting sequence by $\sigma^{\text {red }}$. For another sequence $\tau=\left(\tau_{1}, \ldots, \tau_{t}\right)$, we denote by $\sigma \cdot \tau$ the concatenation of σ and τ.

Recall that a total order \prec on Φ^{+}is called convex if either $\gamma \prec \gamma^{\prime} \prec \gamma^{\prime \prime}$ or $\gamma^{\prime \prime} \prec \gamma^{\prime} \prec \gamma$ whenever $\gamma^{\prime}=\gamma+\gamma^{\prime \prime}$ for $\gamma, \gamma^{\prime}, \gamma^{\prime \prime} \in \Phi^{+}$. It is well-known that there exists a one-to-one correspondence between $R\left(w_{0}\right)$ and the set of convex orders on Φ^{+}, where the convex order \prec associated to $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in R\left(w_{0}\right)$ is given by

$$
\begin{equation*}
\beta_{1} \prec \beta_{2} \prec \ldots \prec \beta_{N}, \tag{2.3}
\end{equation*}
$$

where β_{k} is as in (2.1). Recall that there exists a reduced expression \mathbf{i}^{\prime} obtained from \mathbf{i} by a 3-term braid move $\left(i_{k}, i_{k+1}, i_{k+2}\right) \rightarrow\left(i_{k+1}, i_{k}, i_{k+1}\right)$ with $i_{k}=i_{k+2}$ if and only if $\left\{\beta_{k}, \beta_{k+1}, \beta_{k+2}\right\}$ forms the positive roots of type A_{2}, where the corresponding convex order \prec^{\prime} is given by replacing $\beta_{k} \prec \beta_{k+1} \prec \beta_{k+2}$ with $\beta_{k+2} \prec^{\prime} \beta_{k+1} \prec^{\prime} \beta_{k}$. Also there exists a reduced expression \mathbf{i}^{\prime} obtained from \mathbf{i} by a 2 -term braid move $\left(i_{k}, i_{k+1}\right) \rightarrow$ (i_{k+1}, i_{k}) if and only if β_{k} and β_{k+1} are orthogonal, where the associated convex ordering \prec^{\prime} is given by replacing $\beta_{k} \prec \beta_{k+1}$ with $\beta_{k+1} \prec^{\prime} \beta_{k}$.

Given $i \in I$, suppose that \mathbf{i} is simply braided for $i \in I$, that is, if one can obtain $\mathbf{i}^{\prime}=\left(i_{1}^{\prime}, \ldots, i_{N}^{\prime}\right) \in R\left(w_{0}\right)$ with $i_{1}^{\prime}=i$ by applying a sequence of braid moves consisting
of either a 2-term move or 3-term braid move $\left(\gamma, \gamma^{\prime}, \gamma^{\prime \prime}\right) \rightarrow\left(\gamma^{\prime \prime}, \gamma^{\prime}, \gamma\right)$ with $\gamma^{\prime \prime}=\alpha_{i}$. Suppose that

$$
\begin{equation*}
\Pi_{s}=\left\{\gamma_{s}, \gamma_{s}^{\prime}, \gamma_{s}^{\prime \prime}\right\} \tag{2.4}
\end{equation*}
$$

is the triple of positive roots of type A_{2} with $\gamma_{s}^{\prime}=\gamma_{s}+\gamma_{s}^{\prime \prime}$ and $\gamma_{s}^{\prime \prime}=\alpha_{i}$ corresponding to the s-th 3-term braid move for $1 \leq s \leq t$.

For $\mathbf{c} \in \mathbf{B}_{\mathbf{i}}$, let $\sigma_{i}(\mathbf{c})=(\underbrace{-\cdots-}_{c_{\gamma_{1}^{\prime}}} \underbrace{+\cdots+}_{c_{\gamma_{1}}} \cdots \underbrace{-\cdots-}_{c_{\gamma_{t}^{\prime}}} \underbrace{+\cdots+}_{c_{\gamma_{t}}})$.
Theorem 2.1. [21, Theorem 4.6] Let $\mathbf{i} \in R\left(w_{0}\right)$ and $i \in I$. Suppose that \mathbf{i} is simply braided for i. Let $\mathbf{c} \in \mathbf{B}_{\mathbf{i}}$ be given.
(1) If there exists + in $\sigma_{i}(\mathbf{c})^{\text {red }}$ and the leftmost + appears in $c_{\gamma_{s^{\prime}}}$, then $\widetilde{f_{i}} \mathbf{c}=\mathbf{c}-\mathbf{1}_{\gamma_{s}}+\mathbf{1}_{\gamma_{s}^{\prime}}$.
(2) If there exists no $+\operatorname{in} \sigma_{i}(\mathbf{c})^{\text {red }}$, then $\widetilde{f}_{i} \mathbf{c}=\mathbf{c}+\mathbf{1}_{\alpha_{i}}$.

3 Crystal of quantum nilpotent subalgebra

3.1 Crystal $\mathbf{B}_{\mathrm{i}_{0}}$

From now on, we assume that \mathfrak{g} is of type $D_{n}(n \geq 4)$. We assume that the weight lattice is $P=\bigoplus_{i=1}^{n} \mathbb{Z} \epsilon_{i}$, where $\left\{\epsilon_{i} \mid 1 \leq i \leq n\right\}$ is an orthonormal basis with respect to a symmetric bilinear form (,). The set of positive roots is $\Phi^{+}=\left\{\epsilon_{i} \pm \epsilon_{j} \mid 1 \leq i<j \leq n\right\}$ and let α_{i} be the i-th simple root given by $\alpha_{i}=\epsilon_{i}-\epsilon_{i+1}$ for $i \neq n$, and $\alpha_{n}=\epsilon_{n-1}+\epsilon_{n}$. Recall that W acts faithfully on P by $s_{i}\left(\epsilon_{i}\right)=\epsilon_{i+1}, s_{i}\left(\epsilon_{k}\right)=\epsilon_{k}$ for $1 \leq i \leq n-1$ and $k \neq i, i+1$, and $s_{n}\left(\epsilon_{n-1}\right)=-\epsilon_{n}$ and $s_{n}\left(\epsilon_{k}\right)=\epsilon_{k}$ for $k \neq n-1, n$. The fundamental weights are $\omega_{i}=\sum_{k=1}^{i} \epsilon_{k}$ for $i=1, \ldots, n-2, \omega_{n-1}=\left(\epsilon_{1}+\cdots+\epsilon_{n-1}-\epsilon_{n}\right) / 2$ and $\omega_{n}=\left(\epsilon_{1}+\cdots+\epsilon_{n-1}+\epsilon_{n}\right) / 2$. Put $J=I \backslash\{n\}$. Let \mathfrak{l} be the Levi subalgebra of \mathfrak{g} associated to $\left\{\alpha_{i} \mid i \in J\right\}$ of type A_{n-1}. Then

$$
\Phi^{+}=\Phi^{+}(J) \cup \Phi_{J}^{+}
$$

where $\Phi_{J}^{+}=\left\{\epsilon_{i}-\epsilon_{j} \mid 1 \leq i<j \leq n\right\}$ is the set of positive roots of \mathfrak{l} and $\Phi^{+}(J)=$ $\left\{\epsilon_{i}+\epsilon_{j} \mid 1 \leq i<j \leq n\right\}$ is the set of roots of the nilradical \mathfrak{u} of the parabolic subalgebra associated to l.

Throughout this paper, we consider a specific $\mathbf{i}_{0} \in R\left(w_{0}\right)$, whose associated convex order on Φ^{+}is given by

\[

\]

for $1 \leq i<j \leq n$ and $1 \leq k<l \leq n$. An explicit form of \mathbf{i}_{0} is as follows. For $1 \leq k \leq n-1$, put

$$
\begin{aligned}
& \mathbf{i}_{k}= \begin{cases}(n, n-2, \ldots, k+1, k), & \text { if } k \text { is odd, } \\
(n-1, n-2, \ldots, k+1, k), & \text { if } k \text { is even, } \\
(n), & \text { if } n \text { is even and } k=n-1,\end{cases} \\
& \mathbf{i}_{k}^{\prime}= \begin{cases}(n-1, n-2, \ldots, k+1, k), & \text { if } n \text { is even and } 1 \leq k \leq n-1 \\
(n, n-2, \ldots, k+1, k), & \text { if } n \text { is odd and } 1 \leq k \leq n-2 \\
(n), & \text { if } n \text { is odd and } k=n-1\end{cases}
\end{aligned}
$$

Let $\mathbf{i}^{J}=\mathbf{i}_{1} \ldots \cdots \cdot \mathbf{i}_{n-1}$ and $\mathbf{i}_{J}=\mathbf{i}_{1}^{\prime} \cdots \cdots \cdot \mathbf{i}_{n-1}^{\prime}$. Then \mathbf{i}_{0} as the concatenation $\mathbf{i}^{J} \cdot \mathbf{i}_{J}$. We write $\mathbf{i}_{0}=\left(i_{1}, \ldots, i_{N}\right)$, where $i_{1}=n$, and put $\mathbf{i}^{J}=\left(i_{1}, \ldots, i_{M}\right), \mathbf{i}_{J}=\left(i_{M+1}, \ldots, i_{N}\right)$ with $N=n^{2}-n$ and $M=N / 2$. Throughout the paper, we set $\mathbf{B}:=\mathbf{B}_{\mathbf{i}_{0}}$. For $\mathbf{c}=\left(c_{\beta}\right) \in \mathbf{B}$, we also write

$$
c_{\beta_{k}}= \begin{cases}c_{\overline{j i}}, & \text { if } \beta_{k}=\epsilon_{i}+\epsilon_{j} \text { for } 1 \leq i<j \leq n \\ c_{j \bar{j},} & \text { if } \beta_{k}=\epsilon_{i}-\epsilon_{j} \text { for } 1 \leq i<j \leq n .\end{cases}
$$

Proposition 3.1.

(1) The reduced word \mathbf{i}_{0} is simply braided for any $i \in I$.
(2) For $i \in I \backslash\{n\}$ and $\mathbf{c} \in \mathbf{B}$, we have $\sigma_{i}(\mathbf{c})=\sigma_{i, 1}(\mathbf{c}) \cdot \sigma_{i, 2}(\mathbf{c}) \cdot \sigma_{i, 3}(\mathbf{c})$, where

$$
\begin{align*}
& \sigma_{i, 1}(\mathbf{c})=(\underbrace{-\cdots-}_{c_{\bar{n} \bar{i}}} \underbrace{+\cdots+}_{c_{\bar{n} \bar{i}+1}} \underbrace{-\cdots-}_{c_{\overline{n-1} \bar{i}}} \underbrace{+\cdots+}_{c_{\overline{n-1} \bar{i}+1}} \cdots \underbrace{-\cdots-}_{c_{\overline{i+2} \bar{i}}} \underbrace{+\cdots+}_{c_{\overline{i+2} \bar{i}}}), \\
& \sigma_{i, 2}(\mathbf{c})=(\underbrace{-\cdots-}_{c_{i \bar{i}-1}} \underbrace{+\cdots+}_{c_{i+1} \overline{i-1}} \underbrace{-\cdots-}_{c_{\bar{i} \overline{-2}}} \underbrace{+\cdots+}_{c_{i+1} \overline{i-2}} \cdots \underbrace{-\cdots=}_{c_{\bar{i} \overline{1}}} \underbrace{+\cdots}_{c_{\overline{i+1} \overline{1}}^{+\cdots+}}) \text {, } \tag{3.2}\\
& \sigma_{i, 3}(\mathbf{c})=(\underbrace{-\cdots-}_{c_{i+1 \overline{1}}} \underbrace{+\cdots+}_{c_{i \overline{1}}} \underbrace{-\cdots-}_{c_{i+1 \overline{1}}} \underbrace{+\cdots+}_{c_{i \overline{\overline{2}}}} \cdots \underbrace{-\cdots-}_{c_{i+1 \bar{i}-1}} \underbrace{+\cdots+}_{c_{i \bar{i}-1}} \underbrace{-\cdots-}_{c_{i+1 \bar{i}}}) .
\end{align*}
$$

Here $c_{a b}$ is assumed to be zero when it is not defined.
Remark 3.2. The crystal operator \widetilde{f}_{i} on \mathbf{B} can be described in the same way as in Theorem 2.1 with $\sigma_{i}(\mathbf{c})$ in Proposition 3.1 (see [9, Remark 3.3] for more details).

Set

$$
\begin{align*}
& \mathbf{B}^{J}=\left\{\mathbf{c}=\left(c_{\beta}\right) \in \mathbf{B} \mid c_{\beta}=0 \text { unless } \beta \in \Phi^{+}(J)\right\} \tag{3.3}\\
& \mathbf{B}_{J}=\left\{\mathbf{c}=\left(c_{\beta}\right) \in \mathbf{B} \mid c_{\beta}=0 \text { unless } \beta \in \Phi_{J}\right\}
\end{align*}
$$

which we regard them as subcrystals of \mathbf{B}, where we assume that $\widetilde{e}_{n} \mathbf{c}=\widetilde{f}_{n} \mathbf{c}=\mathbf{0}$ with $\varepsilon_{n}(\mathbf{c})=\varphi_{n}(\mathbf{c})=-\infty$ for $\mathbf{c} \in \mathbf{B}_{J}$. The subcrystal \mathbf{B}^{J} is the crystal of the quantum nilpotent subalgebra $U_{q}^{-}\left(w^{J}\right)$, where $w^{J}=s_{i_{1}} \cdots s_{i_{M}}$ with $\mathbf{i}^{J}=\left(i_{1}, \ldots, i_{M}\right)$, which can be viewed as a q-deformation of $U\left(\mathfrak{u}^{-}\right)$by definition.

Corollary 3.3. The map $\mathbf{B} \longrightarrow \mathbf{B}^{J} \otimes \mathbf{B}_{J}$ sending \mathbf{c} to $\mathbf{c}^{J} \otimes \mathbf{c}_{J}$ is an isomorphism of \mathfrak{g}-crystals.

3.2 Subcrystal B ${ }^{J}$

Let us consider the subcrystal \mathbf{B}^{J} in more details. Let Δ_{n} be the arrangements of dots in the plane to represent the $(n-1)$-th triangular number. We identify Δ_{n} with $\Phi^{+}(J)$ in such a way that $\epsilon_{k+1}+\epsilon_{l+1}, \epsilon_{k+1}+\epsilon_{l}$ and $\epsilon_{k}+\epsilon_{l}$ for $1 \leq k, l \leq n-1$ are the vertices of a triangle of minimal shape in Δ_{n} as follows:

We also identify $\mathbf{c} \in \mathbf{B}^{J}$ with an array of $c_{\beta}{ }^{\prime}$ s in \mathbf{c} with c_{β} at the corresponding dot in Δ_{n}.
Lemma 3.4. We have $\mathbf{B}^{J}=\left\{\mathbf{c} \mid \varepsilon_{i}^{*}(\mathbf{c})=0(i \in J)\right\}$.
For $s \geq 1$, let

$$
\begin{equation*}
\mathbf{B}^{J, s}:=\left\{\mathbf{c} \in \mathbf{B}^{J} \mid \varepsilon_{n}^{*}(\mathbf{c}) \leq s\right\} \tag{3.5}
\end{equation*}
$$

which is a subcrystal of \mathbf{B}^{J}. By Lemma 3.4 and [11, Proposition 8.2], we have

$$
\begin{equation*}
B\left(s \omega_{n}\right) \cong \mathbf{B}^{J, s} \otimes T_{s @_{n},} \quad \bigcup_{s \geq 1} \mathbf{B}^{J, s}=\mathbf{B}^{J} \tag{3.6}
\end{equation*}
$$

as \mathfrak{g}-crystals. By (3.6), \mathbf{B}^{J} is a regular \mathfrak{l}-crystal, that is, any connected component with respect to \widetilde{e}_{i} and \widetilde{f}_{i} for $i \in J$ is isomorphic to the crystal of an integrable highest weight $U_{q}(\mathfrak{l})$-module, say $B_{J}(\lambda)$ for some $\lambda=\sum_{i=1}^{n} \lambda_{i} \epsilon_{i} \in P$ with $\left(\lambda, \alpha_{i}\right) \in \mathbb{Z}_{+}$for $i \in J$. Then Proposition 3.1 enables us to decompose \mathbf{B}^{I} into l-crystals directly as follows, and hence the decomposition of $U_{q}\left(w^{J}\right)$ into irreducible $U_{q}(\mathfrak{l})$-modules.

Proposition 3.5. As an l-crystal, we have $\mathbf{B}^{J} \cong \bigsqcup_{\lambda} B_{J}(\lambda)$, where the union is over $\lambda=$ $\sum_{i=1}^{n} \lambda_{i} \epsilon_{i} \in P$ such that $0 \geq \lambda_{1}=\lambda_{2} \geq \lambda_{3}=\lambda_{4} \geq \cdots$.

3.3 Combinatorial description of ε_{n}^{*}

Let us give an explicit combinatorial description of ε_{n}^{*} on \mathbf{B}^{J}, whose proof is obtained by using the formula of Berenstein-Zelevinsky [1].

Definition 3.6. A path in Δ_{n} is a sequence $p=\left(\gamma_{1}, \ldots, \gamma_{s}\right)$ in $\Phi^{+}(J)$ for some $s \geq 1$ such that
(1) $\gamma_{1}, \ldots, \gamma_{s} \in \Phi^{+}(J)$,
(2) if $\gamma_{i}=\epsilon_{k}+\epsilon_{l+1}$ for some $k<l$, then $\gamma_{i+1}=\epsilon_{k+1}+\epsilon_{l+1}$ or $\epsilon_{k}+\epsilon_{l}$ (see (3.4)),
(3) $\gamma_{s}=\epsilon_{k}+\epsilon_{k+1}$ for some k.

For $\beta \in \Phi^{+}(J)$, a double path at β in Δ_{n} is a pair of paths $\mathbf{p}=\left(p_{1}, p_{2}\right)$ in Δ_{n} of the same length with $p_{1}=\left(\gamma_{1}, \ldots, \gamma_{s}\right)$ and $p_{2}=\left(\delta_{1}, \ldots, \delta_{s}\right)$ such that
(1) $\gamma_{1}=\delta_{1}=\beta$,
(2) γ_{i} is located to the strictly left of δ_{i} for $2 \leq i \leq s$,
(3) $\gamma_{s}=\epsilon_{k+1}+\epsilon_{k+2}, \delta_{s}=\epsilon_{k}+\epsilon_{k+1}$ for some $k \geq 1$.

Example 3.7. The followings are some examples of double paths \mathbf{p} at $\theta=\epsilon_{1}+\epsilon_{5}$ in Δ_{5}.

For $\mathbf{c} \in \mathbf{B}^{J}$ and a double path \mathbf{p}, let $\|\mathbf{c}\|_{\mathbf{p}}=\sum_{\beta \text { lying on } \mathbf{p}} c_{\beta}$.
Theorem 3.8. For $\mathbf{c} \in \mathbf{B}^{J}, \varepsilon_{n}^{*}(\mathbf{c})=\max \left\{\|\mathbf{c}\|_{\mathbf{p}} \mid \mathbf{p}\right.$ is a double path at θ in $\left.\Delta_{n}\right\}$, where $\theta=$ $\epsilon_{1}+\epsilon_{n}$.

3.4 Realization of $K R$ crystals $B^{n, s}$

Let $\hat{\mathfrak{g}}$ be an affine Kac-Moody algebra of type $D_{n}^{(1)}$ with $\hat{I}=\{0,1, \ldots, n\}$ the index set for the simple roots.

For $r \in\{0, n\}$, let $\hat{\mathfrak{g}}_{r}$ be the subalgebra of $\hat{\mathfrak{g}}$ corresponding to $\left\{\alpha_{i} \mid i \in \hat{I} \backslash\{r\}\right\}$. Then $\hat{\mathfrak{g}}_{0}=\mathfrak{g}$, and $\hat{\mathfrak{g}}_{0} \cap \hat{\mathfrak{g}}_{n}=\mathfrak{l}$. Let $\hat{P}=\bigoplus_{i \in \hat{I}} \mathbb{Z} \Lambda_{i} \oplus \mathbb{Z} \delta$ be the weight lattice of $\hat{\mathfrak{g}}$, where δ is the positive imaginary null root and Λ_{i} is the i-th fundamental weight. We regard $P=\bigoplus_{i=1}^{n} \mathbb{Z} \epsilon_{i}$ as a sublattice of $\hat{P} / \mathbb{Z} \delta$ by putting $\epsilon_{1}=\Lambda_{1}-\Lambda_{0}, \epsilon_{2}=\Lambda_{2}-\Lambda_{1}-\Lambda_{0}$, $\epsilon_{k}=\Lambda_{k}-\Lambda_{k-1}$ for $k=3, \ldots, n-2, \epsilon_{n-1}=\Lambda_{n-1}+\Lambda_{n}-\Lambda_{n-2}$ and $\epsilon_{n}=\Lambda_{n}-\Lambda_{n-1}$. In particular, we have $\alpha_{0}=-\epsilon_{1}-\epsilon_{2}$ in P. If ω_{i}^{\prime} are the fundamental weights for $\hat{\mathfrak{g}}_{n}$ for $i \in \hat{I} \backslash\{n\}$, then $\omega_{i}^{\prime}=\omega_{i}$ for $i \in \hat{I} \backslash\{0, n\}$ and $\omega_{0}^{\prime}=-\omega_{n}$.

For $\mathbf{c} \in \mathbf{B}^{J}$, define

$$
\begin{align*}
& \widetilde{e}_{0} \mathbf{c}=\mathbf{c}+\mathbf{1}_{\epsilon_{1}+\epsilon_{2}}, \quad \widetilde{f}_{0} \mathbf{c}= \begin{cases}\mathbf{c}-\mathbf{1}_{\epsilon_{1}+\epsilon_{2}}, & \text { if } c_{\epsilon_{1}+\epsilon_{2}}>0, \\
\mathbf{0}, & \text { otherwise },\end{cases} \tag{3.7}\\
& \varphi_{0}(\mathbf{c})=\max \left\{k \mid \widetilde{f}_{0}^{k} \mathbf{c} \neq \mathbf{0}\right\}, \quad \varepsilon_{0}(\mathbf{c})=\varphi_{0}(\mathbf{c})-\left(\operatorname{wt}(\mathbf{c}), \alpha_{0}\right) .
\end{align*}
$$

Lemma 3.9. The set \mathbf{B}^{J} is a $\hat{\mathfrak{g}}$-crystal with respect to $\mathrm{wt}, \varepsilon_{i}, \varphi_{i}, \widetilde{e}_{i}, \widetilde{f}_{i}$ for $i \in \hat{I}$, where wt is the restriction of $\mathrm{wt}: \mathbf{B} \longrightarrow P$ to \mathbf{B}^{J}.

Theorem 3.10. For $s \geq 1, \mathbf{B}^{J, s} \otimes T_{s \omega_{n}}$ is a regular $\hat{\mathfrak{g}}$-crystal and $\mathbf{B}^{J, s} \otimes T_{s \omega_{n}} \cong B^{n, s}$, where $B^{n, s}$ is the Kirillov-Reshetikhin crystal of type $D_{n}^{(1)}$ associated to $s \omega_{n}$ (cf.[3]).
Remark 3.11. By Theorem 3.8, we have $\mathbf{B}^{J, s}=\bigcap_{\mathbf{p}}\left\{\mathbf{c} \in \mathbf{B}^{J}\| \| \mathbf{c} \|_{\mathbf{p}} \leq s\right\}$, where \mathbf{p} runs over the double paths in Δ_{n}. This gives a polytope realization of the $K R$ crystal $B^{n, s}$. Also, we note that by construction, the crystal \mathbf{B}^{J} is the direct limit of $\left\{\mathbf{B}^{J, s}: s \in \mathbb{Z}_{+}\right\}$. By [4], $\left\{B^{n, s}\right\}$ is a family of perfect $K R$ crystals. It is conjectured that $\left\{B^{n, s}\right\}$ has the limit in the sense of [12], that is, $\left\{B^{n, s}\right\}$ is a coherent family.

4 RSK correspondence for type D and affine crystals

4.1 Burge correspondence

Let \mathscr{P} be the set of partitions $\lambda=\left(\lambda_{i}\right)_{i \geq 1}$, which are often identified with Young diagrams. Let $\lambda^{\prime}=\left(\lambda_{i}^{\prime}\right)_{i \geq 1}$ be the conjugate of λ, and let λ^{π} be the skew Young diagram obtained by 180°-rotation of λ. Let $\ell(\lambda)$ denote the length of λ, and let $\mathscr{P}_{n}=\{\lambda \mid \ell(\lambda) \leq$ $n\}$. Let $[\bar{n}]:=\{\bar{n}<\cdots<\overline{1}\}$ be a linearly ordered set. Let \mathcal{W} be the set of finite words in $[\bar{n}]$. For a skew Young diagram λ^{π}, let $S S T_{[\bar{n}]}\left(\lambda^{\pi}\right)$ or simply $\operatorname{SST}\left(\lambda^{\pi}\right)$ denote the set of semistandard tableaux of shape λ^{π} with entries in $[\bar{n}]$. For $T \in \operatorname{SST}\left(\lambda^{\pi}\right)$, let $w(T)$ be a word in \mathcal{W} obtained by reading the entries of T row by row from top to bottom, and from right to left in each row, and let $\operatorname{sh}(T)$ denote the shape of T. Note that we use English convention for partitions and tableaux. Let T^{\nwarrow} be the unique semistandard tableau such that $\operatorname{sh}\left(T^{\nwarrow}\right) \in \mathscr{P}$ and $w\left(T^{\nwarrow}\right)$ is Knuth equivalent to $w(T)$. We define T^{\searrow} in a similar way such that $\operatorname{sh}\left(T^{\searrow}\right) \in \mathscr{P}^{\pi}$. Note that if $\operatorname{sh}\left(T^{\nwarrow}\right)=v$, then $\operatorname{sh}\left(T^{\searrow}\right)=v^{\pi}$. For $a \in[\bar{n}]$ and $U \in S S T(\lambda)$ with $\lambda \in \mathscr{P}_{n}$, let $a \rightarrow U$ be the tableau obtained by applying the Schensted's column insertion of a into U. Similarly, for $V \in \operatorname{SST}\left(\lambda^{\pi}\right)$ and $b \in[\bar{n}]$, let $V \leftarrow b$ be the tableau obtained by applying the Schensted's column insertion of b into V in a reverse way starting from the rightmost column. For $w=w_{1} \ldots w_{r} \in \mathcal{W}$, we define $P(w)=\left(w_{r} \rightarrow\left(\cdots\left(w_{2} \rightarrow w_{1}\right) \cdots\right)\right)$. Note that $P(w)^{\searrow}=\left(\left(w_{r} \leftarrow w_{r-1}\right) \leftarrow \cdots \leftarrow w_{1}\right)$.

Let us recall a variation of RSK correspondence for type D [2]. Set

$$
\begin{equation*}
\mathcal{T}^{\searrow}:=\bigsqcup_{\substack{\lambda \in \mathscr{P}_{n} \\ \lambda^{\prime}: \text { even }}} \operatorname{SST}\left(\lambda^{\pi}\right), \quad \mathcal{T}^{\wedge}:=\bigsqcup_{\substack{\lambda \in \mathscr{P}_{n} \\ \lambda^{\prime}: \text { even }}} \operatorname{SST}(\lambda) \tag{4.1}
\end{equation*}
$$

where we say that λ^{\prime} is even if each part of λ^{\prime} is even Let Ω be the set of biwords $(\mathbf{a}, \mathbf{b}) \in \mathcal{W} \times \mathcal{W}$ such that
(1) $\mathbf{a}=a_{1} \cdots a_{r}$ and $\mathbf{b}=b_{1} \cdots b_{r}$ for some $r \geq 0$,
(2) $a_{i}<b_{i}$ for $1 \leq i \leq r$,
(3) $\left(a_{1}, b_{1}\right) \leq \cdots \leq\left(a_{r}, b_{r}\right)$,
where $(a, b)<(c, d)$ if and only if $(a<c)$ or ($a=c$ and $b>d$) for $(a, b),(c, d) \in \mathcal{W} \times \mathcal{W}$. We denote by $\mathbf{c}(\mathbf{a}, \mathbf{b})$ the unique element in \mathbf{B}^{J} corresponding to $(\mathbf{a}, \mathbf{b}) \in \Omega$ such that $c_{a b}=\left|\left\{k \mid\left(a_{k}, b_{k}\right)=(a, b)\right\}\right|$.

For $(\mathbf{a}, \mathbf{b}) \in \Omega$ with $\mathbf{a}=a_{1} \cdots a_{r}$ and $\mathbf{b}=b_{1} \cdots b_{r}$, we define a sequence of tableaux $P_{r}, P_{r-1}, \ldots, P_{1}$ inductively as follows:
(1) let P_{1} be a vertical domino $\left[\begin{array}{l}\frac{a_{r}}{b_{r}}\end{array}\right.$,
(2) if P_{k+1} is given for $1 \leq k \leq r-1$, then define P_{k} to be the tableau obtained by first applying the column insertion to get $P_{k+1} \leftarrow b_{k}$, and then adding a_{k} at the conner of $P_{k+1} \leftarrow b_{k}$ located above the box $\operatorname{sh}\left(P_{k+1} \leftarrow b_{k}\right) / \operatorname{sh}\left(P_{k+1}\right)$.

We put $P^{\searrow}(\mathbf{a}, \mathbf{b}):=P_{1}$. It is not difficult to see from the definition that $P^{\searrow}(\mathbf{a}, \mathbf{b}) \in$ $\operatorname{SST}\left(\lambda^{\pi}\right)$ for some $\lambda \in \mathscr{P}$ such that λ^{\prime} is even.

For $\mathbf{c} \in \mathbf{B}^{J}$, let $P^{\searrow}(\mathbf{c})=P^{\searrow}(\mathbf{a}, \mathbf{b})$ where $\mathbf{c}=\mathbf{c}(\mathbf{a}, \mathbf{b})$. Since the map $(\mathbf{a}, \mathbf{b}) \mapsto P^{\searrow}(\mathbf{a}, \mathbf{b})$ is a bijection from Ω to \mathcal{T}^{\searrow} [2], we have a bijection

$$
\begin{equation*}
\kappa^{\searrow}: \mathbf{B}^{J} \longrightarrow \mathcal{T}^{\searrow}, \tag{4.2}
\end{equation*}
$$

where $\kappa^{\searrow}(\mathbf{c})=P^{\searrow}(\mathbf{c})$. Similarly, let Ω^{\prime} be the set of biwords $(\mathbf{a}, \mathbf{b}) \in \mathcal{W} \times \mathcal{W}$ satisfying the same conditions as in Ω except that $<$ is replaced by $<^{\prime}$, where $(a, b)<^{\prime}(c, d)$ if and only if $(b<d)$ or $(b=d$ and $a<c)$ for (a, b) and $(c, d) \in \mathcal{W} \times \mathcal{W}$. We define $\mathbf{c}^{\prime}(\mathbf{a}, \mathbf{b})$ in the same way as in $\mathbf{c}(\mathbf{a}, \mathbf{b})$. Given $(\mathbf{a}, \mathbf{b}) \in \Omega^{\prime}$ with $\mathbf{a}=a_{1} \cdots a_{r}$ and $\mathbf{b}=b_{1} \cdots b_{r}$, define a sequence of tableaux $P_{1}, P_{2}, \ldots, P_{r}$ inductively as follows:
(1) let P_{1} be a vertical domino $\left[\begin{array}{l}\frac{a_{1}}{b_{1}}\end{array}\right.$,
(2) if P_{k-1} is given for $2 \leq k \leq r$, then define P_{k} to be the tableau obtained by first applying the column insertion to get $a_{k} \rightarrow P_{k-1}$, and then adding b_{k} at the conner of $a_{k} \rightarrow P_{k-1}$ located below the box $\operatorname{sh}\left(a_{k} \rightarrow P_{k-1}\right) / \operatorname{sh}\left(P_{k-1}\right)$,
and put $P^{\nwarrow}(\mathbf{a}, \mathbf{b}):=P_{r}$. For $\mathbf{c} \in \mathbf{B}^{J}$, let $P^{\nwarrow}(\mathbf{c})=P^{\nwarrow}(\mathbf{a}, \mathbf{b})$ where $\mathbf{c}=\mathbf{c}^{\prime}(\mathbf{a}, \mathbf{b})$. Then we also have a bijection

$$
\begin{equation*}
\mathcal{K}^{\nwarrow}: \mathbf{B}^{J} \longrightarrow \mathcal{T}^{\nwarrow} \tag{4.3}
\end{equation*}
$$

where $\kappa^{\nwarrow}(\mathbf{c})=P^{\nwarrow}(\mathbf{c})$

4.2 Isomorphism of affine crystals

We regard $[\bar{n}]=\{\bar{n}<\cdots<\overline{1}\}$ as the crystal of dual natural representation of \mathfrak{l} with $\mathrm{wt}(\bar{k})=-\epsilon_{k}$. Then \mathcal{W} is a regular l-crystal, where $w=w_{1} \ldots w_{r}$ is identified with $w_{1} \otimes \cdots \otimes w_{r}$. For $\lambda \in \mathscr{P}_{n}, \operatorname{SST}(\lambda)$ is a regular l-crystal with lowest weight $-\sum_{i=1}^{n} \lambda_{i} \epsilon_{i}$, where T is identified with $w(T)$. In particular \mathcal{T}^{\searrow} and \mathcal{T}^{\nwarrow} are regular \mathfrak{l}-crystals.

Let us recall the $\hat{\mathfrak{g}}_{0}$-crystal structure on \mathcal{T}^{\searrow} [15, Section 5.2]. Let $T \in \mathcal{T}^{\searrow}$ be given. For $k \geq 1$, let t_{k} be the entry in the top of the k-th column of T (enumerated from the right). Consider $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots\right)$, where

$$
\sigma_{k}= \begin{cases}+, & \text { if } t_{k}>\overline{n-1} \text { or the } k \text {-th column is empty, } \\ -, & \text { if the } k \text {-th column has both } \overline{n-1} \text { and } \bar{n} \text { as its entries, } \\ \cdot, & \text { otherwise. }\end{cases}
$$

Then $\widetilde{e}_{n} T$ is obtained from T by removing $\sqrt{\frac{n}{n-1}}$ in the column corresponding to the rightmost - in $\sigma^{\text {red }}$ (see Section 2.2 for $\sigma^{\text {red }}$). If there is no such - sign, then we define $\widetilde{e}_{n} T=0$, and $\widetilde{f}_{n} T$ is obtained from T by adding $\sqrt{\frac{n}{n-1}}$ column corresponding to the leftmost + in $\sigma^{\text {red } . ~ H e n c e ~} \mathcal{T}^{\searrow}$ is a $\hat{\mathfrak{g}}_{0}$-crystal with respect to $w t, \varepsilon_{i}, \varphi_{i}, \widetilde{e}_{i}, \widetilde{f}_{i}(i \in \hat{I} \backslash\{0\})$, where $\varepsilon_{n}(T)=\max \left\{k \mid \tilde{e}_{n}^{k} T \neq \mathbf{0}\right\}$ and $\varphi_{n}(T)=\varepsilon_{n}(T)+\left(\mathrm{wt}(T), \alpha_{n}\right)$.

Similarly, we have a $\hat{\mathfrak{g}}_{n}$-crystal structure on \mathcal{T}^{\nwarrow} [15, Section 5.2]. Let $T \in \mathcal{T}^{\nwarrow}$ be given. For $k \geq 1$, let t_{k} be the entry in the bottom of the k-th column of T (enumerated from the left). Consider $\sigma=\left(\ldots, \sigma_{2}, \sigma_{1}\right)$, where

$$
\sigma_{k}= \begin{cases}-, & \text { if } t_{k}<\overline{2} \text { or the } k \text {-th column is empty, } \\ +, & \text { if the } k \text {-th column has both } \overline{1} \text { and } \overline{2} \text { as its entries, } \\ \cdot, & \text { otherwise. }\end{cases}
$$

Then $\widetilde{e}_{0} T$ is given by adding $\sqrt{\frac{2}{1}}$ to the bottom of the column corresponding to the rightmost - in $\sigma^{\text {red }}$, and $\widetilde{f}_{0} T$ is obtained from T by removing $\frac{{ }^{2}}{\overline{1}}$ in the column corresponding to the left-most + in $\sigma^{\text {red }}$. If there is no such + sign, then we define $\widetilde{f}_{0} T=\mathbf{0}$. Hence \mathcal{T}^{\nwarrow} is a $\hat{\mathfrak{g}}_{n}$-crystal with respect to $w t, \varepsilon_{i}, \varphi_{i}, \widetilde{e}_{i}, \widetilde{f}_{i}(i \in \hat{I} \backslash\{n\})$, where $\varphi_{0}(T)=\max \left\{k \mid \widetilde{f}_{0}^{k} T \neq\right.$ $0\}$ and $\varepsilon_{0}(T)=\varphi_{0}(T)-\left(w t(T), \alpha_{0}\right)$.
Theorem 4.1. The bijection κ^{\star} in (4.2) is an isomorphism of $\hat{\mathfrak{g}}_{0}$-crystals, and the bijection κ^{\nwarrow} in (4.3) is an isomorphism of $\hat{\mathfrak{g}}_{n}$-crystals.

Remark 4.2. It would be interesting to compare Theorem 4.1 with the result in [20].
For a semistandard tableau T of skew shape, let $[T]$ denote the equivalence class of T with respect to Knuth equivalence. Let $\mathcal{T}=\left\{[T] \mid T \in \mathcal{T}^{\searrow}\right\}=\left\{[T] \mid T \in \mathcal{T}^{\nwarrow}\right\}$.

If we define $\widetilde{x}_{i}[T]=\left[\widetilde{x}_{0} T^{\nwarrow}\right]$ when $i=0, \widetilde{x}_{i}[T]=\left[\widetilde{x}_{n} T^{\searrow}\right]$ when $i=n$, and $\widetilde{x}_{i}[T]=\left[\widetilde{x}_{i} T\right]$ otherwise for $i \in \hat{I}$ and $x=e, f$ (we assume that $[\mathbf{0}]=\mathbf{0}$), then the set \mathcal{T} is a $\hat{\mathfrak{g}}$-crystal with respect to $\widetilde{e}_{i}, \widetilde{f}_{i}(i \in I)$, where $\mathrm{wt}, \varepsilon_{i}$, and φ_{i} are induced from either \mathcal{T}^{\searrow} or \mathcal{T}^{\wedge} [15].

Corollary 4.3. The map $\kappa: \mathbf{B}^{J} \longrightarrow \mathcal{T}$ sending \mathbf{c} to $\left[P^{\nwarrow}(\mathbf{c})\right]=\left[P^{\searrow}(\mathbf{c})\right]$ is an isomorphism of $\mathfrak{\mathfrak { g }}$-crystals.

4.3 Shape formula

For $\mathbf{c} \in \mathbf{B}^{J}$, let $\lambda(\mathbf{c})=\left(\lambda_{1}(\mathbf{c}) \geq \ldots \geq \lambda_{\ell}(\mathbf{c})\right)$ be the partition corresponding to the regular \mathfrak{l}-subcrystal of \mathbf{B}^{J} including \mathbf{c}, that is, $\lambda(\mathbf{c})=\operatorname{sh}\left(\kappa^{\nwarrow}(\mathbf{c})\right)$ by Theorem 4.1. Note that $\ell=2\left[\frac{n}{2}\right]$ and $\lambda_{2 i-1}(\mathbf{c})=\lambda_{2 i}(\mathbf{c})$ for $1 \leq i \leq\left[\frac{n}{2}\right]$.

Theorem 4.4. For $\mathbf{c} \in \mathbf{B}^{J}$ and $1 \leq l \leq\left[\frac{n}{2}\right]$, we have

$$
\lambda_{1}(\mathbf{c})+\lambda_{3}(\mathbf{c})+\cdots+\lambda_{2 l-1}(\mathbf{c})=\max _{\mathbf{p}_{1}, \ldots, \mathbf{p}_{l}}\left\{\|\mathbf{c}\|_{\mathbf{p}_{1}}+\cdots+\|\mathbf{c}\|_{\mathbf{p}_{l}}\right\}
$$

where $\mathbf{p}_{1}, \ldots, \mathbf{p}_{l}$ are mutually non-intersecting double paths in Δ_{n} and each \mathbf{p}_{i} starts at the $(2 i-1)$-th row of Δ_{n} for $1 \leq i \leq l$.

This formula can be viewed as an analogue of Greene's formula for the shape of a tableau corresponding to a biword under usual RSK given in terms of disjoint weakly decreasing subwords [6].

References

[1] A. Berenstein and A. Zelevinsky. "Tensor product multiplicities, canonical bases and totally positive varieties". Invent. Math. 143.1 (2001), pp. 77-128. Link.
[2] W. H. Burge. "Four correspondences between graphs and generalized Young tableaux". J. Combin. Theory Ser. A 17.1 (1974), pp. 12-30. Link.
[3] G. Fourier, M. Okado, and A. Schilling. "Kirillov-Reshetikhin crystals for nonexceptional types". Adv. Math. 222.3 (2009), pp. 1080-1116. Link.
[4] G. Fourier, M. Okado, and A. Schilling. "Perfectness of Kirillov-Reshetikhin crystals for nonexceptional types". Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications. Contemporary Mathematics 506. American Mathematical Society, 2010, pp. 127143. Link.
[5] W. Fulton. "Young Tableaux, with Application to Representation Theory and Geometry". Cambridge Univ. Press (1997).
[6] C. Greene. "An extension of Schensted's theorem". Adv. Math. 14.2 (1974), pp. 254-265. Link.
[7] J. Hong and S.-J Kang. Introduction to Quantum Groups and Crystal Bases. Graduate Studies in Mathematics 42. American Mathematical Society, 2002. Link.
[8] R. Howe. "Remarks on classical invariant theory". Trans. Amer. Math. Soc. 313 (1989), pp. 539-570. Link.
[9] I.-S. Jang and J.-H. Kwon. "Quantum nilpotent subalgebras of classical quantum groups and affine crystals". J. Combin. Theory Ser. A 168 (2019), pp. 219-254. Link.
[10] M. Kashiwara. "On crystal bases of the q-analogue of universal enveloping algebras". Duke Math. J. 63 (1991), pp. 465-516. Link.
[11] M. Kashiwara. "On crystal bases". CMS Conf. Proc. 16 (1995), pp. 155-197.
[12] M. Kashiwara, T. Nakashima, and M. Okado. "Affine geometric crystals and limit of perfect crystals". Trans. Amer. Math. Soc. 360 (2008), pp. 3645-3686. Link.
[13] Y. Kimura. "Quantum unipotent subgroup and dual canonical basis". Kyoto J. Math. 52 (2012), pp. 277-331. Link.
[14] J.-H. Kwon. "Demazure crystals of generalized Verma modules and a flagged RSK correspondence". J. Algebra 322 (2009), pp. 2150-2179. Link.
[15] J.-H. Kwon. "RSK correspondence and classically irreducible Kirillov-Reshetikhin crystals". J. Combin. Theory Ser. A 120 (2013), pp. 433-452. Link.
[16] A. Lascoux. "Double crystal graphs. In: Joseph A., Melnikov A., Rentschler R. (eds) Studies in Memory of Issai Schur". Progr. Math. 210 (2003), pp. 95-114. Link.
[17] G. Lusztig. "Canonical bases arising from quantized universal enveloping algebras". J. Amer. Math. Soc. 3 (1990), pp. 447-498. Link.
[18] G. Lusztig. Introduction to Quantum Groups. Progress in Mathematics 110. Boston, MA: Birkhäuser, 1993.
[19] Y. Saito. "PBW basis of quantized universal enveloping algebras". Publ. Res. Inst. Math. Sci. 30 (1994), pp. 209-232. Link.
[20] B. Salisbury, A. Schultze, and P. Tingley. "PBW bases and marginally large tableaux in type D". 2016. arXiv:1606.02517.
[21] B. Salisbury, A. Schultze, and P. Tingley. "Combinatorial descriptions of the crystal structure on certain PBW bases". Trans. Groups 23 (2018), pp. 501-525. Link.

[^0]: *is_jang@snu.ac.kr
 †jaehoonkw@snu.ac.kr
 This work was supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1501-01.

