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Abstract. We introduce cubic coordinates, which are integer words encoding intervals
in the Tamari lattices. Cubic coordinates are in bijection with interval-posets, them-
selves known to be in bijection with Tamari intervals. We show that in each degree the
set of cubic coordinates forms a lattice, isomorphic to the lattice of Tamari intervals.
Geometric realizations are naturally obtained by placing cubic coordinates in space,
highlighting some of their properties. Finally, we consider the cellular structure of
these realizations.
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1 Introduction

The Tamari lattices are partial orders having extremely rich combinatorial and algebraic
properties. These partial orders are defined on the set of binary trees and rely on the
rotation operation [12]. We are interested in the intervals of these lattices, meaning the
pairs of comparable binary trees. Tamari intervals of size n also form a lattice. The
number of these objects is given by a formula that was proved by Chapoton [4]:

2(4n + 1)!
(n + 1)!(3n + 2)!

.

Strongly linked with associahedra, Tamari lattices have been recently generalized in
many ways [1, 10]. In this process, the number of intervals of these generalized lattices
have also been enumerated through beautiful formulas [3, 7]. Many bijections between
Tamari intervals of size n and other combinatorial objects are known. For instance, a
bijection with planar triangulations is presented by Bernardi and Bonichon in [2]. It
has been proved by Châtel and Pons that Tamari intervals are in bijection with interval-
posets of the same size [6].

We provide in this paper a new bijection with Tamari intervals, which is inspired
by interval-posets. More precisely, we first build two words of size n from the Tamari
diagrams [9] of a binary tree. Then, if they satisfy a certain property of compatibility,
we build a Tamari interval diagram from these two words. We show that Tamari inter-
val diagrams and interval-posets are in bijection. Then, we propose a new encoding of
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Tamari intervals, by building (n− 1)-tuples of numbers from Tamari interval diagrams.
These tuples we refer to as cubic coordinates. This new coding has two obvious virtues:
it is very compact and it gives a way of comparing in a simple manner two Tamari inter-
vals, through a fast algorithm. On the other hand, some properties of Tamari intervals
translate nicely in the setting of cubic coordinates. For instance, synchronized Tamari
intervals [10] become cubic coordinates with no zero entry. Besides, cubic coordinates
provide naturally a geometric realization of the lattice of Tamari intervals, by seeing
them as space coordinates. Indeed, all cubic coordinates of size n can be placed in the
space Rn−1. By drawing their cover relations, we obtain an oriented graph. This gives us
a realization of cubic coordinate lattices, which we call cubic realization. This realization
leads us to many questions, in particular about the cells it contains.

This paper is organized as follows. In Section 2, we define Tamari interval diagrams
from Tamari diagrams. Then we give a bijection between the set of Tamari interval
diagrams and the set of interval-posets. Subsequently, we define in Section 3 cubic
coordinates, and build a bijection between these and Tamari interval diagrams. By using
these two bijections, and after endowing the set of cubic coordinates with a partial order
structure, we show in Section 4 that there is an isomorphism of posets between cubic
coordinate posets and Tamari interval lattices. Finally, the cubic realization and the
cells it contains make the subject of Section 5. We also show here how to associate a
synchronized cubic coordinate with each cell.

Some proofs of the presented results are omitted and some others are sketched in
this extended abstract.

Notations. Throughout this article, for all words u, we denote by ui the i-th letter of
u. We use the notation [n] to denote the set {1, . . . , n}.

2 Tamari interval diagrams

In this section, we recall the definition of Tamari diagrams [9] and generalize this notion
in order to define Tamari interval diagrams. Then, we establish a bijection between the
set of Tamari interval diagrams and the set of interval-posets.

Definition 2.1. A Tamari diagram is a word u = u1u2 . . . un of integers such that

(i) 0 6 ui 6 n− i for all i ∈ [n];

(ii) ui+j 6 ui − j for all i ∈ [n] and 0 6 j 6 ui.

The size of a Tamari diagram is its number of letters.

For instance, the fourteen Tamari diagrams of size 4 are

0000, 0010, 0100, 0200, 0210, 1000, 1010, 2000, 2100, 3000, 3010, 3100, 3200, 3210.
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The set of Tamari diagrams of size n is in bijection with the set of binary trees of the
same size [9]. In the sequel, we need to encode a pair of binary trees with n nodes by
two words of size n. To this aim, we introduce here dual Tamari diagrams. The first
binary tree of the pair is encoded by its Tamari diagram and the second is encoded by
its dual Tamari diagram.

Definition 2.2. A dual Tamari diagram is a word v = v1v2 . . . vn of integers such that

(i) 0 6 vi 6 i− 1 for all i ∈ [n];

(ii) vi−j 6 vi − j for all i ∈ [n] and 0 6 j 6 vi.

The size of a dual Tamari diagram is its number of letters.

A word v = v1v2 . . . vn is a dual Tamari diagram if and only if its reversal is a Tamari
diagram. We can use for Tamari diagrams and dual Tamari diagrams the graphical
representation proposed in [8]. The value of a letter of both diagrams gives the height
of the corresponding column. Condition (ii) of Definition 2.1 (resp. (ii) of Definition 2.2)
translates in the following way on the drawing: from each column, one draws a dotted
line of slope −1 (resp. 1), and the column to its right (resp. its left) must not cross this
line. An example is given in Figure 2.1.

Figure 2.1: Representation of the Tamari diagram 9021043100 (left) and of the dual Tamari
diagram 0010040002 (right), both of size 10.

Definition 2.3. Let u be a Tamari diagram of size n and v be a dual Tamari diagram of size n.
The diagrams u and v are compatible if for all 1 6 i < j 6 n such that j− i 6 ui, we have
vj < j− i.

If u and v are compatible, then the pair (u, v) is a Tamari interval diagram. The set of
Tamari interval diagrams of size n is denoted by T IDn.

For example, the two diagrams of Figure 2.1 are compatible. Note that Definition 2.3
implies in particular that either ui = 0 or vi+1 = 0.
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(a) Tamari interval diagram.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

(b) Interval-poset.

Figure 2.2: Representation of the Tamari interval diagram (9021043100, 0010040002) of size 10
and its corresponding interval-poset.

As previously, we draw Tamari interval diagrams through columns, as shown in
Figure 2.2a which displays the Tamari interval diagram (9021043100, 0010040002). The
Tamari diagram u is drawn in blue (under) and its dual v is drawn in red (over).

Let χ be the map sending a Tamari interval diagram (u, v) of size n to the binary
relation

({x1, . . . , xn},C) , (2.1)

where for all i ∈ [n] and 0 6 l 6 ui, xi+l C xi, and for all i ∈ [n] and 0 6 k 6 vi, xi−k C xi.
We recall that an interval-poset P of size n is a partial order C on the set {x1, . . . , xn}

such that, for i < k, if xk C xi then for all xj such that i < j < k, one has xj C xi, and if
xi C xk then for all xj such that i < j < k, one has xj C xk [6] (see Figure 2.2b for instance).
We denote IPn the set of interval-posets of size n.

Theorem 2.4. The application χ is a bijection from T IDn to IPn.

Proof. We set P = χ(u, v). First, we check that P satisfies all axioms of the definition of
interval-posets. Then we show that χ is surjective: for every interval-poset P, the pair of
words (u1u2 . . . un, v1v2 . . . vn) ∈Nn ×Nn, where for all i, j ∈ [n],

ui = #{xj ∈ P : xj C xi and i < j}, (2.2)

vj = #{xi ∈ P : xi C xj and i < j}, (2.3)

has image P and is a Tamari interval diagram. The proof that χ is injective is direct.
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3 Cubic coordinates

We now build the set of cubic coordinates and provide a bijection between this set and
the set of Tamari interval diagrams. We conclude this section by reviewing some prop-
erties of cubic coordinates.

Let (u, v) ∈ T IDn. We build a (n − 1)-tuple (u1 − v2, u2 − v3, . . . , un−1 − vn) from
letters of (u, v). This (n − 1)-tuple can be defined by using the definition of Tamari
interval diagrams.

Definition 3.1. Let c be a (n− 1)-tuple with entries in Z. We say that c is a cubic coordinate
if the pair (u, v), where u is the word defined by un = 0 and for all i ∈ [n− 1] by

ui = max(ci, 0),

and v is the word defined by v1 = 0 and for all 2 6 i 6 n by

vi = |min(ci−1, 0)|,

is a Tamari interval diagram. The size of a cubic coordinate is its number of entries plus one. The
set of cubic coordinates of size n is denoted by CCn.

For example, in Figure 2.2, the Tamari interval diagram has for cubic coordinate
(9,−1, 2, 1,−4, 4, 3, 1,−2).

Let φ be the application which maps a cubic coordinate c to a Tamari interval diagram
as stated in Definition 3.1.

Theorem 3.2. The application φ : CCn → T IDn is bijective.

Proof. Let c, c′ ∈ CCn such that c 6= c′. Then, there is an entry ci 6= c′i, with i ∈ [n− 1].
By the definition of the application φ, there is a letter ui 6= u′i, or a letter vi+1 6= v′i+1,
meaning that (u, v) 6= (u′, v′). This shows the injectivity of φ.

Let (u, v) ∈ T IDn and let c = (u1 − v2, u2 − v3, . . . , un−1 − vn) be the (n− 1)-tuple
whose entries are given by the difference ui − vi+1, for all i ∈ [n− 1]. If ui 6= 0 then by
Definition 2.3, vi+1 = 0, so we have φ(c) = (u, v). As (u, v) is a Tamari interval diagram
by hypothesis and by Definition 3.1, the application φ is surjective.

Lemma 3.3. Let c ∈ CCn with ci 6= 0 for some i ∈ [n− 1]. We denote by c′ the (n− 1)-tuple
such that c′i = 0 and all entries having indices different from i are the ones of c. Then c′ is a cubic
coordinate.

Proof. We set (u, v) = φ(c′) and c′i = 0. Then we can check all axioms of Definitions 2.1
to 2.3 for (u, v) with the pair of letters (ui, vi+1) = (0, 0).

Definition 3.4. A cubic coordinate c of size n is synchronized if for all i ∈ [n− 1], ci 6= 0. The
set of synchronized cubic coordinates of size n is denoted by CCsync

n .
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This definition can be translated in terms of Tamari interval diagrams: a Tamari
interval diagram (u, v) of size n is synchronized if for all i ∈ [n− 1], ui 6= 0 or vi+1 6= 0.

We recall that a Tamari interval [S, T] is synchronized if and only if the binary trees
S and T have the same canopy [10]. Let T In be the set of Tamari intervals of size n and
ρ be the bijection from IPn to T In [6].

Proposition 3.5. Let (u, v) ∈ T IDn. The Tamari interval diagram (u, v) is synchronized if
and only if ρ(χ(u, v)) = [S, T] is a synchronized Tamari interval.

Proof. Arguing by contradiction, we translate the fact that ui = 0 and vi+1 = 0 to the
trees S and T, and deduce that their canopies are distinct. Reciprocally, if the canopies
of S and of T are distinct, we can find an index i ∈ [n] such that ui = 0 and vi+1 = 0.

Definition 3.6. A Tamari interval diagram (u, v) of size n is new if the following conditions are
satisfied:

(i) 0 6 ui 6 n− i− 1 for all i ∈ [n− 1];

(ii) 0 6 vj 6 j− 2 for all j ∈ {2, . . . , n};

(iii) uk < l − k− 1 or vl < l − k− 1 for all k, l ∈ [n] such that k + 1 < l.

The definition of new interval-posets is given in [11]. The three conditions of this
original definition imply the three conditions of Definition 3.6 and reciprocally. Then,
we have the following proposition.

Proposition 3.7. Let (u, v) ∈ T IDn. The Tamari interval diagram (u, v) is new if and only if
χ(u, v) = P is a new interval-poset.

In [11], Rognerud shows that an interval-poset P is new if and only if ρ(P) is a new
Tamari interval (see [5] for more about this notion). Then, one has the following result.

Corollary 3.8. Let (u, v) ∈ T IDn. The Tamari interval diagram (u, v) is new if and only if
ρ(χ(u, v)) is a new Tamari interval.

Proposition 3.9. Let (u, v) ∈ T IDn. If (u, v) is synchronized then (u, v) is not new.

Proof. Let us suppose that (u, v) is synchronized and new. Then, by using (iii) from
Definition 3.6, we come to a contradiction.

4 Isomorphism of posets

In this section, we define the poset of cubic coordinates and we show that there is an
isomorphism between this poset and the poset of Tamari intervals. To this aim, both
bijections seen in Section 2 and in Section 3 are used.
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Let c, c′ ∈ CCn. We set c 6cc c′ if and only if ci 6 c′i for all i ∈ [n− 1]. The set of cubic
coordinates of size n endowed with the binary relation 6cc is a poset, the cubic coordinate
poset.

Let us denote by l the covering relation of (CCn,6cc). We admit here the following
result.

Lemma 4.1. Let c, c′ ∈ CCn such that c 6cc c′. Then, c l c′ if and only if there is exactly one
i ∈ [n− 1] such that ci < c′i, and if there is a c′′ ∈ CCn such that c 6cc c′′ 6cc c′, then either
c = c′′ or c′ = c′′.

We denote by 6t the Tamari order on the set of binary trees [12]: for S and T, two
binary trees of size n, S 6t T if and only if T can be obtained by performing an arbitrary
number of rotations from S. If T is obtained by only one rotation in S, then T covers S.
Let [S, T], [S′, T′] ∈ T In. We set [S, T] 6ti [S′, T′] if and only if S 6t S′ and T 6t T′. Then,
S′ covers S and T = T′ or T′ covers T and S = S′ if and only if [S′, T′] covers [S, T].

Let ψ = φ−1 ◦ χ−1 ◦ ρ−1 be the application from the set of Tamari intervals to the set
of cubic coordinates.

Theorem 4.2. The application ψ is an isomorphism of posets.

Proof. Let [S, T], [S′, T′] ∈ T In, and ψ([S, T]) = c, ψ([S′, T′]) = c′. Then, let φ(c) = (u, v),
φ(c′) = (u′, v′) and χ(u, v) = P, χ(u′, v′) = P′. Let us show that [S′, T′] covers [S, T] in
(T In,6ti) if and only if c′ covers c in (CCn,6cc).

Let (?) (resp. (�)) be the following condition: P′ is obtained from P by only adding
(resp. removing) some decreasing (resp. increasing) relations ending at a vertex xi, such
that if we remove (resp. add) one of these decreasing (resp. increasing) relations, then
either we obtain P or the resulting object is not an interval-poset.

We admit here that P and P′ satisfy (?) (resp. (�)) for the vertex xi if and only if
S′ (resp. T′) is obtained by a unique rotation of the node of index i in S (resp. T) and
T′ = T (resp. S′ = S). In other words, P and P′ satisfy either (?) or (�) if and only if
[S′, T′] covers [S, T]. It only remains to show that c′ covers c with ci < c′i if and only if P
and P′ satisfy either (?) or (�) for the vertex xi.

We assume that c l c′ with ci < c′i. Then, there are two cases:

(1) If c′i is positive, then ci is not negative due to Lemma 3.3. Hence c′i = u′i and ci = ui.
The image by φ of c and of c′ differs only for the letter ui. Besides, the fact that
c l c′ implies in particular that if there is a word u′′ of size n such that u′′i = u′i − 1
and u′′j = u′j for any j 6= i, then either (u′′, v′) = (u, v) or (u′′, v′) is not a Tamari
interval diagram. Indeed, let us suppose that there is a Tamari interval diagram
(u′′, v′) such as previously described, different from (u, v). Then, let c′′ be the cubic
coordinate associated with (u′′, v′) by φ−1. Since u′′i = u′i − 1 and u′′j = u′j for any
j 6= i, one has c′′ 6cc c′. Moreover, since u′′ 6= u, one has c 6cc c′′. Knowing these
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two facts, we have a contradiction with our hypothesis c l c′. The difference of a
unique letter ui between (u, v) and (u′, v′) is directly translated by χ: The interval-
poset P′ has more decreasing relations ending at xi than the vertex xi has in P.
Moreover, the fact that there is no other Tamari interval diagram between (u, v)
and (u′, v′) implies that the number of decreasing relations added in P′ compared
to P is minimal. This means that if one decreasing relation ending at xi is removed
from P′, then either we obtain P or the resulting object is not an interval-poset.
Hence P and P′ satisfy (?).

(2) Symmetrically, if c′i is nonpositive, then by using the same arguments, we obtain
that the interval-poset P′ has less increasing relations ending at xi+1 than the vertex
xi+1 from P, in a minimal way. This leads us to the fact that P and P′ satisfy (�).

Reciprocally, suppose that P and P′ satisfy either (?) or (�) for a vertex xi.

(1) Suppose that P and P′ satisfy (?). Since only decreasing relations ending at xi are
added in P′, then only the letter u′i from u′ is increased compared to u, and v′ = v.
Besides, since the number of decreasing relations added in P is minimal, there is
no Tamari interval diagram between (u, v) and (u′, v′), and so there is no cubic
coordinate between c and c′. Hence c l c′.

(2) Suppose that P and P′ satisfy (�). Since only increasing relations ending at xi are
removed in P′, then only the letter v′i from v′ is decreased compared to v, and
u′ = u. Then, just like in case (1), c l c′.

One can now conclude that ψ is an isomorphism of posets.

To sum up the applications seen in Sections 2 to 4, let us recall that ψ = φ−1 ◦ χ−1 ◦
ρ−1. Then, we have the following diagram of poset isomorphisms:

T IDn IPn

CCn T In

χ

ρφ

ψ

One consequence of the isomorphism ψ is that the order dimension [13] of the poset
of Tamari intervals is at most equal to n− 1.

5 Cubic realization and cells

Now, we regard the poset of cubic coordinates defined in Section 4 as a natural geometric
object. We study this geometric realization by giving a theoretical definition of the cells
it contains.
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All cubic coordinates of size n can be placed in the space Rn−1, as space coordinates.
For all cubic coordinates c and c′ such that c 6cc c′, we connect c to c′ with an arrow if
and only if there is no other cubic coordinate c′′ such that c 6cc c′′ 6cc c′, meaning that
just one entry increases between c and c′′. This oriented graph is the cubic realization of
the cubic coordinate lattice.

(0, 0) (1, 0) (2, 0)

(2,−1)(1,−1)(0,−1)

(0,−2) (1,−2)(−1,−2)

(−1, 0)

(0, 1)(−1, 1) (2, 1)

Figure 5.1: Cubic realization of CC3.

Figure 5.1 is the cubic realization of CC3, where the elements of CC3 are vertices and
the cover relations are arrows orientated to the covering cubic coordinates.

Definition 5.1. Let c ∈ CCn. Suppose that there is c′ ∈ CCn such that c′i > ci and c′j = cj for
all j 6= i, with i, j ∈ [n− 1]. We define then the application of minimal increase ↑i as follows

↑i (c) = (c1, . . . , ci−1, ĉi, ci+1, . . . , cn−1), (5.1)

such that c l ↑i (c) and ci < ĉi 6 c′i.

Definition 5.2. Let c ∈ CCn. We say that c is minimal-cellular if for all i ∈ [n− 1], ↑i (c) is
well-defined.

We notice that the cubic coordinates which are minimal-cellular are the elements that
are covered by exactly n− 1 elements in (CCn,6cc).

Lemma 5.3. Let c be minimal-cellular cubic coordinate of size n and i ∈ [n− 1]. If

c′ =↑i+1 (↑i+2 (. . . (↑n−1 (c)) . . . )), (5.2)

is well-defined, then ↑i (c′) is well-defined.
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Definition 5.4. Let c be a minimal-cellular cubic coordinate of size n and let c′ be a cubic
coordinate of size n. We set that c′ is the maximal-cellular correspondent of c if

c′ =↑1 (↑2 (. . . (↑n−1 (c)) . . . )). (5.3)

For instance, c = (0,−1, 1,−1,−5, 0, 1,−1,−3) is minimal-cellular, and its maximal-
cellular correspondent is c′ = (1, 0, 2, 0,−4, 3, 2, 0,−2). Such an element always exists,
by Lemma 5.3. Note that by performing minimal increases in another order does not
always lead to the maximal-cellular correspondent (see Figure 5.1 for example).

Definition 5.5. Let cm be minimal-cellular cubic coordinate of size n and let cM be its maximal-
cellular correspondent. The pair (cm, cM) is a cell, denoted by 〈cm, cM〉. The size of the cell is the
size of cm.

Lemma 5.6. Let 〈cm, cM〉 be a cell of size n and i ∈ [n− 1],

(i) if cm
i < 0 then cM

i 6 0;

(ii) if cm
i > 0 then cM

i > 0.

Theorem 5.7. Let 〈cm, cM〉 be a cell of size n. Let c be any (n− 1)-tuple whose entries ci are
equal to cm

i , or to cM
i , for all i ∈ [n− 1]. Then c is a cubic coordinate.

One of the consequences of Theorem 5.7 is that for every cell, we have at least 2n−1

cubic coordinates between cm and cM. There can be strictly more. Now, since we have a
definition of cells, we show that from a cell, we can build a synchronized cubic coordi-
nate.

Consider 〈cm, cM〉 a cell of size n. Let γ be the map defined for all i ∈ [n− 1] by

γ(cm
i , cM

i ) =

{
cm

i if cm
i < 0,

cM
i if cm

i > 0.
(5.4)

Let Γ be the map from the set of cells of size n to the set of (n− 1)-tuples defined by

Γ(〈cm, cM〉) = (γ(cm
1 , cM

1 ), γ(cm
2 , cM

2 ), . . . , γ(cm
n−1, cM

n−1)). (5.5)

For example, the cell 〈(0,−1, 1,−1,−5, 0, 1,−1,−3), (1, 0, 2, 0,−4, 3, 2, 0,−2)〉 is sent
to (1,−1, 2,−1,−5, 3, 2,−1,−3).

Theorem 5.8. The application Γ is a bijection from the set of cells of size n to CCsync
n .

Proof. The entries of Γ(〈cm, cM〉) belong either to cm or to cM. In both cases, the entries are
not zero. Hence, by Theorem 5.7, Γ(〈cm, cM〉) is a cubic coordinate of size n. Additionally,
by Definition 3.4 and Lemma 5.6, this cubic coordinate is synchronized.
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Let us first show that Γ is injective. Let 〈cm, cM〉 and 〈em, eM〉 be two cells of size n,
such that Γ(〈cm, cM〉) = Γ(〈em, eM〉). Then let (uj

i , vj
i+1) and (xj

i , yj
i+1) be the two pairs of

letters corresponding respectively to cj
i and to ej

i by φ with j ∈ {m, M} and i ∈ [n− 1].
By hypothesis, γ(cm

i , cM
i ) = γ(em

i , eM
i ) for all i ∈ [n− 1]. We need to prove that cj

i = ej
i

for all i ∈ [n− 1] with j ∈ {m, M}. Thus, two cases are possible:

(1) either γ(cm
i , cM

i ) = uM
i . In this case, γ(em

i , eM
i ) = xM

i and uM
i = xM

i ;

(2) or γ(cm
i , cM

i ) = −vm
i+1. Then, γ(em

i , eM
i ) = −ym

i+1 and vm
i+1 = ym

i+1.

• Let us assume that (1) holds. Since uM
i 6= 0, by Definition 2.3, vM

i+1 = 0. Likewise,
xM

i 6= 0 implies that yM
i+1 = 0. Hence cM

i = eM
i .

By Lemma 5.6, if uM
i 6= 0 (resp. xM

i 6= 0) then 0 6 um
i < uM

i and vm
i+1 = 0 (resp.

0 6 xm
i < xM

i and ym
i+1 = 0). It remains only to show that um

i = xm
i . Suppose that

um
i < xm

i , and let c =↑i+1 (. . . (↑n−1 (cm)) . . . ) and e =↑i+1 (. . . (↑n−1 (em)) . . . ). By
Lemma 5.3, c and e are cubic coordinates. Therefore, by Definition 5.4, ck = cM

k
and ek = eM

k for all i + 1 6 k 6 n− 1. By hypothesis, if ck is positive, then ck = uM
k

and since in this case uM
k = xM

k , one has ek = xM
k . Let c′ be a (n− 1)-tuple such

that c′i = xm
i and c′j = cj for any j 6= i. By hypothesis, we also know that ĉi = uM

i ,
êi = xM

i , and uM
i = xM

i . Since xm
i < xM

i , then xm
i < uM

i . Hence um
i < xm

i < uM
i .

Let (u, v) and (u′, v′) be the two pairs of words corresponding respectively with
c and c′. The (n − 1)-tuple c′ is a cubic coordinate. Indeed, since v = v′ and c
is a cubic coordinate, v′ is a dual Tamari diagram. Therefore, since e is a cubic
coordinate, c′k = ek if c′k is positive for all i 6 k 6 n− 1, and one has that ↑i (c) is
also a cubic coordinate, then u′ is a Tamari diagram. Finally, since ↑i (c) ∈ CCn,
we can conclude that Definition 2.3 is satisfied and c′ is a cubic coordinate. It leads
us to the fact that there is a cubic coordinate c′ distinct from c and ↑i (c) such that
c 6cc c′ 6cc↑i (c), which is impossible by Definition 5.1. Whence cm

i = em
i .

• Let us suppose that (2) holds. We show that cm
i = em

i and cM
i = eM

i in the same way
as (1), by reformulating the arguments for the dual case.

By definition of γ, we cannot have any other case. Therefore Γ is injective.
Now, let us show that the cardinality of the set of cells of size n is equal to the

cardinality of CCsync
n . Recall that the set of cells of size n is exactly the set of minimal-

cellular cubic coordinates of size n. Moreover, this is also the set of cubic coordinates
which are covered by exactly n− 1 elements in (CCn,6cc). Besides, by the isomorphism
of posets ψ, we know that these elements correspond to the ones with the same property
in the poset of Tamari intervals. In [5], Chapoton shows that the set of these elements
have the same cardinality as the set of synchronized Tamari intervals (see Theorem 2.1
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and Theorem 2.3 there). By Proposition 3.5, it may be inferred that the cardinality of
CCsync

n and the cardinality of the set of cells of size n are equal.
One can conclude that Γ is bijective.
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