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Abstract. The supercharacter theory of algebra groups gave us a representation the-
oretic realization of the Hopf algebra of symmetric functions in noncommuting vari-
ables. The underlying representation theoretic framework comes equipped with two
canonical bases, one of which was completely new in terms of symmetric functions.
This paper simultaneously generalizes this Hopf structure by considering a larger class
of groups while also restricting the representation theory to a more combinatorially
tractable one. Using the normal lattice supercharacter theory of pattern groups, we
not only gain a third canonical basis, but also are able to compute numerous structure
constants in the corresponding Hopf monoid, including coproducts and antipodes for
the new bases.

1 Introduction

A supercharacter theory of the unipotent upper-triangular matrices of the finite general
linear groups gave a representation theoretic interpretation to the Hopf algebra of sym-
metric functions in non-commuting variables [4]. In fact, these supercharacter theories
glue together most naturally as a Hopf monoid as described in [1], where we obtain the
Hopf algebra as a quotient structure. They give a rich combinatorics on set partitions ex-
plored in [9, 10, 11]. However, the overall Hopf structure remains mysterious, especially
with regard to the coproduct on the character basis. This paper explores a supercharacter
theory that is simultaneously computable for a larger swath of groups (including in our
case all pattern groups), and yet is more amenable to explicit computation of structure
constants.

Formally introduced by Diaconis–Isaacs [12], a supercharacter theory can be thought
of as an approximation to the usual character theory of a group. Given any set partition
K of a group G, one can study the subspace of the space of functions f(G) = {ψ : G → C}
that are constant on the parts of K. If this subspace additionally has a basis of orthogonal
characters, then we say that the parts of K are the superclasses of a supercharacter theory.
The interplay between the parts of K and the basis of characters (called supercharacters)
mimic the interplay between conjugacy classes and irreducible characters. This point
of view then gives a framework for studying the representation theory of coarser (and
often more combinatorial) partitions of groups.
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This paper uses a specific supercharacter theory introduced by Aliniaeifard [5] in
his Ph.D. thesis work. It gives a general construction for arbitrary groups (though it
prefers groups with non-trivial normal subgroups) that has many combinatorial prop-
erties baked in. The paper [6] explores some more combinatorial implications of such
theories in general, giving lattice-based formulas for the supercharacter values and for
the restriction of supercharacters. This paper applies these techniques to the case of
pattern groups (which is in fact the original motivation for that work).

Pattern groups are a family of unipotent groups that are built out of finite posets,
roughly a group version of an incidence algebra. While they were a fundamental ex-
ample in [12], the supercharacter theory they give in that paper for pattern groups is
not generally well understood. Andrews introduced a different supercharacter theory
called a non-nesting supercharacter theory that has nice combinatorial properties [7];
in fact, [8] used this theory to study generalize Gelfand–Graev characters for the finite
general linear groups. While his theory differs from ours, it is morally equivalent. This
paper explores a Hopf monoid first defined (up to moral equivalence) by Andrews; how-
ever, the Aliniaeifard supercharacter theory gives us some additional tools, including a
third canonical basis and a restriction formula from [6]. These tools allow us to give
more explicit structural results, including a coproduct on supercharacters and antipode
formulas.

After reviewing some of the background material in Section 2, we apply the results of
[6] to the pattern group case in Section 3. Section 4 reviews the monoid constructed in [7]
and examines the structure constants of various bases. Here we have a new third basis
coming from the normal lattice supercharacter theory and Theorem 3 gives a formula
for the coproduct on supercharacters. We then explore some of the structure of this
monoid, establish an algebraically independent set of free generators (as a monoid), and
construct the primitive elements in the style of [9]. Along the way, we also compute the
antipode on several bases.

2 Preliminaries

This section reviews the necessary background on pattern groups and supercharacter
theories. Throughout we will make use of different posets on an underlying set, so
given a set A, let

PO(A) = {partial orders on A}.

2.1 Pattern groups

Fix a finite field Fq, a set A, and a poset R ∈ PO(A). Let

Int(R) = {[i, j] | i, j ∈ R, i �R j}
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be the interval poset of R (ordered by inclusion). The corresponding pattern group is
given by

UTR = {u : Int(R)→ Fq | u([i, i]) = 1, i ∈ A},

where for u, v ∈ UTR,

(uv)([i, k]) = ∑
i�R j�Rk

u([i, j])v([j, k]).

In the case where R is a linear order, we obtain the maximal group of upper triangular
matrices in the finite general linear group with rows and columns indexed by R.

For each subposet O ∈ PO(A) of R, we have that UTO ⊆ UTR. Let

Int◦(R) = {[i, j] | i, j ∈ R, i ≺R j}

be the set of proper intervals. Since this paper is concerned with normal subgroups,
we would like an easy characterization of when these subgroups UTO is in fact normal.
Recall, that a co-ideal I in a poset R is a subset that satisfies K ∈ I implies L ∈ I for all
L �R K.

Proposition 1. For subposetO ofR, UTO /UTR if and only if Int◦(O) is a co-ideal of Int◦(R).

Given a poset R, the pattern group UTR has many normal subgroups, and in general
it is not clear that it is possible to find them all. Instead, we consider the subset of normal
subgroups

NPtt(R) = {UTQ / UTR | Q ∈ PO(A) a subposet of R}. (2.1)

This set forms a distributive lattice under containment with

UTO ∩UTP = UTO∩P where i �O∩P j if and only if i �O j and i �P j,

and
UTOUTP = UTO∪P where i �O∪P j if and only if i �O j or i �P j.

The join irreducible elements given by

UTR∨
[i,j]

with k �R∨
[i,j]

l if and only if [i, j] �R [k, l], (2.2)

and meet irreducible elements given by

UTR[i,j]
with k �R[i,j]

l if and only if [k, l] �R [i, j]. (2.3)
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2.2 Normal lattice supercharacter theories

Given a set partition K of G, let

f(G;K) = {ψ : G → C | {g, h} ⊆ K ∈ K implies ψ(g) = ψ(h)}

be the set of functions constant on the blocks of K.
A supercharacter theory S of a finite group G is a pair (Cl(S), Ch(S)) where Cl(S) is

a set partition of G whose blocks are called superclasses and Ch(S) is a set partition of
the irreducible characters Irr(G) of G, such that

(SC1) {1} ∈ Cl(S),

(SC2) |Cl(S)| = |Ch(S)|,

(SC3) For each X ∈ Ch(S), the supercharacter

∑
ψ∈X

ψ(1)ψ ∈ f(G; Cl(S)).

In fact, the supercharacters of S form an orthogonal basis for f(G; Cl(S)); thus, the su-
perclasses are unions of conjugacy classes.

There are several standard supercharacter theories that get applied to pattern groups.
Since a pattern group UTR is in fact an algebra group, [12] defines a supercharacter
theory whose superclasses are the equivalence classes of the set partition

u ∼ v if and only if there exist a, b ∈ UTR such that u = 1 + a(v− 1)b. (2.4)

However, it is not even known whether this theory is in general wild, and they certainly
are not generally understood. Andrews [7] defines a more suitable theory which he calls
a non-nesting supercharacter theory for UTR. This theory is very close to the following
supercharacter theory that is the focus of this paper.

Theorem 1 (Normal Lattice Supercharacter Theory [5]). Let N be a set of normal subgroups
such that {1}, G ∈ N , and for all M, N ∈ N , we have MN, M ∩ N ∈ N . Then the partitions
Cl = {N◦ 6= ∅ | N ∈ N}, where

N◦ = {g ∈ N | g /∈ M ∈ N , if N covers M in N},

and Ch = {XN• 6= ∅ | N ∈ N}, where

XN• = {ψ ∈ Irr(G) | N ⊆ ker(ψ) + O, if O covers N in N}

define a supercharacter theory SN of G.

This paper considers

SR = SNPtt(R) = (Cl(R), Ch(R)). (2.5)

which is a coarsening of Andrews’ nonnesting theory (his is indexed by labeled set
partitions, and we combine all possible labelings).
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3 Poset partitions and non-nesting supercharacter theories

This section applies [6] to the particular case of the normal lattice theory built on normal
pattern subgroups. We first review the poset combinatorics introduced in [7] and connect
it to the normal pattern subgroup lattice NPtt(R). We review the character formula of
this theory from the point of view introduced in [6], and conclude with a combinatorial
description of restriction between pattern groups.

Fix a set A, and let R ∈ PO(A). An R-partition is a subset

λ ⊆ Int◦(R)

such that the interval between two elements [i, j], [k, l] ∈ λ is a total order if and only if
[i, j] = [k, l]. Let

pp(R) = {R-partitions}. (3.1)

We may visualize these partitions by placing the Hasse diagram of R as the base,
and then place an arc from i to j if [i, j] ∈ λ. For example,

λ = {[1, 4], [4, 5], [3, 5]} ∈ pp

(
1
2

3 4
5
6 )

is 1 2
3

4

5 6 .

Note that if L is a linear order, then the transitive closure of the relation i ∼λ j if [i, j] ∈ λ

gives a set partition of the underlying set.
Given a poset P , let

Anti(P) = {λ ⊆ P | λ is an antichain}.

An R-partition λ is non-nesting if λ is an anti-chain in Int◦(R). Let

ppnn(R) = {λ ∈ pp(R) | λ ∈ Anti
(

Int◦(R)
)
}.

For example,

1 2
3

4

5 6 ∈ ppnn

(
1
2

3 4
5
6 )

but 1 2 3 4 5 6
/∈ ppnn


1
2
3
4
5
6
 .

For λ ∈ ppnn(R), let

UTλ = ∏
[i,j]∈λ

UTR∨
[i,j]

and UTλ =
⋂

[i,j]∈λ

UTR[i,j]
. (3.2)

In other words, in the first case, λ specifies the minimal elements in co-ideal of Int◦(R),
and in the second λ specifies the maximal elements not in the co-ideal of Int◦(R) (thus
recovering every element of NPtt(R) in both ways).
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Example 2. When R ∈ PO(B) is a total order, then |ppnn(R)| is the |B|th Catalan num-
ber. In fact, if we view UTR as upper-triangular matrices, then there is a natural Dyck
path for each normal subgroup. If we let ∗ indicate entries that may be nonzero, one
such subgroup might be

UTλ =



1
1

1
1

1
1

1
1

0
0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0

0
0
0
0

0
0
0

0
0 0

0 0
0

0 0 0
0 0

0
0

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗
∗
∗


= UTµ.

The set partitions λ and µ capture aspects of the Dyck path. That is, λ gives the coordi-
nates of the peaks, so in the example λ = {[2, 4], [4, 7], [7, 8]} (where we omit peaks with
trivial coordinates), and µ gives the coordinates of the valleys, so µ = {[1, 2], [3, 5], [6, 8]}.

As a consequence of [6], we obtain a character formula for the supercharacters

χλ = ∑
ψ∈XUT•

λ

ψ(1)ψ. (3.3)

Proposition 2. Let λ, µ ∈ ppnn(R). For g ∈ UTµ
◦ ,

χλ(g) =

 |UTR|
|UTλ|

(
1− 1

q

)|λ|(
1

1−q

)|λ∩µ|
if g ∈ Cλ,

0 otherwise,
where Cλ = ∏

N covers UTλ

N.

4 A Hopf monoid

The goal of this section is to revisit a Hopf monoid defined in [7] built out of the repre-
sentation theory of pattern groups. For a more detailed background on Hopf monoids,
we recommend [3]. While there has been more literature on Hopf algebras, it appears
that Hopf monoids seem to be especially well-suited to the representation theory of
unipotent groups [1]. As it happens, we can easily recover a corresponding Hopf alge-
bra as a quotient, but the monoid structure allows easier computations than in the Hopf
algebra.

4.1 The pattern group Hopf monoid

Define a vector species ptt : {sets} → {Fq-modules} by

ptt[A] =
⊕

R∈PO(A)

f(UTR).
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Let P ∈ PO(A) and Q ∈ PO(B) with A ∩ B = ∅. The concatenation P .Q ∈ PO(A ∪
B) of P with Q is given by

i �P .Q j if i �P j, i �Q j or i ∈ A and j ∈ B.

There is a corresponding projection πA,B : UTP .Q → UTP ×UTQ given by

πA,B(u)([i, j]) =
{

u([i, j]) if i, j ∈ A or i, j ∈ B,
0 otherwise.

Given P ∈ PO(C) and A ⊆ C, the restriction P|A ∈ PO(A) of P to A is given by

i �P|A j if i �P j.

There is a corresponding injective function ιA,B : UTP|A ×UTP|B → UTP given by

ιA,B(u, v)([i, j]) =


u([i, j]) if i, j ∈ A
v([i, j]) if i, j ∈ B
0 otherwise.

These constructions give us a product and coproduct on ptt via

mA,B(χ⊗ ψ) = (χ, ψ) ◦ πA,B and ∆A,B(ψ) = ψ ◦ ιA,B

where these again give us the functors of inflation and restriction, respectively. As shown
in [7], these functions are compatible and give us a Hopf monoid. Furthermore, every
supercharacter theory on pattern groups that are compatible with inflation and restric-
tion give us a sub Hopf monoid. Our focus for the rest of the paper will be on the sub
Hopf monoid pttNPtt : {sets} → {Fq-spaces} given by

pttNPtt[A] =
⊕

R∈PO(A)

f(UTR; Cl(R)),

where Cl(R) is the superclass partition given in (2.5).
As a supercharacter theory, SR equips f(UTR; Cl(R)) with two natural bases

f(UTR; Cl(R)) = C-span{δµ | µ ∈ ppnn(R)}
= C-span{χλ | λ ∈ ppnn(R)},

where

δµ(g) =
{

1 if g ∈ UTµ
◦ ,

0 otherwise,

is the superclass indicator function, and χλ is the supercharacter as in (3.3).
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As a normal lattice supercharacter theory, we obtain a third canonical basis

f(UTR; Cl(R)) = C-span{χUTλ | λ ∈ ppnn(R)}, where χUTλ = ∑
UTν⊇UTλ

χν.

Note that if

δUTµ(g) =
{

1 if g ∈ UTµ,
0 otherwise.

give the normal subgroup indicator functions, then as the character of the permutation
module IndUTR

UTλ
(11),

χUTλ(g) =

{
|UTR|
|UTλ|

if g ∈ UTλ,
0 otherwise,

=
|UTR|
|UTλ|

δUTλ
(g).

For these three bases we can compute the structure constants as follows. First the
superclass indicators give

Lemma 1 ([7]). Let A, B be sets with A ∩ B = ∅.

(a) For R ∈ PO(A), Q ∈ PO(B), µ ∈ ppnn(R) and ν ∈ ppnn(Q),

InfA,B(δµ ⊗ δν) = ∑
λ∈ppnn(P .Q)
λ|A=µ,λ|B=ν

δλ.

(b) For P ∈ PO(A ∪ B), λ ∈ ppnn(P),

ResA,B(δλ) =

{
δλA ⊗ δλB if λA ∪ λB = λ,
0 otherwise.

The normal subgroup basis has the following constants.

Lemma 2. Let A, B be sets with A ∩ B = ∅.

(a) For R ∈ PO(A), Q ∈ PO(B), λ ∈ ppnn(R) and ν ∈ ppnn(Q),

InfA,B(χ
UTλ ⊗ χUTν) = χUTλ∪ν .

(b) For R ∈ PO(A ∪ B), µ ∈ ppnn(R),

ResA,B(δUTµ) = δUTµ∩UTR|A
⊗ δUTµ∩UTR|B

.
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Somewhat surprisingly, we can also compute the structure constants for the super-
character basis. For λ ∈ ppnn(R) and µ ∈ ppnn(Q), consider the subposet of Int(Q)
given by

Intλ
µ =

{
[i, j] ∈ Int◦(Q) | [i, j] ∈

⋂
[k,l]∈µ

Q[k,l], [i, j] /∈
⋂

[k,l]∈λ

R[k,l]

}
.

Theorem 3. Let A, B be sets with A ∩ B = ∅.

(a) For R ∈ PO(A), Q ∈ PO(B), λ ∈ ppnn(R) and ν ∈ ppnn(Q),

InfA,B(χ
λ ⊗ χν) = χλ∪ν.

(b) For R ∈ PO(A ∪ B), λ ∈ ppnn(R),

ResA,B(χ
λ) =

|UTλ ∩ (UTR|A ×UTR|B)|
|UTλA ×UTλB |

χλ(1)
χλA∪λB(1) ∑

ν∈Anti(Intλ
λA

)

η∈Anti(Intλ
λB

)

χλA∪ν ⊗ χλB∪η.

4.2 Antipodes

For a set B, P ,Q ∈ PO(B), a set composition (I1, . . . , I`) � B is a Q-factorization of P if

(a) P|Ij is a convex subposet of Q,

(b) all minimal elements of P|Ij are greater than the maximal elements of P|Ij−1 .

The number `Q(I1, . . . , I`) = ` is the length of the factorization. Let

FacQ(P) = {Q-factorizations of P}.

For example, if

Q = ♥
♦ ♣
♠

,P = ♥
♦
♣
♠

, then FacQ(P) =
{(
♥,♦,♣,♠

)
,
(
♥
♦,♣,♠

)
,
(
♥,♦,♣

♠),
(
♥
♦,♣
♠)}.

The following result is similar to the power-sum result in [9].

Proposition 3. For Q ∈ PO(A),

S(δUTQ) = ∑
P∈PO(A)

FacQ(P)={~I}

(−1)`Q(~I)−1δUTP .
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We also obtain a formula for the supercharacter basis. For R ∈ PO(B), λ ∈ ppnn(R)
and a set composition ~A = (A1, . . . , A`) � B, let

R|~A = R|A1 ∪R|A2 ∪ · · · ∪ R|A`

UTR|~A = UTR|A1
× · · · ×UTR|A`

λ~A = λA1 ∪ · · · ∪ λA`
∈ ppnn(R|~A)

Rλ ⊆ R where UTRλ
= UTλ.

Let
Resλ = {ν ∈ ppnn(R) | (ν− λ) ∩

⋂
[i,l]∈λ−ν

R[i,l] = ∅}.

For λ ∈ ppnn(R), a R-factorization (I1, . . . , I`) ∈ FacR(P) has a λ-neutral cut if there
exists 1 ≤ j ≤ `− 1 such that

{[a, b] | a ∈ max{Ij}, b ∈ min{Ij+1}} ⊆ Int◦(Rλ).

We say FacR(P) is λ-atomic if it is nonempty and the longest element has no λ-neutral
cuts.

Theorem 4. For R ∈ PO(B), and λ ∈ ppnn(R),

S(χλ) = ∑
P∈PO(B)

FacR(P) λ-atomic

∑
ν∈ppnn(P)∩Resλ

χλ(1)
(q− 1)|λ∩ν|

(
∑

~I∈FacR(P)
ν~I=ν

λ~I=λ∩ν

(−1)`(~I)−1
|UTλ ∩UTR|~I |
|UTR|~I |

)
χν.

Furthermore, as polynomials in q, the coefficients are nonzero (though they may have integral
roots).

Remark. An example that shows the coefficients can be zero is as follows. The coefficient
of ∅ ∈ ppnn(1 < 2 < 3) in S(χ{[1,3]}) is (q− 1)(q− 2), which is generically nonzero, but
zero if q = 2. However, if q is sufficiently large the coefficients are always nonzero.

We can apply the theorem to the specific case of trivial characters to get a pleasing
result. For P ∈ PO(B) let ∅P = ∅ ∈ ppnn(P).

Corollary 1. For R ∈ PO(B),

S(χ∅R) = ∑
P∈PO(B)

FacR(P)={~L}

(−1)`(~L)−1χ∅P .
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4.3 Primitives

In [2], the authors indicate how to find the dimension of the lie algebra of primitive
elements of a (co)free Hopf monoid in each degree. For pttNPtt we go one step forward
and give a full system of algebraic independent primitive elements.

For a set B, P ,Q ∈ PO(B) with UTQ / UTP , we say the pair (P ,Q) factors if there
exists a nonempty, proper subset A ⊆ B such that

P|A.P|B−A = P and Q|A.Q|B−A = Q.

If no such subset exists, we say the pair (P ,Q) is atomic.
Fix a ∈ A. For (R,Q) atomic, define

S(a)
UTQ

= ∑
FacQ(P)={~I}

a∈I1

(−1)`Q(~I)−1δUTP .

Theorem 5. Fix a functor slt : {sets} → {sets of size 1} such that slt(A) ⊆ A. Then

{S(slt(A))
UTQ

| UTQ / UTR,R ∈ PO(A), (R,Q) atomic}

is a full system of algebraically independent primitive generators of pttNPtt.

In [13], Novelli–Thibon define a graded Hopf algebra

CQSym =
⊕
n≥0

CQSymn

with dim(CQSymn) equal to the nth Catalan number Cn.

Corollary 2. The Hopf algebra CQSym is isomorphic to canonical Hopf algebra quotient of
pttNPtt.
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