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Abstract. We address the semistable reduction conjecture of Abramovich and Karu: we
prove that every surjective morphism of complex projective varieties can be modified
to a semistable one. The key ingredient is a combinatorial result on triangulating lattice
Cayley polytopes.
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1 Introduction

Motivated by the desire to replace unwieldy morphisms of varieties with sufficiently
nice ones, Abramovich and Karu [1] proposed a best possible conjecture.

Conjecture 1.1. Let X → B denote a surjective morphism of complex projective varieties with
geometrically integral generic fiber. Then there is a projective alteration B1 → B, and a projective
modification Y → X×B B1 such that Y → B1 is semistable.

Abramovich and Karu [1] themselves proved a weak version of this conjecture, namely
the existence to a weak semistable morphism. These are defined as follows:

A morphism f : X → B is called weakly semistable if
1. the varieties X and B admit toroidal structures UX ⊂ X and UB ⊂ B, with UX =

f−1UB;
2. with this structure, the morphism f is toroidal;
3. the morphism f is equidimensional;
4. all the fibers of the morphism f are reduced; and
5. B is nonsingular.
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However, the case when X is additionally nonsingular, and in which the morphism
f : X → B is called semistable, was left as an open conjecture. We build on the combina-
torial methods of [2] to resolve Conjecture 1.1 positively. The present manuscript is an
extended abstract of the full paper, which can be found here [3].

History

In addition to the work of Abramovich and Karu, a few other cases are known; see [1]
for a more detailed history. In particular, we know the cases dim B = 1 and dim X = 2
(see [6]), dim B = 1 (see [10]), and the case of codimension one [1].

De Jong proved the case dim X = dim B + 1 [8]. Using work of Alexeev, Kollár and
Shepherd-Barron (see [4], [5]), one obtains a version of the case dim X = dim B + 2.

Abramovich and Karu were the first to provide substantial progress to the case
dim X > dim B + 2, explaining their dissatisfaction with the quote “since we do not
have a semistable reduction result over a base of higher dimension, we will work around
it in the following technical manner...”.

Finally, Karu [9] succeeded in another breakthrough: he proved semistable reduction
in the case dim X− dim B ≤ 3 based on reduction to combinatorics.

A breakthrough was obtained in the recent work of the three authors and Pak, who
proved a local version in [2] here using recent constructions of Haase, Paffenholz, Piech-
nik and Santos [7]. We expand further on this here, and obtain a complete solution to
the conjecture.

2 Proof

2.1 Statement of the conjecture

Following the usual approach, Abramovich and Karu translated Conjecture 1.1 to a com-
binatorial one. We shall not repeat that translation here, and instead refer to [1] and re-
view the combinatorial statement of the conjecture. We follow the notation and terminol-
ogy on rational cones, polyhedral complexes, etc., from this paper. Recall that a rational
conical polyhedral complex, or conical complex, is an (abstract) polyhedral complex formed
by gluing together finitely many polyhedral cells σ, each of which is equipped with a lat-
tice Nσ

∼= Zdσ such that σ is a full-dimensional, rational, strictly convex polyhedral cone
in Nσ ⊗ R, and such that if τ is a face of σ, then Nτ = Nσ|Span(τ). We will denote such
a conical complex by {(σ, Nσ)}. A map f : X → Y of conical complexes X = {(σ, Nσ)}
and Y = {(ρ, Nρ)} is a collection of group homomorphisms fσ : Nσ → Nρ, one for each
σ ∈ X (and with ρ chosen for each σ), such that the extension fσ : Nσ ⊗ R → Nρ ⊗ R
maps σ into ρ, and such that if τ is a face of σ, then fτ = fσ|τ. A conical complex is
nonsingular if each of its cells σ is generated by a lattice basis of Nσ.
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Definition 2.1. Let X, B be conical complexes and f : X → B a map of conical complexes.
We say that f is semistable if the following conditions hold.

1. f−1(0) = {0}.

2. For every σ ∈ X, we have f (σ) ∈ B.

3. For every σ ∈ X, we have f (Nσ) = N f (σ).

4. X and B are nonsingular.

Definition 2.2. Let X be a conical complex. A lattice alteration is a map X1 → X where
X1 is a conical complex of the form {(σ, N1

σ) : σ ∈ X} and each N1
σ is a sublattice of

Nσ. An alteration is a composition X1 → X′ → X of a lattice alteration X1 → X′ with a
subdivision X′ → X. The alteration is projective if the subdivision X′ → X is projective.

Fix a map f : X → Y of conical complexes. For any alteration g : Y1 → Y, there is an
alteration X1 → X with

X1 = {(σ ∩ f−1(g(τ)), Nσ ∩ f−1(g(Nτ)) : σ ∈ X, τ ∈ Y1}

which is the unique minimal alteration admitting a map X1 → Y1. We call X1 → X the
alteration induced by g (with respect to f ). If g is projective, then X1 → X is as well.

We can now state the conjecture of Abramovich and Karu.

Conjecture 2.3. Let f : X → B be a map of conical complexes with f−1(0) = {0}. Then
there exists a projective alteration B1 → B, with induced alteration X1 → X, and a projective
subdivision Y → X1 such that Y → B1 is semistable.

2.2 Polytopal complexes

Our next step is to translate the problem from conical complexes to polytopal complexes,
which will be more natural for our constructions. A lattice polytope is a pair (P, NP)
(usually denoted as just P) where NP

∼= ZdP is an affine lattice and P is a polytope in
NP ⊗ R with vertices in NP. A face of a lattice polytope (P, NP) is a lattice polytope
(F, NF) where F is a face of P and NF = NP|AffSpan(F). A lattice polytopal complex, or
polytopal complex, is a polyhedral complex formed by gluing together finitely many lattice
polytopes (with the usual gluing conditions of polyhedral complexes) such that lattices
agree on common faces and each polytope P is full-dimensional in NP. Maps between
polytopal complexes are defined analogously to the conical case.

Let (P, NP) be a lattice polytope. We let LP denote the affine sublattice of NP spanned
by the vertices of P. We say that the index of P is the index

[NP ∩AffSpan(P) : LP].
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A unimodular simplex is a lattice simplex of index 1. A unimodular triangulation is a
polytopal complex all of whose elements are unimodular simplices. If the vertices of P
are contained in some sublattice N′ of NP, then we say that the index of P with respect to
N′ is the index of (P, N′). We define unimodularity with respect to N′ accordingly.

Usually, we will specify an origin in NP, which allows us to define dilations of
lattice polytopes and Minkowski sums of polytopes with the same lattice. Since all
of our results will be invariant under translation, the choice of origin will not mat-
ter. If X = {(P, NP)} is a polytopal complex, then we can define a polytopal complex
cX = {(cP, NP)}. Given a map f : X → Y of polytopal complexes, there is the obvious
induced map cX → cY; we denote this map by c f .

We define lattice alterations and alterations of polytopal complexes analogously to
the conical case. For induced alterations, we need to proceed more carefully. Let f :
X → Y be a map of polytopal complexes and g : Y1 → Y an alteration. Consider the
rational subdivision

X1 := {(P ∩ f−1(g(Q)), NP ∩ f−1(g(NQ))) : P ∈ X, Q ∈ Y1}. (2.1)

The vertices of X1 are not necessarily lattice points. However, if they are, then X1 is
a lattice polytopal complex, and X1 → X is the unique minimal alteration admitting a
map X1 → Y1. In this case we say that X1 → X is induced by g (with respect to f ).

We say a map f : X → Y of polytopal complexes is good if for every P ∈ X, we have
f (P) ∈ Y. We have the following.

Proposition 2.4. Let f : X → Y be a map of polytopal complexes. Then there exists a positive
integer c and a projective subdivision Y′ → cY which induces with respect to c f an alteration
X′ → cX such that X′ → Y′ is good.

Proof. It is easy to see that there is a rational projective subdivision Ỹ of Y such that for
every P ∈ X, we have that f (X) is a union of cells of Y. This induces as in (2.1) a rational
subdivision X̃ of X. For some c, we have that cX̃ and cỸ are lattice subdivisions of cX
and cY, and the map cX̃ → cỸ gives the result.

Proposition 2.5. Let f : X → Y be a good map of polytopal complexes and Y1 → Y an
alteration. Then there exists a positive integer c such that if Y1 → cY1 is the lattice alteration
given by (P, NP) ∼= (cP, cNP) 7→ (cP, NP) and g is the alteration Y1 → cY1 → cY, then g
induces with respect to c f an alteration X1 → cX.

Proof. As in the previous proof, there is c such that cY1 → cY induces a lattice subdivision
X′ → cX. Then the lattice alteration Y1 → cY1 induces an alteration X1 → X′, and
X1 → X′ → cX is the desired alteration.

Our goal now is to prove the following theorem:
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Theorem 2.6. Let f : X → B be a map of polytopal complexes. Then there exists a positive
integer c, a projective alteration B1 → cB which induces with respect to c f an alteration X1 →
cX, and a projective subdivision Y → X1 such that Y and B1 are both unimodular triangulations.

Proposition 2.7. Theorem 2.6 implies Conjecture 2.3.

Proof. Let f̂ : X̂ → B̂ be a map of conical complexes with f̂−1(0) = {0}. Then we
can construct a map f : X → B of polytopal complexes such that there are bijections
X̂ → X and B̂ → B which preserve the combinatorial structure and such that each cone
σ is mapped to the intersection of σ and some hyperplane Hσ. Applying Theorem 2.6,
we have a positive integer c, a projective alteration B1 → cB with induced alteration
X1 → cX, and a projective subdivision Y → X1 such that Y and B1 are unimodular
triangulations. Note that Y and B1 are alterations of the polytopal complexes formed by
intersecting each σ in X̂ and B̂ with the hyperplane cHσ. Hence, by coning Y and B1,
we have alterations Ŷ → X̂ and B̂1 → B̂, respectively. Since B1 is unimodular, the map
Ŷ → B̂1 satisfies (2) and (3) of Definition 2.1. Since Y is also unimodular, Ŷ and B̂1 are
nonsingular.

2.3 Canonical subdivisions

As we will see, much of our proof relies on being able to construct “canonical” subdivi-
sions for polytopes. We now formalize his notion.

An ordered polytope is a polytope along with a total order on its vertices. A face
of an ordered polytope is a face of the underlying polytope along with the induced
ordering. Let P to be the category whose objects are ordered lattice polytopes and
whose morphisms are F → P where F is a face of P. Let S be the category whose objects
are subdivisions of ordered lattice polytopes and whose morphisms are F′ → P′ where
F′ is the subdivision induced on a face of the underlying ordered polytope of P′.

Let Γ : F → P be a full and faithful functor for some category F . A canonical
subdivision of Γ is a functor Σ : F → S such that Σ(P) is a subdivision of Γ(P) for
all P ∈ Ob(F ). If Σ(P) is projective for all P, then we call Σ projective. If Σ(P) is a
triangulation for all P, then we call Σ a canonical triangulation.

2.3.1 Canonical triangulations of dilated simplices

Let ∆ be the category defined as follows. The objects are ordered pairs (P, c) where P is
an ordered lattice simplex and c is a positive integer. The morphisms are (P′, c)→ (P, c)
where P′ is a face of P. We have a full and faithful functor µ : ∆ → P defined by
µ(P, c) = cP. We will assume the origin is in LP, so that cP has vertices in LP.

The following is a key result from Haase et al. [7].
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Theorem 2.8. There is a projective canonical triangulation Σ of µ such that for all (P, c) ∈
Ob(∆), we have that Σ(P, c) is unimodular with respect to LP.

Later we will prove a generalization of this to polysimplices, Lemma 2.10. For now,
we will state a modified version of this Theorem. Let ∆′ be the full subcategory of ∆
whose objects are (P, c) ∈ Ob(∆) with c ≥ dim(P) + 1. Let µ′ be the restriction of µ to
∆′. Then we have the following.

Lemma 2.9. There is a projective canonical triangulation Σ′ of µ′ such that for all (P, c) ∈
Ob(∆′) and all full-dimensional simplices Q of Σ′(P, c), we have the following:

1. LP = LQ. (That is, Σ′(P, c) is unimodular with respect to LP.)

2. If the vertices of Q are ordered v1, v2, . . . , vdim(P)+1, then for all i = 1, . . . , dim(P),
every face of P which contains vi also contains vi+1.

Proof. Note: This proof uses ideas and notation from the next section. We have put the
proof in this section for the sake of organization.

We construct the triangulation Σ′(P, c) of cP as follows. For each face F of P, let OF
be the barycenter of F. If F has dimension k and F′ is a face of F, then we note that

φ(F′, F) := (c− k− 1)F′ + (k + 1)OF

is a lattice polytope contained in cF.
Let d = dim(P). Let Fr, Fr+1, . . . , Fd be a sequence of nonempty faces of P with

Fr < · · · < Fd and dim(Fi) = i for all r ≤ i ≤ d. We define

(cP)Fr,...,Fd := conv
d⋃

i=r

φ(Fr, Fi).

Then the collection of all such (cP)Fr,...,Fd are the full-dimensional cells of a subdivision
Σ of cP.

The final step is to refine Σ to a triangulation. When viewed as lattice polytopes in
LP, each (cP)Fr,...,Fd is lattice equivalent to the Cayley polytope

C((c− r− 1)Fr, (c− r− 2)Fr, . . . , (c− d− 1)Fr).

Thus, by Lemma 2.10, there are canonical triangulations of each (cP)Fr,...,Fd which are
unimodular with respect to LP. These extend to a triangulation of Σ which is unimod-
ular in LP. The fact that this triangulation satisfies property (2) is easy to check, as is
canonicity.
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2.4 Cayley polytopes

Let (P1, Zd), (P2, Zd) . . . , (Pn, Zd) be lattice polytopes. To simplify some statements later,
we will assume that LPj contains the origin for all j. (Note that we can always translate
the Pj so that this holds.) We define the Cayley polytope C(P1, . . . , Pn) to be the polytope

C(P1, . . . , Pn) := conv

(
n⋃

i=1

Pi × ei

)
⊂ Rd × Rn

where conv denotes convex hull and ei is the i-th standard basis vector of Rn. We make
C(P1, . . . , Pn) a lattice polytope by equipping it with the affine lattice Zd ×Λn−1, where
Λn−1 := {x ∈ Zn : x1 + · · ·+ xn = 1} ∼= Zn−1.

If P1, . . . , Pn are ordered polytopes, then we make C(P1. . . . , Pn) and ordered polytope
with the following ordering: First the vertices of P1 × e1 in the order given by P1, then
the vertices of P2 × e2 in the order given by P2, and so on. Note that these are precisely
the vertices of C(P).

A polysimplex, or product of simplices, is a polytope of the form ∑i Pi, where {Pi} is
an affinely independent set of simplices and ∑ denotes Minkowski sum. If {Pi} is an
ordered set of such simplices and each Pi is an ordered polytope, then we make ∑i Pi an
ordered polytope by lexicographic ordering on its vertices.

Let A be an m× n matrix with nonnegative integer entries. We define

C(P1, . . . , Pn, A) := C
(
(P1, · · · , Pn)AT

)
:= C

(
n

∑
j=1

A1jPj,
n

∑
j=1

A2jPj, . . . ,
n

∑
j=1

AmjPj

)
.

If P1, . . . , Pn are affinely independent ordered simplices, then C(P1, . . . , Pn, A) is an
ordered polytope as described in the previous two paragraphs. In addition, with the
assumption that LPj contains the origin for all j, the vertices of C(P1, . . . , Pn, A) are con-
tained in LP̃ ×Λm−1, where P̃ := P1 + · · ·+ Pn.

Let A be as above. For each row Ai of A, let supp Ai denote the set of column indices
at which Ai is nonzero. We say that A is full if

[n] = supp A1 ⊇ supp A2 ⊇ · · · ⊇ supp Am.

2.4.1 Canonical triangulations of polysimplices

We now turn to subdividing Cayley polytopes of polysimplices. Let F be the category
whose objects are tuples (P1, . . . , Pn, A) satisfying the following.

1. P1, . . . , Pn are ordered lattice simplices with the same lattice.
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2. P1, . . . , Pn are affinely independent.

3. A is an m× n matrix with nonnegative integer entries.

The morphisms in F are (F1, . . . , Fn, A′) → (P1, . . . , Pn, A), where Fi is a face of Pi for all
i, and A′ is obtained from A by taking a subset of the rows of A. We have a full and
faithful functor C : F → P given by (P1, . . . , Pn, A) 7→ C(P1, . . . , Pn, A).

We generalize Theorem 2.8 as follows.

Lemma 2.10. There is a projective canonical subdivision Σ of C such that for all (P1, . . . , Pn, A) ∈
Ob(F ), we have that Σ(P1, . . . , Pn, A) is unimodular with respect to LP̃ × Λm−1, where P̃ :=
P1 + · · ·+ Pn.

Proof. See [3].

A box point of a lattice polytope P is a nonzero element of NP/LP. If F is a face of
P, then there is a natural inclusion NF/LF ↪→ NP/LP, and so any box point of F can be
regarded as a box point of P. Moreover, if we have two polytopes P, Q with LP = LQ,
then we identify the box points of P with the box points of Q.

Let F ∗ denote the full subcategory of F whose objects are (P1, . . . , Pn, A) ∈ Ob(F )
such that

1. For each entry a of A, either a = 0 or a ≥ maxj dim Pj.

2. A is full.

Let C∗ be the restriction of C to F ∗.
We now state the main result of this section.

Lemma 2.11. Let m be a box point for some polytope. Then there is a projective canonical
triangulation Σm of C∗ such that for all (P1, . . . , Pn, A) ∈ Ob(F ∗) and all full-dimensional
simplices Q in Σm(P1, . . . , Pn, A), we have the following.

• If m is a box point of P̃ := P1 + · · ·+ Pn, then

index(Q) < index(P̃).

• If m is not a box point of P̃, then LQ = LP̃ ×Λm−1.

Proof. See [3].

2.5 Proof of Theorem 2.6

We are now ready to prove Theorem 2.6. By Proposition 2.4, we may assume f : X → Y
is a good map.
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2.5.1 Reducing the base

The first step is to alter B so that it is a unimodular triangulation. By the KKMS theorem
[10], there is a positive integer c so that we have a projective unimodular triangulation
B′ → cB. Now, by Proposition 2.5, there is a positive integer c′ and an alteration B′ →
c′cB such that this alteration induces with respect to c′c f an alteration X1 → c′cX and
map X1 → B′. Hence, we may assume B is a unimodular triangulation. By arbitrarily
triangulating X, we may assume X is a triangulation.

2.5.2 Lowering the index

Fix a linear order on the vertices of B. By Lemma 2.9, there exists c such that for each
Q ∈ B we have a projective triangulation

Σ′(Q, c)→ cQ.

Since these triangulations are canonical, this gives a triangulation B1 of cB. By Proposi-
tion 2.5, for some c′, the alteration B1 → c′B1 → c′cB induces an alteration X1 → c′cX
and a map f1 : X1 → B1. We may assume c′ > dim X.

Suppose Q ∈ B and P is a full-dimensional simplex of the complex f−1(Q). Let v1,
. . . , vn be the vertices of Q, and let

Pi := ( f−1(vi) ∩ P, NP)

for all i. Note that the Pi are affinely independent simplices and P = C(P1, . . . , Pn).
Let v be a vertex of B1 contained in cQ. Define

P(v) := f−1
1 (v) ∩ c′cP.

Let (a1, . . . , an) be the barycentric coordinates of v with respect to the vertices cv1, . . . ,
cvn of cQ. Since Q is unimodular, ca1, . . . , can are nonnegative integers. From the
definition of X1, we have

P(v) = a1P(cv1) + a2P(cv2) + · · ·+ akP(cvn)

= c′c(a1P1 + a2P2 + · · ·+ anPn).

Thus, if Q1 ∈ B1 has vertices u1, . . . , um, we have

f−1
1 (Q1) ∩ c′cP = C(P(u1), . . . , P(um))

= C(P1, . . . , Pn, A)

where A is an m× n matrix of nonnegative integers divisible by c′. By Lemma 2.9, A is
full. Hence (P1, . . . , Pn, A) ∈ Ob(F ∗).
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Let m be a box point of some P0 ∈ X. By Lemma 2.11, we have a projective triangu-
lation Y → X1 where each P′ ∈ X1 is triangulated into Σm(P′). Hence, every simplex Q
of Y has either LQ = LP for some simplex P 6= P0 of X or index(Q) < index(P) where P
is a simplex of X and m is a box point of P.

Now repeat the process of Section 2.5.2 with Y instead of X. Each time we do this
procedure, we lower the indices of some of the lattices spanned by elements of X while
keeping the other lattices the same. Eventually all lattices will be unimodular, complet-
ing the proof.

References

[1] D. Abramovich and K. Karu. “Weak semistable reduction in characteristic 0”. Invent. Math.
139.2 (2000), pp. 241–273. Link.

[2] K. Adiprasito, G. Liu, I. Pak, and M. Temkin. “Log smoothness and polystability over
valuation rings”. 2018. arXiv:1806.09168.

[3] K. Adiprasito, G. Liu, and M. Temkin. “Semistable reduction in characteristic 0”. 2018.
arXiv:1810.03131.

[4] V. Alexeev. “Boundedness and K2 for log surfaces”. Internat. J. Math. 5.6 (1994), pp. 779–
810. Link.

[5] V. Alexeev. “Moduli spaces Mg,n(W) for surfaces”. Higher-dimensional complex varieties
(Trento, 1994). de Gruyter, Berlin, 1996, pp. 1–22. Link.

[6] M. Artin and G. Winters. “Degenerate fibres and stable reduction of curves”. Topology 10
(1971), pp. 373–383. Link.

[7] C. Haase, A. Paffenholz, L. C. Piechnik, and F. Santos. “Existence of unimodular triangu-
lations - positive results.” To appear in Mem. Amer. Math. Soc. 2014. arXiv:1405.1687.

[8] A. J. de Jong. “Smoothness, semistability and alterations”. Inst. hautes études sci., Publ. math.
83 (1996), pp. 51–93.

[9] K. Karu. “Semistable reduction in characteristic zero for families of surfaces and three-
folds”. Discrete Comput. Geom. 23.1 (2000), pp. 111–120. Link.

[10] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat. Toroidal Embeddings. I. Lecture
Notes in Mathematics, Vol. 339. Berlin: Springer-Verlag, 1973, pp. viii+209.

http://dx.doi.org/10.1007/s002229900024
https://arxiv.org/abs/1806.09168
https://arxiv.org/abs/1810.03131
http://dx.doi.org/10.1142/S0129167X94000395
http://dx.doi.org/10.1006/jcat.1996.0357
http://dx.doi.org/10.1016/0040-9383(71)90028-0
https://arxiv.org/abs/1405.1687
http://dx.doi.org/10.1007/PL00009484

	Introduction
	Proof
	Statement of the conjecture
	Polytopal complexes
	Canonical subdivisions
	Canonical triangulations of dilated simplices

	Cayley polytopes
	Canonical triangulations of polysimplices

	Proof of thm:polytopes
	Reducing the base
	Lowering the index



