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The weak Bruhat order on the symmetric group is
Sperner

Christian Gaetz∗ and Yibo Gao†

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA

Abstract. We construct a simple combinatorially-defined representation of sl2 which
respects the order structure of the weak order on the symmetric group. This is used to
resolve the longstanding open problem of showing that the weak order has the strong
Sperner property, and is therefore a Peck poset.
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1 Introduction

1.1 The Sperner property

We refer the reader to [10] for basic facts and terminology about posets in what follows.
Let P be a finite ranked poset with rank decomposition

P = P0 t · · · t Pr.

We say that P is k-Sperner if no union of k antichains of P is larger than the union of the
largest k ranks. If P is k-Sperner for k = 1, ..., r + 1, we say that P is strongly Sperner. Let
pi = |Pi|, then we say P is rank symmetric if pi = pr−i and rank unimodal if

p0 ≤ p1 ≤ · · · ≤ pj−1 ≤ pj ≥ pj+1 ≥ · · · ≥ pr

for some j. If P is rank-symmetric, rank-unimodal, and strongly Sperner, then P is Peck.
The Sperner property has long been of interest in both extremal and algebraic com-

binatorics. For example, Sperner’s Theorem, which asserts that the Boolean lattice Bn
is Sperner, is central to extremal set theory. A wide variety of methods have been used
to demonstrate that various posets have the Sperner property: Lubell gave an elegant
probabilistic proof for the Boolean lattice, linear algebraic methods have been used (see
Proposition 1), as have explicit combinatorial methods such as constructions of symmet-
ric chain decompositions (see Section 3.2 for a definition).
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In [9], Stanley used the Hard Lefschetz Theorem from algebraic geometry to prove
that a large class of posets are strongly Sperner and obtained the Erdős-Moser Conjecture
as a corollary. This class includes the strong Bruhat order (see Section 1.2), but not the
weak order considered here.

1.2 The weak order

Let Sn denote the symmetric group of permutations of n elements, viewed as a Coxeter
group with respect to the simple transpositions si = (i i + 1) for i = 1, ..., n − 1. The
weak order Wn = (Sn,≤) is the poset structure on Sn whose cover relations are defined
as follows: u l w if and only if w = usi for some i and `(w) = `(u) + 1, where ` denotes
Coxeter length. This poset is graded with the rank of w given by `(w); the permutation
of maximum length has one-line notation n (n− 1) (n− 2) ... 1 and length (n

2).
This definition is in contrast to the strong order (or Bruhat order) on Sn which has

cover relations corresponding to right multiplication by any transposition tij = (i j),
rather than just the simple transpositions si; it was proven in [9] that the strong order
is Peck. The weak and strong orders share the same ground set and rank structure,
so the weak order is rank-symmetric and rank-unimodal. The Sperner property of Wn,
however, does not follow from that of the strong order, since Wn has fewer covering
relations.

Whether Wn is Sperner has been investigated at least since Björner in 1984 [2], and a
positive answer was conjectured by Stanley [8]. Our main result is a positive answer to
this problem:

Theorem 1. For all n ≥ 0 the weak order Wn is strongly Sperner, and therefore Peck.

1.3 Order raising operators

For P = P0 t · · · t Pr a finite graded poset, and S ⊆ P, let CS denote the vector space
of formal linear combinations of elements of S. A linear map U : CP → CP sending
elements x ∈ P to ∑y cxyy is called an order raising operator if cxy = 0 unless x l y. Any
linear map D : CP→ CP which maps each subspace CPk into CPk−1 is called a lowering
operator. We remark that a lowering operator does not need to respect the order.

Proposition 1 (Stanley [9]). Suppose there exists an order raising operator U : CP→ CP such
that if 0 ≤ k < r

2 then Ur−2k : CPk → CPr−k is invertible. Then P is strongly Sperner.

In [8], Stanley suggested that the order raising operator U : CWn → CWn defined for
w ∈Wn by

U · w = ∑
i: `(wsi)=`(w)+1

i · wsi
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and extended by linearity may have the desired property. He conjectured an explicit
non-vanishing product formula for the determinants of the maps U(n

2)−2k : C(Wn)k →
C(Wn)(n

2)−k for 0 ≤ k < 1
2(

n
2), which, by Proposition 1 would imply Theorem 1.

In Section 2, we prove that U(n
2)−2k is invertible by constructing a representation of sl2

on CWn with weight spaces C(Wn)i such that the standard generator e ∈ sl2 acts by U (a
result of Proctor [6] implies that, if Wn is Peck, then there is some such representation in
which e acts as an order raising operator).

Remark. In subsequent work [3], Hamaker, Pechenik, Speyer, and Weigandt interpret
this sl2-action in terms of derivatives of Schubert polynomials, and use this to prove
Stanley’s conjectured determinant.

2 An action of sl2
We define a lowering operator D : CWn → CWn by

D · w = ∑
1≤i<j≤n

`(wtij)=`(w)−1

(
2
(
wi − wj − a(w, wtij)

)
− 1
)
· wtij

where a(w, wtij) := #{k < i : wj < wk < wi}. Here tij denotes the transposition of i and
j, which is (i, j) in cycle notation. Note that the sum in our definition is over all covering
relations in the strong Bruhat order (the fact that D does not respect the weak order will
be immaterial to our argument). Combinatorial implications of the fact that the strong
Bruhat order appears here are studied in [1]. See Figure 1 for a depiction of the order
raising operator U and the lowering operator D in the case n = 3.

We also define a modified rank function H : CWn → CWn by

H(w) =

(
2 · `(w)−

(
n
2

))
· w

for w ∈Wn and extending by linearity. Since H acts as a multiple of the identity on each
rank, it is clear that for any raising operator U and lowering operator D we have

HU −UH = 2U (2.1)
HD− DH = −2D. (2.2)

In this section, we show that U, D together with H provide a representation of sl2 on
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Figure 1: The edge weights for the order raising operator U (left) and the lowering
operator D (right).

CWn. The Lie algebra sl2(C) has a standard linear basis

e =
(

0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
and is determined by the relations [h, e] = 2e, [h, f ] = −2 f , and [e, f ] = h. Here [, ]
denotes the standard Lie bracket: [X, Y] := XY−YX.

In light of (2.1) and (2.2), all that remains is to check that [U, D] = H. We can view
[U, D] = UD − DU and H as matrices of size n!× n! with rows and columns indexed
by permutations, and we show that they are equal by comparing entries via Lemmas 1
and 2 below.

Lemma 1. For every w ∈Wn, (UD− DU)w,w = 2 · `(w)− (n
2).
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Proof. Assume w ∈ (Wn)k, meaning `(w) = k. We have that, by definition,

UDw,w = ∑
u∈(Wn)k−1

Du,w ·Uw,u = ∑
ulWn w

Du,w ·Uw,u

= ∑
i: wi>wi+1

i ·
(

2
(
wi − wi+1 − a(w, wsi)

)
− 1
)

= ∑
i: wi>wi+1

2i(wi − wi+1) + ∑
i: wi>wi+1

(
− 2i · #{j < i : wi+1 < wj < wi} − i

)
where lWn denotes the covering relations in the weak order Wn. Similarly,

−DUw,w = ∑
i: wi<wi+1

2i(wi − wi+1) + ∑
i: wi<wi+1

(
2i · #{j < i : wi < wj < wi+1}+ i

)
Putting them together, we obtain

(UD− DU)w,w =∑
i

2i(wi − wi+1) + A

=2(w1 − w2) + 4(w2 − w3) + · · ·+ (2n− 2)(wn−1 − wn) + A

=n2 + n− 2nwn + A

where by switching the order of summation, we can write A as a sum over j’s instead of
i’s as above:

A =
n−1

∑
j=1

sgn(wj+1 − wj) · j− 2

 ∑
i: i>j

wi+1<wj<wi

i

+ 2

 ∑
i: i>j

wi<wj<wi+1

i


 .

Here sgn : R× → {±1} is the sign function. Denote the summand above by Aj so that
A = ∑n−1

j=1 Aj and let’s see how each Aj simplifies.
Assume first that wj < wj+1. Then sgn(wj+1 − wj) = 1. Let j < j1 < j2 < · · · < jp be

all the indices such that wjm − wj and wjm+1 − wj have different signs, for m ≥ 1. In this
case of wj < wj+1, we know wj < wj1 , wj > wj1+1, wj > wj2 , wj < wj2+1 and so on. As a
result,

Aj =j− 2(j1 + j3 + · · · ) + 2(j2 + j4 + · · · )
=− (j1 − j) + (j2 − j1)− (j3 − j2) + · · · ± jp

=− (j1 − j) + (j2 − j1)− (j3 − j2) + · · · ± (n− jp)± n
=#{i > j : wi < wj} − #{i > j : wi > wj} ± n

where the last sign is + if wj < wn and is − if wj > wn. The case wj > wj+1 yields the
exact same formula with the same argument.
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Once we consider all the Aj’s together, the last terms ±n will appear as +n for wn− 1
times and will appear as −n for n− wn times. Therefore,

(UD− DU)w,w =n2 + n− 2nwn +
n−1

∑
j=1

Aj

=n2 + n− 2nwn + #{i > j : wi < wj} − #{i > j : wi > wj}
+ n(wn − 1)− n(n− wn)

=k−
((

n
2

)
− k
)
= 2k−

(
n
2

)
.

Lemma 2. For w 6= u ∈Wn, (UD− DU)w,u = 0.

Proof. It suffices to check cases where (UD)w,u 6= 0 or (DU)w,u 6= 0. Let k = `(w) = `(u).
Let’s first say that (DU)w,u 6= 0, in which case there exists v = usb with `(v) = `(u) + 1
and v = wtij (i < j) with `(v) = `(w) + 1. We view Wn as a directed graph where
there are up edges corresponding to covering relations of the weak Bruhat order Wn
and down edges corresponding to covering relations in the strong Bruhat order. There
are a few cases as follows. We will see that in each case there are exactly two directed
paths of length 2 from u to w: one goes up then down and the other one goes down
then up. Moreover, the edge weights of these two paths will be same and thus give
(UD− DU)w,u = 0.

Case 1: {b, b + 1} ∩ {i, j} = ∅. It is clear that there are exactly two directed path
from u to w of length 2, which are u → v → w and u → utij → w. By definition,
Uv,u = Uw,utij = b and Dw,v = Dutij,u.

Case 2: b = i. As w 6= u, we must have j > b + 1. By our condition on the path u →
v→ w, we know that ub < uj < ub+1 and therefore there exists one more path of length
2 from u to w, which is u→ x → w where x = uti+1,j and x = wsb. The up edges of these
two paths both have weight b and for the down edges, Dw,v = 2(wj − wi − a(v, w))− 1
and Dx,u = 2(ui+1− uj − a(u, x))− 1. We have wj = ui+1 and wi = uj and since ui is less
than both ui+1 and uj, we conclude that a(v, w) = a(u, x).

Case 3: b + 1 = i. Similarly, we know that uj < ub < ui = ub+1 and the only other
directed path is u → x → w with x = utb,j = wsb. The up edges both have weight b; for
the down edges the key parameters a(v, w) and a(u, x) are equal, since ub+1 is greater
than both ub and uj.

Case 4: b = j. Here ub = uj < ub+1 < ui and the other path is u → x → w with
x = uti,j+1 = wsb. The up edges have the same weight b and the down edges have the
same weight since the transposition w = vti,j, x = uti,j+1 swaps entries with the same
values and all four permutations have the same values at indices 1, 2, . . . , i− 1.
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Case 5: b + 1 = j. As w 6= u, we know i < b. First, ub < ub+1 and since w = vtij with
`(w) = `(v)− 1, we must have ub < ui < uj = ub+1. The other path is u → x → w with
x = uti,j−1 = wsb. The up edges have the same weight b and the down edges have the
same weight since the transposition w = vti,j, x = uti,j−1 swaps entries with the same
values and all four permutations have the same values at indices 1, 2, . . . , i− 1.

Beginning instead with the assumption that (UD)w,u 6= 0, it is easy to see that all
cases are already included above.

We now complete the proof of the main theorem.

Proof of Theorem 1. Lemmas 1 and 2 together show that the map sending e 7→ U, f 7→ D,
and h 7→ H defines a representation of sl2(C) on CWn with weight spaces C(Wn)k of
weight 2k− (n

2). It is an immediate consequence of the theory of highest weight repre-
sentations (see, for example, Theorem 4.60 of [4]) that U(n

2)−2k : C(Wn)k → C(Wn)(n
2)−k

is an isomorphism. Since U is an order raising operator by definition, Proposition 1
implies the desired result.

3 Further directions

3.1 Other Coxeter types

The weak and strong Bruhat orders generalize naturally to any finite Coxeter group
C, with the role of the simple transpositions (i i + 1) replaced by any choice of simple
reflections, and the set of all transpositions (i j) replaced by the set of all reflections
in C. Stanley’s result [9] that the strong order is strongly Sperner applies to any finite
Weyl group. An easy argument proves the same for the dihedral groups, and computer
checks verify that the strong orders on the exceptional Coxeter groups of types H3 and
H4 are also strongly Sperner. Since strong orders for all Coxeter types are known to be
rank-symmetric and rank-unimodal, and since products of Peck posets are Peck [7], it
follows that Stanley’s result can be extended to all finite Coxeter groups. As our results
for the weak order apply only to the symmetric group, it is natural to ask:

Problem 1. Is the weak order on any finite Coxeter group strongly Sperner?

An easy argument answers this question in the affirmative for the dihedral groups,
and computer checks have also verified it for all Coxeter groups of rank at most four.

3.2 Symmetric chain decompositions

A ranked poset P has a symmetric chain decomposition if P can be decomposed (as a set)
into a disjoint union of saturated chains, each of which occupies a set of ranks which is
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symmetric about the middle rank of P. For example, a symmetric chain decomposition
of the posets W3 and S3 in Figure 1 is given by {123, 213, 231, 321} t {132, 312}.

It is well-known that any poset with a symmetric chain decomposition is Peck. In
[5], Leclerc observed that the weak order on the Coxeter group of type H3 is Peck, but
does not admit a symmetric chain decomposition. Stanley observes [9] that the strong
orders for each of the infinite families of finite Coxeter groups admit symmetric chain
decompositions. We ask:

Problem 2. Which Coxeter group weak orders admit a symmetric chain decomposition? Do all
Coxeter group strong orders admit one?
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