
Séminaire Lotharingien de Combinatoire 82B (2019) Proceedings of the 31st Conference on Formal Power
Article #36, 12 pp. Series and Algebraic Combinatorics (Ljubljana)

The Steep-Bounce Zeta Map in Parabolic Cataland

Cesar Ceballos∗1, Wenjie Fang†2, and Henri Mühle3

1Faculty of Mathematics, University of Vienna
2Institute of Discrete Mathematics, Graz University of Technology
3Institute of Algebra, Dresden University of Technology

Abstract. As a classical object, the Tamari lattice has many generalizations, including
ν-Tamari lattices and parabolic Tamari lattices. In this article, we unify these general-
izations in a bijective fashion. We first prove that parabolic Tamari lattices are isomor-
phic to ν-Tamari lattices for bounce paths ν. We then introduce a new combinatorial
object called “left-aligned colorable tree”, and show that it provides a bijective bridge
between various parabolic Catalan objects and certain nested pairs of Dyck paths. As
a consequence, we prove the Steep-Bounce Conjecture using a generalization of the
famous zeta map in q, t-Catalan combinatorics.

Résumé. Étant un objet classique, le treillis de Tamari a beaucoup de généralisations, y
compris les treillis ν-Tamari et les treillis de Tamari paraboliques. Dans cet article, ces
deux treillis sont unifiés de manière bijective. D’abord nous prouvons que les treillis
de Tamari paraboliques sont isomorphes aux treillis de ν-Tamari avec ν des chemins
de rebond. Puis nous introduisons un nouvel objet dit “arbre colorable à gauche”,
et montrons qu’il donne un pont bijectif entre divers objets de Catalan paraboliques
et certains paires de chemins de Dyck emboîtées. En conséquence, nous prouvons la
Conjecture de Steep-Bounce par une généralisation de la fameuse transformation zeta
dans la combinatoire de q, t-Catalan.

Keywords: parabolic Tamari lattice, ν-Tamari lattice, bijection, left-aligned colorable
tree, zeta map.

1 Introduction

The Tamari lattice can be realized as a partial order on various Catalan objects. It has
been studied widely from various perspectives, leading to numerous generalizations.
Two of its recent variants are the parabolic Tamari lattices of Mühle and Williams [10]
and the ν-Tamari lattices of Préville-Ratelle and Viennot [12]. The parabolic Tamari
lattices are defined as certain lattice quotients of the weak order in parabolic quotients
of the symmetric group Sn, which generalizes a construction in the classical Tamari
lattice by Björner–Wachs [3]. The ν-Tamari lattices are, in contrast, partial orders defined
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Figure 1: An overview of the bijections presented in this article.

by manipulating lattice paths. They generalize the m-Tamari lattices which were initially
motivated by connections to trivariate diagonal harmonics [1], and now have remarkable
applications to the theory of multivariate diagonal harmonics [2] and bijective links to
other objects in combinatorics [5].

In this article, we reunite these two variants of the Tamari lattice. Our first main result
is that parabolic Tamari lattices are isomorphic to ν-Tamari lattices indexed by bounce
paths ν. We also introduce a new family of parabolic Catalan objects called left-aligned
colorable trees (or simply LAC trees). These trees connect the parabolic generalizations of
231-avoiding permutations, noncrossing set partitions, and Dyck paths, all of which can
be recovered easily from the tree. In turn, we use LAC trees to prove the Steep-Bounce
Conjecture of Bergeron, Ceballos, and Pilaud [2, Conjecture 2.2.8], which connects the
graded dimensions of a certain Hopf algebra of pipe dreams to a certain family of lattice
walks in the positive quarter plane. Our proof is based on a bijection between two
families of nested Dyck paths via LAC trees. Interestingly, we show that this bijection
generalizes the famous zeta map in q, t-Catalan combinatorics [6, Proof of Theorem 3.15].

We have omitted many of the proofs due to space limitations. The missing details
can be found in the full version [4] of this article.

2 Two Generalizations of the Tamari Lattice

The (classical) Tamari lattice Tn was introduced in [13] as a partial order on parenthesiza-
tions of a string of length n+ 1, and has since then gained lots of interest in mathematical
research. See [11] for a recent survey on topics related to these lattices. We recall two
generalizations of this lattice, both depending on a composition α = (α1, α2, . . . , αr) of
n > 0.
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(a) The parabolic Tamari lattice T(1,2,2). (b) The ν(1,2,2)-Tamari lattice.

Figure 2: The lattices Tα and Tνα for α = (1, 2, 2).

Let [n] def
= {1, 2, . . . , n}. For i ∈ {0, 1, . . . , r}, let si

def
= α1 + α2 + · · · + αi and ti

def
=

n− sr−i with s0
def
= 0. For i ∈ [r] we call the set {si−1 + 1, si−1 + 2, . . . , si} the i-th α-region.

Let α
def
= (αr, . . . , α2, α1) denote the reverse composition.

2.1 Parabolic Tamari Lattices

Parabolic 231-Avoiding Permutations. Let Sn be the symmetric group of degree n. Its
parabolic quotient with respect to α is defined by

Sα
def
=

{
w ∈ Sn | w(k) < w(k + 1) for k /∈ {s1, s2, . . . , sr−1}

}
.

In a permutation w ∈ Sα, an (α, 231)-pattern is a triple of indices i < j < k in different
α-regions such that w(k) < w(i) < w(j) and w(i) = w(k) + 1. A permutation w ∈ Sα

without (α, 231)-patterns is (α, 231)-avoiding. We denote by Sα(231) the set of all (α, 231)-
avoiding permutations in Sα. An example for α = (1, 3, 1, 2, 4, 3) is shown in top-left
of Figure 1. In this article, we represent permutations in their one-line notation, and
highlight the α-regions with colors.

The Weak Order on Sα(231). For every w ∈ Sα, we define its inversion set as Inv(w)
def
={

(i, j) | i < j and w(i) > w(j)
}

. The elements of Inv(w) are the inversions of w. The
(left) weak order (Sα,≤L) is defined as w1 ≤L w2 if and only if Inv(w1) ⊆ Inv(w2). Its

restriction Tα
def
=

(
Sα(231),≤L

)
is the parabolic Tamari lattice. It was established in [10,
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Theorem 1.1] that Tα is indeed a lattice. Figure 2a shows the lattice T(1,2,2). It follows for
instance from [3, Theorem 9.6] that T(1,1,...,1)

∼= Tn.

2.2 να-Tamari Lattices

Dyck Paths. A Dyck path is a lattice path in N2 starting from the origin, composed

of steps E def
= (1, 0) (or east-steps) and N def

= (0, 1) (or north-steps), ending on the main
diagonal while always staying weakly above it. Such paths can also be regarded as
words in the letters N and E. Let Dn denote the set of all Dyck paths with 2n steps.

A Dyck path that is of the form Ni1 Ei1 Ni2 Ei2 . . . Nir Eir , for some integers i1, i2, . . . , ir,
is bounce (because it “bounces off” the main diagonal s− 1 times). A Dyck path is steep
if it has no consecutive east-steps except possibly at y-coordinate n.

The α-bounce path is να
def
= Nα1 Eα1 Nα2 Eα2 . . . Nαr Eαr . Any Dyck path with 2n steps that

stays weakly above να is an α-path, and we denote by Dα the set of α-paths.

The Rotation Order on Dyck Paths. Given an α-path µ and any lattice point ~p on µ, we
define horizα(~p) as the maximal number of east-steps that can be taken from ~p without
going to the other side of να. A valley of µ is a lattice point ~p preceded by an east-
step and followed by a north-step. For any valley ~p of µ, let ~q be the first lattice point
on µ after ~p such that horizα(~p) = horizα(~q), and let µ[~p,~q] be the subpath of µ from
~p to ~q. By swapping µ[~p,~q] with the east-step preceding ~p, we obtain another α-path
µ′, and we define the relation lα by taking µ lα µ′ for all possible µ and µ′ obtained
in such a way. Let ≤α be the reflexive and transitive closure of the relation lα. The

poset Tνα

def
=

(
Dα,≤α

)
is the να-Tamari lattice. It was established in [12, Theorem 1] that

Tνα is indeed a lattice, and Figure 2b shows an example Tν(1,2,2) . It is well known that
T(NE)n ∼= Tn, the classical Tamari lattice of order n.

2.3 The Lattices Tνα and Tα are Isomorphic

We now prove that the two lattices Tνα and Tα are isomorphic. For this we use a bijection
between the sets Sα(231) and Dα already described in [10, Theorem 1.2]. To that end we
need another family of objects that depends on the composition α.

Parabolic Noncrossing Partitions. An α-partition is a set partition of [n] where ev-
ery part intersects an α-region in at most one element. We represent an α-partition
by its diagram, which consists of n vertices labeled from 1 through n on a horizontal
line, grouped by α-regions. Any two consecutive elements a and b in a part of an α-
partition are connected by a bump. More precisely, the bump connecting a and b is a
curve that leaves the vertex labeled a at the bottom, stays below every vertex in the
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same α-region as a, then moves up and continues above every vertex in the subsequent
α-regions until it reaches the vertex labeled b, which it enters at the top. An α-partition
is noncrossing if it admits a diagram without bumps crossing. A more formal definition
can be found in [10, Definition 4.1]. An example for α = (1, 3, 1, 2, 4, 3) is the α-partition{
{1, 3}, {2, 6}, {4, 9, 12}, {5}, {7, 8}, {10, 14}, {11}, {13}

}
shown in the top-central part of

Figure 1. We denote by NCα the set of all noncrossing α-partitions.

A Bijection from Dα to Sα(231). We first define a map Θ1 : Dα → NCα. Let µ ∈ Dα.
Starting from the α-partition P0 without any bumps, we consider all valleys of µ and
inductively add bumps to P0 from right to left for each valley of µ. Let the coordinates
of the valleys of µ be (p1, q1), (p2, q2), . . . (pm, qm), and Pi the noncrossing α-partition
after dealing with the i first valleys. There is a unique index 0 ≤ k < r with such that
tk ≤ qi+1 < tk+1, meaning that qi+1 = tk + ` for some 0 ≤ ` < tk+1 − tk. To go from Pi
to Pi+1, we add a bump from a to b, where a is the (`+ 1)-st element in the (r− k)-th α-
region and b is the (pi+1− pi)-th element after the (r− k)-th α-region that is not already
below any other bump. We define Θ1(µ) = Pm. It was proven in [10, Theorem 5.2] that
the α-partition Θ1(µ) is indeed noncrossing and that Θ1 is a bijection. Two examples are
illustrated in the top part of Figure 3.

Now we describe another map Θ2 : NCα → Sα(231). Let P ∈ NCα, and P̄ the unique
part of P containing 1. Suppose that P̄ = {i1, i2, . . . , ik} with i1 = 1. The permutation
w = Θ2(P) is the permutation satisfying w(i1) = w(i2) + 1 = · · · = w(ik) + k− 1 with
as few inversions as possible. To get w, we set w(i1) to be the size of a set Q̄ whose
elements are vertices lying below either the bumps in P̄, or any bump starting in the
same α-region but to the left of some element in Q̄ (including end points in both cases).
See [4, Section 1.2.2] for a detailed explanation including an example. The remaining
values of w are determined inductively by viewing P \ P̄ as an element of NCα′ for
some appropriate composition α′ of n′ < n. It was proven in [10, Theorem 4.2] that
the permutation w = Θ2(P) is indeed (α, 231)-avoiding and that Θ2 is a bijection. Two
examples are illustrated in the lower part of Figure 3.

We now prove that the map Θ def
= Θ2 ◦Θ1 induces an isomorphism from Tνα to Tα.

Theorem 2.1. For every integer composition α = (α1, α2, . . . , αr), the parabolic Tamari lattice
Tα is isomorphic to the να-Tamari lattice Tνα .

Proof sketch. Due to the space limit, we will only present the proof strategy; the details
can be found in [4, Section 2.3].

We use the fact that both Tα and Tνα are extremal lattices in the sense of [8]; see [9,
Theorem 1.3], and [8, Theorem 22] in conjunction with [12, Theorem 3], respectively.
Every extremal lattice is represented uniquely by its Galois graph [8, Theorem 1]. The
Galois graph of Tα was given in [9, Theorem 1.8]. We then explicitly describe the Galois
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Figure 3: A cover relation in Tα and the corresponding cover relation in Tνα for α =

(1, 3, 1, 2, 4, 3).

graph of the dual of Tνα , and show that Θ induces an isomorphism of these two Galois
graphs. Since by [12, Theorem 2] Tνα is isomorphic to the dual of Tνα , we conclude that
Tα and Tνα are isomorphic.

In fact, we suspect that Θ is an anti-isomorphism from Tνα to Tα. Figure 3 illustrates
this suspicion by showing an example of a cover relation in Tνα that is mapped under Θ
to a dual cover relation in Tα for α = (1, 3, 1, 2, 4, 3).

Theorem 2.1 states that Tα and Tνα are isomorphic lattices. We want to point out that
these two lattices provide two different perspectives. By definition of Tνα it is simple to
check when two α-Dyck paths form a cover relation, but it is not easy (in general) to
check whether two such paths are comparable in this lattice. In Tα, the situation is quite
the opposite: by definition it is easy to check when two (α, 231)-avoiding permutations
are comparable in Tα, but to determine whether they form a cover relation is nontrivial.

3 LAC Trees and Parabolic Catalan Objects

In this section, which is at the heart of this abstract, we introduce a new family of
combinatorial objects depending on a fixed composition α. These objects, called α-trees,
are plane rooted trees that can be colored by the algorithm that we now describe.

Let α = (α1, α2, . . . , αr) be a composition of n. Given a plane rooted tree T with n
non-root vertices, our goal is to color nodes in T with r colors. The algorithm consists
of r coloring steps, and in the i-th step we try to color αi non-root nodes of T with color
i. During a coloring step, a non-root node is active if it is not yet colored, and its parent
is either the root or is colored. At the i-th coloring step, the first αi active vertices in the
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Figure 4: An illustration of the map Ξperm for α = (1, 3, 1, 2, 4, 3).

left-to-right traversal order on T are colored by i. After each coloring, we update the
status of being active accordingly. If there are less than αi active vertices at step i, the
algorithm fails. When it succeeds, we obtain the left-aligned coloring of T by α (LAC for
short), which is unique (since this algorithm is deterministic). In this case, we say that
T and α are left-aligned compatible (or simply compatible). Any plane rooted tree that is
compatible with α is an α-tree. We denote the set of all α-trees by Tα. An example for
α = (1, 3, 1, 2, 4, 3) is shown in the center of Figure 1.

Theorem 3.1. For every integer composition α, there is an explicit bijection from Tα to each of
the following sets: Sα(231), NCα, Dα.

3.1 LAC Trees and Parabolic 231-Avoiding Permutations

Let T ∈ Tα. We label the non-root nodes of T in postfix order, i.e. by the order of last visits
in left-to-right traversal, and read labels in each block from left to right, with blocks in
increasing order of color. This gives a permutation in Sα, which is in fact also (α, 231)-
avoiding. Let Ξperm : Tα → Sα(231) denote the corresponding map.

Conversely, for w ∈ Sα(231), we recursively construct a plane rooted tree with n non-
root nodes compatible with α. Starting from a root node labeled by n+ 1, we successively
insert nodes labeled by w(i) for i from 1 through n to get a labeled plane tree. In the i-th
step, i.e. when we want to insert a node labeled by w(i), we start a visit of the tree from
the root. Suppose that we are at a node labeled by a. If w(i) < a, we move to the first
child of this node, otherwise we move to its first sibling. If the intended next node does
not exist, we create it and label it by w(i). After all entries of w are inserted, we obtain a
plane tree which turns out to be compatible with α. We denote by Λperm : Sα(231)→ Tα

the corresponding map, which is illustrated in Figure 4. Readers familiar with binary
trees may notice this map essentially is the insertion algorithm for binary search trees
composed with the classical bijection between binary and plane trees.

Proposition 3.2. For every integer composition α, the map Ξperm : Tα → Sα(231) is a bijection,
whose inverse is Λperm.
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Ξnc

Figure 5: An illustration of the map Ξnc for α = (1, 3, 1, 2, 4, 3).

3.2 LAC Trees and Parabolic Noncrossing Partitions

Let T ∈ Tα. We write the n non-root nodes on a horizontal line, grouped by color,
with nodes in the each group in left-to-right order in T, and with groups in increasing
order of colors. We connect two vertices a and b by a bump in this flattening if and
only if b is the rightmost child of a. See Figure 5 for an example. By construction,
the corresponding diagram belongs to an α-partition, which is in fact noncrossing. We
denote by Ξnc : Tα → NCα the corresponding map.

Conversely, for P ∈ NCα, to construct an α-tree, we start with a collection of n + 1
labeled nodes, with the node labeled by n + 1 being the root. Consider the i-th node ui
in the diagram of P. If ui does not see any bump above, then it becomes a child of the
root; if it lies directly below the bump starting from the k-th node uk in the diagram,
then ui becomes a child of uk. Here, a vertex lies directly below a bump if it is either the
end point of said bump or it is not separated from this bump by another bump. The
resulting plane rooted tree is unique and compatible with α; thus an α-tree. We denote
by Λnc : NCα → Tα the corresponding map.

Proposition 3.3. For every integer composition α, the map Ξnc : Tα → NCα is a bijection, whose
inverse is Λnc.

3.3 LAC Trees and Parabolic Dyck Paths

Let T ∈ Tα. For k ∈ [r], let sk = α1 + α2 + · · · + αk as defined in Section 2, and ak
the number of active nodes at the k-th coloring step in the construction of T, which are
the nodes in T of color bigger than k whose parent has color at most k. We construct
a Dyck path by describing the positions of its valleys, which correspond to nodes in
T with at least one child. Suppose that the right-most child of the i-th vertex of color
k is the j-th active node in the k-th coloring step. The corresponding valley then has
coordinates (p, q) with p = sk − i + 1 and q = sk + ak − j. It turns out that this uniquely
defines a Dyck path that is indeed weakly above να. We denote by Ξnn : Tα → Dα the
corresponding map.
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Figure 6: Illustrations of the maps Ξdyck and Ξsteep for n = 14 and α = (1, 3, 1, 2, 4, 3).

Conversely, for µ ∈ Dα, we construct a plane rooted tree recursively as follows.
Starting with a root node, we add as many children to it as there are north-steps in µ on
the y-axis. We then color α1 of them with color 1. Now, for k ∈ [r− 1] we add as many
children to the i-th node of color k as there are north-steps in µ with x-coordinate equal
to sk − i + 1. After every node of color k has received all its children, we color the first
αk+1 uncolored nodes from left to right with color k + 1. Since µ is weakly above να, the
tree T is compatible with α. We denote by Λnn : Dα → Tα the corresponding map.

Proposition 3.4. For every integer composition α, the map Ξnn : Tα → Dα is a bijection, whose
inverse is Λnn.

Remark 3.5. We have Θ1(µ) = Ξnc ◦ Λnn(µ) for every µ ∈ Dα, where µ is the reversed
path of µ.

4 LAC Trees and Level-Marked Dyck Paths

We introduce yet another family of combinatorial objects in bijection with left-aligned
colorable trees. A level-marked Dyck path is a Dyck path with two types of north-steps
N• and N◦ under the condition that, for each lattice point (p, q) on the path, there are
at least q− p north-steps of type N• (or marked north steps) that come before it. Let D•n
be the set of level-marked Dyck paths consisting of 2n steps. Level-marked Dyck paths
have been introduced in [2, Section 2.2.3] under the name “colored Dyck paths”, and it
was shown there that D•n is in bijection with the set of lattice walks in N×N with 2n
steps in the set

{
(0, 1), (−1, 1), (1,−1)

}
that start at the origin and end on the x-axis, by

sending N• to (0, 1), N◦ to (−1, 1) and E to (1,−1).
Let us write α |= n to mean that α is an integer composition of n. For n > 0 we

denote by LACn
def
=

{
(T, α) | α |= n, T ∈ Tα

}
the set of all LAC trees of n.

Given (T, α) ∈ LACn, we construct a marked Dyck path by a right-to-left traversal of
T. At each time we reach a new node, if its color with respect to α is not seen before, we
add a marked north-step N•, otherwise we add a regular north-step N◦. At each time
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we go back up one level, we add an east-step E. It turns out that this path is indeed
a level-marked Dyck path. We denote by Ξdyck : LACn → D•n the corresponding map,
which is illustrated in Figure 6.

Conversely, for µ• ∈ D•n, we construct a plane rooted tree starting from a single root
as follows. We go over µ• as a word, and construct a tree according to the following
rules: when we read a north-step (marked or unmarked) we add a child to the left of
the current node and move there, and when we read an east-step we go to the parent of
the current node. Simultaneously, we determine the coloring of the non-root nodes by
taking into account the markings. For this we start with an empty list of colors which
is updated throughout the process maintaining a pointer on the colors. When we read
a marked north-step N•, we insert a new color c in the list just after the pointer, and
move the pointer there, while coloring the new node by c. When we read an unmarked
north-step N◦, we move the pointer to the next color c′ in the list and color the new node
by c′. When we read an east-step, we move the pointer to the previous color in the list.
The marking condition of level-marked Dyck paths ensures that we always have enough
colors to move the pointer accordingly. When we finish reading µ•, we reorder the colors
by their first appearances in left-to-right order. If we have used r colors, then we obtain
a composition α = (α1, α2, . . . , αr) of n, where αi is the number of nodes with color i. It
turns out that the resulting tree is compatible with α. We denote by Λdyck : D•n → LACn
the map we have just described.

Proposition 4.1. For n > 0 the map Ξdyck : LACn → D•n is a bijection, whose inverse is Λdyck.

5 The Steep-Bounce Zeta Map

A pair (µ1, µ2) of Dyck paths of the same length is nested if µ1 always stays weakly
below µ2. Let SPn denote the set of all nested pairs (µ1, µ2) such that µ1, µ2 ∈ Dn and
µ2 is steep. We call the elements of SPn steep pairs. Similarly, we denote by BPn the set
of all nested pairs (µ1, µ2) such that µ1, µ2 ∈ Dn and µ1 is bounce. We call the elements
of BPn bounce pairs.

We now explain how to encode a level-marked Dyck path µ• ∈ D•n as a nested
pair of Dyck paths. Let µ1 be the Dyck path obtained by forgetting the marking, and
µ2 ∈ Dn constructed by forgetting all east steps, replacing each marked north-step N•
in µ• by N and each regular north-step N◦ in µ• by EN, and appending east-steps
at the end until reaching (n, n). Then, µ2 is steep, and it follows that the map that
sends µ• to the pair (µ1, µ2) is a bijection from D•n to SPn [2, Section 2.2.3]. We denote
by Ξsteep : LACn → SPn the composition of Ξdyck with this map. Then Ξsteep is a bijection
and we denote by Λsteep its inverse. See Figure 6 for an example.

The purpose of this section is to prove the Steep-Bounce Conjecture of Bergeron,
Ceballos and Pilaud [2, Conjecture 2.2.8]. This conjecture arises as a combinatorial ap-
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Γ = Ξbounce ◦ Λsteep

ΞsteepΞbounce

Figure 7: An illustration of the steep-bounce zeta map Γ.

proach to understand an intriguing connection between the study of lattice walks in the
positive quarter plane mentioned above and certain Hopf algebras with applications in
the theory of multivariate diagonal harmonics.

Any α-path µ ∈ Dα can be regarded as a bounce pair (να, µ) ∈ BPn. We may thus
extend the bijection Ξnn : Tα → Dα from Section 3.3 to a bijection Ξbounce : LACn → BPn,
where Ξbounce(T, α) =

(
να, Ξnn(T)

)
. We denote by Λbounce its inverse.

Theorem 5.1 (The Steep-Bounce Theorem). Let Γ def
= Ξbounce ◦Λsteep. For n > 0 and every

r ∈ [n], Γ is a bijection from

• the set of nested pairs (µ1, µ2) of Dyck paths with 2n steps, where µ2 is a steep path ending
with exactly r east steps with y-coordinate equal to n, to

• the set of nested pairs (µ′1, µ′2) of Dyck paths with 2n steps, where µ′1 is a bounce path that
touches the main diagonal r + 1 times.

Corollary 5.2 ([2, Conjecture 2.2.1]). The graded dimension of degree n of the Hopf algebra
considered in [2, Section 2.2] equals the number of walks in the quarter plane starting from the
origin, ending on the x-axis, and consisting of 2n steps taken from (−1, 1), (1,−1), (0, 1).

An example of the bijection Γ can be found in Figure 7. Interestingly, the map Γ
generalizes the classical zeta map in q, t-Catalan combinatorics. More precisely, we recall
that we can associate with any Dyck path µ ∈ Dn a “smallest” steep path µsteep weakly
above µ, and a “largest” bounce path µbounce weakly below µ, both using a greedy
algorithm. Under the bijections Λsteep and Λbounce, the pairs of the form (µ, µsteep) and
(νbounce, ν) are mapped to LAC trees (T, α) such that αi is the number of non-root nodes
at distance i from the root. With these relations, we prove the following result.

Theorem 5.3. For n > 0, the map Γ restricts to a bijection from

• the set of pairs (µ, µsteep) where µ is a Dyck path with 2n steps, to

• the set of pairs (νbounce, ν) where ν is a Dyck path with 2n steps.
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Moreover, if (νbounce, ν) = Γ(µ, µsteep) then ν = ζ(µ) where ζ is the zeta map from q, t-Catalan
combinatorics.

A generalization of the zeta map on parking functions, due to Haglund and Loehr [7],
can also be obtained as a labeled version of this result. We refer to [4, Section 3.3] for
more details.
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