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Abstract. In previous work by the first and third author with Matthew Baker, a family
of bijections between bases of a regular matroid and the Jacobian group of the matroid
was given. The core of the work is a geometric construction using zonotopal tilings that
produces bijections between the bases of a realizable oriented matroid and the set of
(σ, σ∗)-compatible orientations with respect to some acyclic circuit (respectively, cocircuit)
signature σ (respectively, σ∗). In this work, we extend this construction to general
oriented matroids and circuit (respectively, cocircuit) signatures coming from generic
single-element liftings (respectively, extensions). As a corollary, when both signatures
are induced by the same lexicographic data, we give a new (bijective) proof of the
interpretation of TM(1, 1) using orientation activity due to Gioan and Las Vergnas.
Here TM(x, y) is the Tutte polynomial of the matroid.
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1 Introduction

The Tutte polynomial TM(x, y) of a matroid M is one of the most prominent invariants
associated to M; among other information, special evaluations of TM(x, y) enumerate
various objects linked to M. For instance, when M is the graphical matroid of a finite
connected graph G, TM(1, 1) enumerates the following objects: the set T (G) of spanning
trees of G, Gioan’s cycle-cocycle reversal system G(G), and the Jacobian group Jac(G) (also
called the sandpile group, critical group, etc.). Finding bijective proofs for these enumer-
ative results has attracted a considerable amount of interest in combinatorics. In [2], a
new family of bijections between T (G) and Jac(G) via G(G) was constructed. The key
step in the work is a bijection βσ,σ∗ between spanning trees and (σ, σ∗)-compatible orienta-
tions1, special orientations of G that form a system of representatives of G(G), for every
pair of acyclic cycle signature σ and acyclic cocycle signature σ∗.
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1In [2], such a map is denoted by β̂σ,σ∗ , but since we will never refer to the original βσ,σ∗ in this note,
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To motivate our work, we explain the essential definitions and describe the map βσ,σ∗

here: a cycle signature σ picks an orientation for each simple cycle C of the graph, and σ

is acyclic if the equation ∑C aCσ(C) = 0 has no non-zero non-negative solution over the
reals, where the sum is over all simple cycles of C, and each σ(C), which is a directed
cycle, is interpreted as an element in ZE(G); define an acyclic cocycle signature similarly
for cocycles (minimal cuts). An orientation O of the edges of G is (σ, σ∗)-compatible if
every directed cycle (respectively, cocycle) of O is oriented according to σ (respectively,
σ∗).

Theorem 1.1. [2, Theorem 1.5.1] Let G be a connected graph, and fix an acyclic cycle signature
σ and an acyclic cocycle signature σ∗. Given a spanning tree T, let O(T) be the orientation of
G in which each e 6∈ T is oriented according to its orientation in σ(C(T, e)) and each e ∈ T
is oriented according to its orientation in σ∗(C∗(T, e)). Then the map βσ,σ∗ : T 7→ O(T) is a
bijection between the set of spanning trees of G and the set of (σ, σ∗)-compatible orientations of
G. Here C(T, e) (respectively, C∗(T, e)) is the fundamental cycle (respectively, cocycle) of e with
respect to T.

While the description of the map βσ,σ∗ is combinatorial, the proof of its bijectivity
uses polyhedral geometry in an essential way. Roughly speaking, σ induces a fine zono-
topal tiling Σ of the graphical zonotope Z associated to G, in which cells of Σ (which are
parallelepipeds) canonically correspond to the spanning trees of G and vertices of Σ
correspond to (a subset of) orientations of G; on the other hand, σ∗ induces a shifting
direction v in the affine span of Z. Now βσ,σ∗ coincides with the shifting map that maps
each cell Z(T) of Σ to the unique vertex uO of Σ such that uO + εv is in the interior of
Z(T) for sufficiently small ε > 0.

The above definitions and statements work beyond graphs. In fact, in [2] they were
done in the setting of regular matroids. Moreover, Theorem 1.1 was proven in [2] for
realizable oriented matroids, using the same argument involving zonotopes and their
tilings. However, it is not obvious how to further generalize the work to all oriented
matroids as the geometric argument requires realizing the oriented matroid. In fact,
even for realizable oriented matroids, the argument of [2] applies only to some zonotopal
tilings, not to arbitrary (fine) ones.

In this note we extend Theorem 1.1 to arbitrary oriented matroids and to arbitrary
circuit (respectively, cocircuit) signatures of it induced by generic single-element liftings
(respectively, extensions), while the zonotopal argument is replaced by an argument
involving oriented matroid programs.

Theorem 1.2. Let M be an oriented matroid, and let M′, M̃ be a generic single-element extension
and a generic single-element lifting of M, respectively. Let σ∗ (respectively, σ) be the cocircuit
(respectively, circuit) signature associated to M′ (respectively, M̃). Given a basis B, let O(B) be
the orientation of M in which we orient each e 6∈ B according to its orientation in σ(C(B, e)) and
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Figure 1: The affine pseudosphere arrangement of the graphical oriented matroid M of
K3 (the three curves represent the three elements of M) together with the extra element
g (the circle “at infinity”). The regions are labeled by (σ-compatible) orientations of M
(i.e., orientations of K3). The arrangement is dual to a zonotopal tiling of the zonotope
associated to M.

each e ∈ B according to its orientation in σ∗(C∗(B, e)). Then the map βσ,σ∗ : B 7→ O(B) gives
a bijection between the set of bases of M and the set of (σ, σ∗)-compatible orientations of M.

We explain the intuition of our proof of Theorem 1.2 here. By the topological rep-
resentation theorem of Folkman and Lawrence [5] (which is also the reason we call our
bijections topological bijections), we can represent the lifting M̃ (together with the distin-
guished element g) as an affine pseudosphere arrangement in which each region represents
a σ-compatible orientation of M, see Figure 1. In the realizable case, such arrangement
can be thought as the dual of the zonotopal tiling used in [2]; this phenomenon is related
to the Bohne–Dress theorem on single-element liftings of realizable oriented matroids [4,
12].

Now the distinguished element f of the extension M′ can be included to the picture
as an “increasing direction” or “objective function”, with respect to which we consider
the optimum of each region. We will prove that the regions whose optima are bounded,
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Figure 2: The new curve represents the element f in a generic single-element extension.
There are three regions whose optima with respect to f are bounded, and each of these
optima is the intersection of curves (elements of M) that form a basis of M (a spanning
tree of K3).

i.e., not lying on g, are precisely the (σ, σ∗)-compatible orientations. Since the extension
M′ is generic, the optima are vertices; since the lifting M̃ is generic, each such vertex is
the intersection of pseudospheres that form a basis of M. In this way, we can associate
each (σ, σ∗)-compatible orientation with a basis of M. We will prove that this map
coincides with βσ,σ∗ and is a bijection, finishing the proof; see Figure 2.

We mention a few similar results in the literature. A classical theorem of Greene
and Zaslavsky states that the number of bounded regions in an affine pseudosphere
arrangement equals the beta invariant of the corresponding matroid, regardless of the
choice of g [9]. Our Theorem 1.2 can be thought as counting regions with respect to
another type of boundedness, and again the count is independent of the choice of f
(as long as the choice is generic). More generally, given a strong map between oriented
matroids M1 → M2 on the same ground set, Las Vergnas gave a formula to count the
number of orientations that are acyclic in M1 and totally cyclic in M2 [10]. Theorem 1.2
has a similar flavour in view of Lemma 3.4, although we note that the map M̃ → M′ is
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not a strong map in general; indeed, while an extension followed by a contraction of the
new elements gives rise to a strong map, M̃ → M′ can be thought of (by Lemma 3.2) as
a single-element extension followed by contracting a different element (or equivalently,
the map is a contraction followed by an extension).

In Section 4, we will elaborate more on an interesting interpretation of Theorem 1.2
using the notions of orientation activity and activity classes of Gioan and Las Vergnas [8].
When both M′ and M̃ are lexicographic with respect to the same data, a (σ, σ∗)-compatible
orientation is called a circuit-cocircuit minimal orientation or an active-fixed and dual-active
fixed (re)orientation in the literature. So our theorem provides a new bijective proof that
the number of these (re)orientations equals the number of bases, i.e., TM(1, 1). As a
corollary, the number of activity classes also equals TM(1, 1). This suggests the possibility
that the notion of orientation activity might be extended beyond lexicographic data, at
least in special cases.

2 Preliminaries

We assume the reader is familiar with the basic definitions in oriented matroid theory,
and we refer to [3] for details and notation. Let M be an oriented matroid on ground
set E. The set of bases of M will be denoted by B(M), and the set of signed circuits
(respectively, signed cocircuits) of M will be denoted by C(M) (respectively, C∗(M)).
The support of a signed subset X will be denoted by X, and the underlying matroid of
an oriented matroid M will be denoted by M.

Definition 2.1. An oriented matroid M′ is a single-element extension of M if the ground set
of M′ is E t { f } for some new element f and M = M′ \ { f }. Dually, M̃ is a single-element
lifting of M if the ground set of M̃ is E t {g} for some new element g and M = M̃/{g}.

Let M′ be a single-element extension of M. For every signed cocircuit D of M there
exists a unique signed cocircuit D′ of M′ such that D′|E = D. Therefore we can define a
map2 σ̂∗ : C∗(M)→ {+, 0,−} associated to the extension by setting σ̂∗(D) := D′( f ). We
say σ̂∗ is generic if its image is {+,−}. In such case, σ∗ induces a cocircuit signature of M
that sends each cocircuit D of M to one of the two signed cocircuits of C∗(M) supported
on D, namely the one in which σ̂∗ is positive (that is, the one that extends to have f on its
positive side). Dually, every generic single-element lifting induces a circuit signature that
sends each circuit of M to the signed circuit of M with that support that extends to have
g in its positive side. An observation is that such construction of signatures generalizes
the notion of acyclic signatures in [2], hence Theorem 1.2 is indeed a generalization of
Theorem 1.1.

2In other literature, such a map is simply called a signature, but since we have been using the latter
term with a different meaning, we will abuse terminology slightly here.
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Proposition 2.2. Every acyclic circuit (respectively, cocircuit) signature of a realizable oriented
matroid is a circuit signature induced by some generic single-element lifting (respectively, exten-
sion). In fact, they correspond precisely to the realizable liftings (respectively, extensions).

An orientation of M is a map O : E → {+,−}. O is compatible with a signed circuit
or cocircuit C if O(e) = C(e) for every e ∈ C. We often interpret an orientation as a
reorientation −AM of M along a subset A ⊂ E of elements. This is equivalent to our
definition, by letting O(e) = − if and only if e ∈ A; in this description O is compatible
with C if C− = C ∩ A. A circuit or cocircuit C ⊂ E is compatible with O if one of the
signed versions of C is compatible with O.

Definition 2.3. Let σ (respectively, σ∗) be the circuit (respectively, cocircuit) signature induced
by some generic single-element lifting M̃ (respectively, extension M′). Then an orientation O
of M is (σ, σ∗)-compatible if every signed circuit (respectively, cocircuit) compatible with O
is oriented according to σ (respectively, σ∗). The set of (σ, σ∗)-compatible orientations of M
is denoted by χ(M; σ, σ∗). For an orientation O of M, O′− is the orientation of M′ such that
O′−|E = O and O′−( f ) = −; dually, Õ− is the orientation of M̃ such that Õ−|E = O and
Õ−(g) = −.

3 Proof of the Main Result

Throughout this section, M will be an oriented matroid on ground set E, and M′ (re-
spectively, M̃) will be a generic single-element extension (respectively, lifting) of M on
ground set E t { f } (respectively, E t {g}).

Theorem 1.2 will be deduced from the following theorem.

Theorem 3.1. For every O ∈ χ(M; σ, σ∗), there exists a unique basis B ∈ B(M) such that
B ∪ { f } is a circuit compatible with O′− and (E \ B) ∪ {g} is a cocircuit compatible with Õ−.

As explained in the introduction, such a basis corresponds to the optimum (with
respect to f ) of the region corresponding to O in the pseudosphere arrangement.

We start with a few lemmas.

Lemma 3.2. [13, Lemma 1.10] There exists an oriented matroid M̃′ on ground set E t { f , g}
such that M′ = M̃′/{g} and M̃ = M̃′ \ { f }.

Lemma 3.3. The set of circuits of M′ containing f is {B ∪ { f } : B ∈ B(M)}. Dually, the set
of cocircuits of M̃ containing g is {(E \ B) ∪ {g} : B ∈ B(M)}.

Proof. Let B ∈ B(M). We first claim that B is also a basis of M′. Since every circuit of M′

not containing f is a circuit of M, B is independent in M′; since every circuit of M is a
circuit of M′, B ∪ {e} is dependent in M′ for any e ∈ E \ B. So if B is not a basis of M′,
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it must be the case that X := B ∪ { f } is a basis of M′. In such case, B = X \ { f } avoids
the fundamental cocircuit D′ of f with respect to X in M′. Since M′ is generic, f is not
an isthmus and D′ \ { f } contains a cocircuit D′′ of M, now B avoids the cocircuit D′′ in
M, contradicting the basic property of bases.

Next we claim that the fundamental circuit C′ of f with respect to B is the whole of
X. Suppose not, pick an arbitrary e ∈ X \ C′ and let D be the fundamental cocircuit of e
with respect to B in M. On one hand, D′ := D ∪ { f } is a cocircuit of M′ as the extension
is generic, so D′ must be the fundamental cocircuit of e with respect to B in M′. On the
other hand, since e 6∈ C′ = C(B, f ), f cannot be in D′ = C∗(B, e), a contradiction. This
shows {B ∪ { f } : B ∈ B(M)} ⊂ C(M′).

Conversely, let C′ ∈ C(M′) be a circuit containing f . Then Y := C′ \ { f } is indepen-
dent in M′ thus in M. If Y is not a basis of M, then it is properly contained in some
B ∈ B(M), but by the above containment, B ∪ { f } is a circuit of M′ properly containing
C′, a contradiction. The dual statement can be proven similarly.

Lemma 3.4. An orientation O of M is σ∗-compatible if and only if O′− is totally cyclic. Dually,
O is σ-compatible if and only if Õ− is acyclic.

Proof. Suppose O′− is compatible with some signed cocircuit D′. By [3, Proposition 7.1.4
(ii)], D := D′|E is either (i) a signed cocircuit of M, in which f ∈ D′, or (ii) equal to the
conformal composition D1 ◦D2 of signed cocircuits of M, in which σ∗(D1) = −σ∗(D2) 6=
0. For case (i), D is a signed cocircuit compatible with O, but it is not compatible with
σ∗ as D′( f ) = O′−( f ) = −; for case (ii), both D1, D2 are compatible with O, but exactly
one of them is not compatible with σ∗ as σ∗(D1) = −σ∗(D2).

Conversely, if D is a signed cocircuit compatible with O but not σ∗, then (D −) is a
signed cocircuit of M′ that is compatible with O′−, hence O′− is not totally cyclic. The
dual statement can be proven similarly.

Using the above lemmas, we can give an alternative description of the map βσ,σ∗ ,
matching the statement of Theorem 3.1.

Proposition 3.5. Let B be a basis of M and let O = βσ,σ∗(B). Then B ∪ { f } is a circuit
compatible with O′− and (E \ B) ∪ {g} is a cocircuit compatible with Õ−.

Proof. By Lemma 3.3, X := B∪{ f } is a circuit of M′. Denote by C the signed circuit of M′

whose support is X and satisfies C( f ) = −. For every e ∈ B, let De be the fundamental
cocircuit of e with respect to B in M, oriented according to σ∗. By the definition of σ∗,
the signed subset D′e := (De +) is a signed cocircuit of M′, and X ∩ D′e = {e, f }. By the
orthogonality of signed circuits and cocircuits as well as the fact that D′e( f ) = −C( f ),
we must have O(e) = De(e) = D′e(e) = C(e). Therefore X is oriented as C in O′− and
thus a compatible circuit. The second statement is the dual of the first one.
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Now we show that the image of βσ,σ∗ is contained in the set of (σ, σ∗)-compatible
orientations.

Proposition 3.6. Let O be an orientation of M. If there exists a basis B ∈ B(M) such that
B ∪ { f } is a circuit compatible with O′− and (E \ B) ∪ {g} is a cocircuit compatible with Õ−,
then O ∈ χ(M; σ, σ∗).

Proof. By Lemma 3.4, it suffices to show that O′− is totally cyclic and Õ− is acyclic.
Suppose D is a signed cocircuit compatible with O′−. Since B is also a basis of M′ (cf.
the proof of Lemma 3.3), X := D ∩ B is non-empty, but then X will be simultaneously
in the circuit part and cocircuit part of O′−, contradicting [3, Corollary 3.4.6]. The dual
statement can be proven similarly.

Finally we prove Theorem 1.2 via proving Theorem 3.1.

Proof of Theorem 3.1. “Uniqueness”. Suppose both B1 and B2 are bases satisfying the
condition. Let C1, C2 be the signed circuits of M′ obtained from restricting O′− to B1 ∪
{ f } and B2 ∪ { f }, respectively; let D1, D2 be the signed cocircuits of M̃ obtained from
restricting Õ− to (E \ B1) ∪ {g} and (E \ B2) ∪ {g}, respectively. Let M̃′ be the oriented
matroid containing both M′ and M̃ as guaranteed by Lemma 3.2 and consider the lift C̃1
of C1 in M̃′.

Case I: C̃1(g) = +. Let D′1, D′2 be the extensions of D1, D2 in M̃′. We must have
D′1( f ) = D′2( f ) = − by orthogonality, which in turn forces the lift C̃2 of C2 to take value
+ at g. Apply the circuit elimination axiom to C̃1 and −C̃2 and eliminate f . Denote by
C the resulting signed circuit. We have C ∩ D′1 ⊂ (B2 \ B1) ∪ {g}, but C is conformal
with −D′1 over B2 \ B1 as D′1|B2\B1

= O|B2\B1
= C2|B2\B1

, so C(g) = D′1(g) = − by
orthogonality. However, the same orthogonality argument applied to C and D′2 implies
that C(g) = −D′2(g) = +, a contradiction.

Case II: C̃1(g) = −. The analysis is similar to Case I.
Case III: C̃1(g) = 0. This case is impossible as well, as C̃1 cannot be orthogonal to

D′1, D′2 in the first place.

“Existence”. Let O ∈ χ(M; σ, σ∗). By reorienting M if necessary, we may assume
O ≡ +. For the sake of matching convention in the literature, we also reorient f , g in M̃′,
so the all positive orientationO′+ of M′ is totally cyclic and the all positive orientation Õ+

is acyclic by Lemma 3.4. Now we consider the oriented matroid program P := (M̃′, g, f )
[3, Chapter 10].
P is both feasible and bounded from our assumption on Õ+ and O′+: Õ+ itself is a pos-

itive covector of M̃, which corresponds to a (full-dimensional) feasible region; any posi-
tive circuit of M′ whose support is of the form B ∪ { f }, B ∈ B(M) provides a bounded
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cone B containing the feasible region. By the main theorem of oriented matroid pro-
gramming [3, Theorem 10.1.13], P has an optimal solution Y, which is a covector of
M̃′.

By definition, Y is feasible and optimal, i.e., Y(g) = +, Y|E is non-negative, and Y ◦ Z|E
is not non-negative for every covector Z (of M̃′) that is 0 at g and + at f . Since Y is a
covector containing g in M̃′, Y \ { f } is a covector of M̃ containing g. So Y \ { f } contains
a cocircuit (of M̃), whose support is of the form (E \ B0) ∪ {g} for some B0 ∈ B(M)
by Lemma 3.3. If the containment is proper, then Y \ { f } contains some cocircuit Z0
of M. Since the extension is generic, the extension Z′0 of Z0 in M′ contains f . Without
loss of generality, we may identify Z′0 as the signed cocircuit of M′ (hence M̃′) in which
Z′0( f ) = +. Now we have a contradiction as Y ◦ Z0|E is non-negative. Therefore Y \
{ f } = (E \ B0) ∪ {g}, and it is a cocircuit of M̃. We claim that B0 is the basis of M we
want.

The second assertion is immediate as Y|E∪{g} is non-negative. By Lemma 3.3, B0∪{ f }
is a circuit of M′. Denote by X the signed circuit of M′ supported on B0 ∪ { f } such that
X( f ) = +, it remains to show X is non-negative. Suppose X(e) = −. Let Ze be the
fundamental cocircuit of e with respect to B0 in M, and let Z′e be its extension in M′.
Since the extension is generic, f ∈ Z′e, and again we can abuse notation to identify Z′e
as the signed cocircuit of M′ (hence M̃′) in which Z′e( f ) = +. From the choice of Z′e,
Z′e ∩ X = {e, f }, so Z′e(e) = + by orthogonality. In particular, Y ◦ Ze|E is non-negative,
which is a contradiction. Therefore B0 ∪ { f } is a positive circuit of O′+ as well.

Proof of Theorem 1.2. By Propositions 3.5 and 3.6, every orientation in the image of βσ,σ∗

is (σ, σ∗)-compatible. Injectivity follows from Proposition 3.5 and the uniqueness part
of Theorem 3.1. Surjectivity follows from Proposition 3.5 and the existence part of The-
orem 3.1.

4 Relation with Orientation Activity

A set of lexicographic data (<, s) of M consists of a total ordering < of E together with
a choice of sign s(e) ∈ {+,−} for every element e of E. We fix an arbitrary set of such
data for the rest of the discussion.

Following [11], an element of E is internally (respectively, externally) active in an ori-
entation O if it is the minimal element in some signed cocircuit (respectively, circuit)
compatible with O. The internal (respectively, external) activity ι(O) (respectively, ε(O)) is
the number of internally (respectively, externally) active elements in O.

Now let e1 < . . . < eι (respectively, e′1 < . . . < e′ε) be the elements that are internally
(respectively, externally) active in O. For k = 1, 2, . . . , ι, denote by Fk the union of (the
supports of) all signed cocircuits compatible with O whose minimal elements are at
least ek; dually, for k = 1, 2, . . . , ε, denote by F′k the union of (the supports of) all signed
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Figure 3: A set of lexicographic data in K3 that was used in Figure 1 and Figure 2. We
set s to be all positive, and the reference orientations of edges are show in the diagram.

circuits compatible with O whose minimal elements are at least e′k. The partition F =
(Fι, Fι−1 \ Fι, . . . , F1 \ F2; F′ε, F′ε−1 \ F′ε, . . . , F′1 \ F′2) of E is the active partition ofO. The activity
class of an orientation is the set of orientations obtained from reversing any union of
components from F . It can be proven that any two orientations in an activity class share
the same active partition (hence the same internal and external activities) [7], so activity
classes are well-defined and they partition the set of orientations of M.

On the other hand, a set of lexicographic data induces a circuit signature σ(<,s) (a
dual construction gives a cocircuit signature): let C be a circuit of M, and let e be the
minimal element in C with respect to <, then we set σ(<,s)(C) to be the unique signed
circuit C supported on C such that C(e) = s(e). The lifting (respectively, extension) of
M given by that circuit (respectively, cocircuit) signature is the lexicographic extension (re-
spectively, lifting) induced by that lexicographic data. If σ and σ∗ are circuit and cocircuit
signatures induced by the same lexicographic data, then a (σ, σ∗)-compatible orientation
is called a circuit-cocircuit minimal orientation in [1] and an active fixed and dual-active fixed
(re)orientation in [8]. We have the following simple observation relating these compatible
orientations and activity classes.

Proposition 4.1. Suppose σ (respectively, σ∗) is the circuit (respectively, cocircuit) signature
induced by the lexicographic data we fixed. Then χ(M; σ, σ∗) is a system of representatives of the
activity classes of M.

Proof. Within an activity class, every component of the active partition of any (hence all)
orientation contains exactly one active element, so there is a unique choice of reversal
for each component to guarantee such element is oriented according to s. Therefore
precisely one orientation within the class is (σ, σ∗)-compatible.

Example 4.2. Both the single-element lifting in Figure 1 and the single-element extension in
Figure 2 are induced by the lexicographic data shown in Figure 3.

As a corollary, topological bijections provide a new bijective proof of the following
enumerative result.
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Corollary 4.3. The number of activity classes of an oriented matroid M equals TM(1, 1).

We note that Corollary 4.3 also follows from the aforementioned works by Gioan and
Las Vergnas on orientation activity and its relation with the Tutte polynomial. In partic-
ular, another bijective proof (using active bijections, in which an ordering of elements is
essential) was given in [6]. Our contribution, however, is to show that (at least) in terms
of TM(1, 1), the notion of “activity” can be extended beyond lexicographic data.
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