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A combinatorial formula for the Ehrhart h∗-vector
of the hypersimplex
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Department of Mathematics, University of California at Berkeley

Abstract. We give a combinatorial formula for the Ehrhart h∗-vector of the hypersim-
plex. In particular, we show that h∗d(∆k,n) is the number of hypersimplicial decorated
ordered set partitions of type (k, n) with winding number d, thereby proving a conjec-
ture of Nick Early. We do this by proving a more general conjecture of Nick Early on
the Ehrhart h∗-vector of a generic cross-section of a hypercube.

Résumé. Nous donnons une formule combinatoire pour le vecteur Ehrhart h∗- de
l’hypersimplex. En particulier, nous montrons que h∗d(∆k,n) est le nombre de parti-
tions d’ensembles ordonnés décorés hypersimpliques de type (k, n) avec le numéro
d’enroulement d, prouvant ainsi une conjecture de Nick Early. Nous faisons cela en
prouvant une conjecture plus générale de Nick Early sur le vecteur Ehrhart h∗-d’une
section transversale générique d’un hypercube.

1 Introduction

For two integers 0 < k < n, the (k, n)-th hypersimplex is defined to be

∆k,n = {(x1, · · · , xn) ∈ Rn | 0 ≤ xi ≤ 1, x1 + · · ·+ xn = k}.

It is an (n− 1)-dimensional polytope inside Rn whose vertices are (0,1)-vectors with
exactly k 1’s. In particular it is an integral polytope. The hypersimplex can be found
in several algebraic and geometric contexts, for example, as a moment polytope for
the torus action on the Grassmannian, or as a weight polytope for the fundamental
representation of GLn.

For an n-dimensional integral polytope P ⊂ RN, it’s a standard fact from Ehrhart
theory that the map r → |rP ∩ZN| is a polynomial function in r of degree n. Now
consider the Ehrhart series

∞

∑
r=0
|rP ∩ZN|tr =

h∗(t)
(1− t)n+1 .
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Knowing that r → |rP ∩ZN| is a polynomial function in r of degree n, one can check that
h∗(t) is a polynomial of degree ≤ n. Define h∗d to be the coefficient of td in h∗(t). The vec-
tor (h∗0 , · · · , h∗n) is called the Ehrhart h∗-vector of P and h∗(t) is called the h∗-polynomial

of P . A standard result from Ehrhart theory is that
n
∑

i=0
h∗i equals the normalized volume

of P .
For a permutation w ∈ Sn, we say i ∈ [n − 1] is a descent of w if w(i) > w(i + 1)

and define des(w) to be the number of descents of w. The Eulerian number Ak,n−1 is the
number of w ∈ Sn−1 with des(w) = k − 1. A well-known fact about the hypersimplex
∆k,n is that its normalized volume is Ak,n−1. So we have

n−1

∑
d=0

h∗d(∆k,n) = Ak,n−1.

In general, the entries of the h∗-vector of an integral polytope are nonnegative integers
(see [6]). It has been an open problem for some time to give a combinatorial interpreta-
tion of h∗(∆k,n). In [4], Nan Li gave a combinatorial interpretation of h∗d(∆

′
k,n), where ∆

′
k,n

is the hypersimplex with the lowest facet removed, using permutations w ∈ Sn−1 and
their descents, excedances, and covers. In [2], Nick Early conjectured a combinatorial
interpretation for h∗d(∆k,n) using hypersimplicial decorated ordered set partitions of type
(k, n).

In [3], Katzman computed the Hilbert series of algebras of Veronese type, which gives
a formula for the Ehrhart series of the hypersimplex ∆k,n as a special case. The formula
is

∑
i≥0

(n
i )

(
∑

j≥0
(i

j)(t− 1)j

(
∑

l≥0
( n−j

l(k−i))k−i
tl

))
(1− t)n (1.1)

where the notation (n
b)a means the coefficient of tb in (1 + t + · · ·+ ta−1)n. For example,

when a = 2, it becomes an ordinary binomial coefficient. The numerator of (1.1) is
the h∗-polynomial of the hypersimplex, thus giving an explicit formula for its h∗-vector.
However, it doesn’t give a combinatorial or manifestly positive formula for the h∗-vector.

In this paper, we prove Nick Early’s conjecture by relating it to (1.1). We now explain
the conjecture. A decorated ordered set partition ((L1)l1 , · · · , (Lm)lm) of type (k, n) consists
of an ordered partition (L1, · · · , Lm) of {1, 2, ..., n} and an m-tuple (l1, · · · , lm) ∈ Zm such
that l1 + · · ·+ lm = k and li ≥ 1. We call each Li a block and we place them on a circle
in a clockwise fashion then think of li as the clockwise distance between adjacent blocks
Li and Li+1 (indices are considered modulo m). So the total length of the circle is l1 +
· · ·+ lm = k. We usually regard decorated ordered set partitions up to cyclic rotation of
blocks (together with corresponding l). For example, ({1, 2, 7}2, {3, 5}3, {4, 6}1) is same
as ({3, 5}3, {4, 6}1, {1, 2, 7}2). A decorated ordered set partition is called hypersimplicial
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if it satisfies 1 ≤ li ≤ |Li| − 1 for all i. For the motivation and more background on
decorated ordered set partitions, see [1].

Example 1.1. Consider a decorated ordered set partition ({1, 2, 7}2, {3, 5}3, {4, 6}1) of
type (6,7) (see Figure 1). This is not hypersimplicial as 3 > |{3, 5}| − 1.

By inserting empty spots, we can encode the distance information. For example, the
(clockwise) distance between {1, 2, 7} and {3, 5} is 2 so we insert one empty spot on the
circle between those blocks. The distance between {3, 5} and {4, 6} is 3 so we insert two
empty spots. We obtain the figure on the right as a result. Including empty spots, there
will be k = 6 spots total.

{1,2,7}

{3,5}

{4,6}

{1,2,7}

{3,5}

{4,6}2

3

1

Figure 1: The figure on the left is the picture associated to the decorated ordered set
partition ({1, 2, 7}2, {3, 5}3, {4, 6}1). The figure on the right is the picture obtained after
inserting empty spots.

Given a decorated ordered set partition, we define the winding vector and the winding
number. To define the winding vector, let wi be the distance of the path starting from
the block containing i to the block containing (i + 1) moving clockwise (i and (i + 1) are
considered modulo n). If i and (i + 1) are in the same block then wi = 0. In Figure 1, the
winding vector is w = (0, 2, 3, 3, 3, 1, 0).

The total length of the path is (w1 + · · ·+ wn), which should be a multiple of k as we
started from 1 and came back to 1 moving clockwise. If (w1 + · · ·+ wn) = kd, then we
define the winding number to be d. In Figure 1, the winding number is 2.

It is known that hypersimplicial decorated ordered set partitions of type (k, n) are in
bijection with w ∈ Sn−1 such that des(w) = k− 1 (see [5]).

Conjecture 1.2 ([2], Conjecture 1). The number of hypersimplicial decorated ordered set
partitions of type (k, n) with winding number d is h∗d(∆k,n).

Next we want to state a more general version of Conjecture 1.2 for a generic cross
section of a hypercube.
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Definition 1.3. For positive integers r, k, n, the generic cross section of a hypercube is

In
r,k =

{
(x1, · · · , xn) ∈ [0, r]n |

n

∑
i=1

xi = k

}
.

When r = 1, In
1,k is the hypersimplex ∆k,n.

Definition 1.4. A decorated ordered set partition P = ((L1)l1 , · · · , (Lm)lm) is r-hypersimplicial
if 1 ≤ li ≤ r|Li| − 1 for all i.

Note that the notions of hypersimplicial and 1-hypersimplicial are equivalent. The
decorated ordered set partition ({1, 2, 7}2, {3, 5}3, {4, 6}1) in Example 1.1 is not hyper-
simplicial, but it is r-hypersimplicial for r ≥ 2.

Conjecture 1.5 ([2], Conjecture 6). The number of r-hypersimplicial decorated ordered
set partitions of type (k, n) with winding number d is h∗d(In

r,k).

2 Proof of Conjecture 1.5

2.1 A simplification of Katzman’s formula

Again using the formula for Hilbert series of algebras of Veronese type (see [3]), the
Ehrhart series of In

r,k is

∑
i≥0

(−1)i(n
i )

(
∑

j≥0
(i

j)(t− 1)j

(
∑

l≥0
( n−j

l(k−ri))k−ri
tl

))
(1− t)n . (2.1)

Now we simplify (2.1) to get a simple description for the h∗-vector of In
r,k.

Lemma 2.1. For positive integers n, m, and a, (n
m)a − ( n

m−1)a = (n−1
m )a − (n−1

m−a)a.

Proposition 2.2. For positive integers s and a,

∑
j≥0

(
s
j

)
(t− 1)j

(
∑
l≥0

(
n− j

la

)
a
tl

)
= ∑

l≥0

(
n

la− s

)
a
tl.

Using Proposition 2.2, (2.1) becomes

∑
i≥0

(−1)i(n
i ) ∑

l≥0
( n

l(k−ri)−i))k−ri
tl

(1− t)n .
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Thus we have

h∗d(In
r,k) = ∑

i≥0
(−1)i

(
n
i

)(
n

(k− ri)d− i

)
k−ri

. (2.2)

In Section 2.2, we will prove Conjecture 1.5 which contains Conjecture 1.2 as a special
case when r = 1. Since we have an explicit formula for h∗d(In

r,k), our strategy is to count
the number of r-hypersimplicial decorated ordered set partitions of type (k, n) with
winding number d and compare the formulas.

2.2 Enumeration of r-hypersimplicial decorated ordered set partitions
with a fixed winding number

We start with an elementary lemma, skipping the proof.

Lemma 2.3. The Z/nZ action on {1, 2, · · · , n} by cyclic shift does not change the winding
number of decorated ordered set partitions.

For example, decorated ordered set partitions ({1, 2, 7}2, {3, 5}3, {4, 6}1) and
({2, 3, 1}2, {4, 6}3, {5, 7}1) have same the winding number.

Next we will show that a winding vector determines a decorated ordered set parti-
tion. We observed that when the winding number is d, then w1 + · · ·+ wn = kd. And
0 ≤ wi ≤ k − 1 since the total length of the circle is k (wi = k would mean that i and
(i + 1) are in a same block but in that case wi = 0). It turns out that these are the only
restrictions for winding vectors.

Proposition 2.4. Decorated ordered set partitions of type (k, n) with winding number d are in
bijection with elements of {(w1, · · · , wn) ∈ Zn | 0 ≤ wi ≤ k− 1, w1 + · · ·+ wn = kd}.

Proof. It is enough to construct a decorated ordered set partition of type (k, n) with
winding number d from a winding vector satisfying the above conditions. First, draw k
spots on the circle in clockwise order and put 1 in one spot. Having put i in some spot,
move clockwise wi spots and put i + 1 in that spot. After placing all elements, nonempty
spots become blocks and the clockwise distance from Li and Li+1 is li.

From Proposition 2.4, we know that the number of decorated ordered set partitions
of type (k, n) with winding number d is |{(w1, · · · , wn) ∈ Zn | 0 ≤ wi ≤ k − 1, w1 +
· · ·+wn = kd}|. A simple combinatorial argument shows this number is the same as the
coefficient of tkd in (1 + · · ·+ tk−1)n, which is ( n

kd)k. So the number of decorated ordered
set partitions of type (k, n) with winding number d is ( n

kd)k.
Recall that we are interested in the number of r-hypersimplicial decorated ordered

set partitions of type (k, n) with winding number d. Throughout this section, when we
say decorated ordered set partition, we always assume it is of type (k, n) with winding
number d.
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Definition 2.5. For a decorated ordered set partition P = {(L1)l1 , (L2)l2 , ..., (Lm)lm}, a
block Li is r-bad if li ≥ r|Li|. Let Ir(P) = {Li | Li is r-bad}.

For example, I1(({1, 2, 7}2, {3, 5}3, {4, 6}1)) = {{3, 5}}. Recall that r-hypersimplicial
decorated ordered set partitions satisfy 1 ≤ li ≤ r|Li| − 1 for all blocks. So a decorated
ordered set partition is r-hypersimplicial if and only if Ir(P) is empty.

Definition 2.6. For a set T, define UP(T) to be a set of all (unordered) partitions of T.
For example, {{1, 2, 4}, {3}, {5}} ∈ UP({1, 2, 3, 4, 5}).

Definition 2.7. For T ⊆ {1, 2, · · · , n} and S ∈ UP(T), define
Kr(S) = {P: decorated ordered set partition such that S ⊆ Ir(P)}.

In other words Kr(S) is the set of all decorated ordered set partitions having elements
of S as r-bad blocks. For example, when S = φ, Kr(φ) is a set of all decorated ordered
set partitions.

Definition 2.8. For T ⊆ {1, 2, · · · , n}, let Hr(T) = ∑
S∈UP(T)

(−1)|S||Kr(S)|.

For example, when T = {1, 2, 3},

Hr(T) = −|Kr({{1, 2, 3}})|+ |Kr({{1, 2}, {3}})|+ |Kr({{2, 3}, {1}})|
+|Kr({{1, 3}, {2}})| − |Kr({{1}, {2}, {3}})|.

Proposition 2.9. The number of r-hypersimplicial decorated ordered set partitions is

∑
T⊆{1,2,...,n}

Hr(T).

Proof. It is enough to compute ∑
T⊆{1,2,··· ,n}

(
∑

S∈UP(T)
(−1)|S||Kr(S)|

)
, by the definition of

Hr(T). If decorated ordered set partition P has empty Ir(P) then it will be counted once
when S = φ. If Ir(P) is non empty, say |Ir(P)| = m. Then P will be counted (m

i ) times
with weight (−1)i as S ranges over all i-element subsets of Ir(P). So the total weight

is
m
∑

i=0
(−1)i(m

i ) = 0. So the above sum counts P such that Ir(P) is empty, which means

r-hypersimplicial.

When S ∈ UP({1, 2, · · · , n}), elements of Kr(S) are decorated ordered set partitions
P = ((L1)l1 , · · · , (Lm)lm) whose blocks are all r-bad, which means li ≥ r|Li| for all i.
Summing inequalities for all i gives ∑ li ≥ r ∑ |Li| that implies k ≥ rn which is impossible
as k < n. Thus Kr(S) is an empty set so Hr({1, 2, · · · , n) = 0. So we will only consider
when T is a proper subset of {1, 2, · · · , n}. By Lemma 2.3, Hr(T) is invariant under cyclic
shifts of {1, 2, · · · , n}. We may assume that n /∈ T.
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Definition 2.10. For T ⊂ {1, 2, · · · , n}, a T-singlet block is a block with only one element
t and t ∈ T. A sequence of consecutive T-singlet blocks (Li, · · · , Li+j) in a decorated
ordered set partition P (indices are considered modulo number of blocks in P) is r-
packed if li = · · · = li+j−1 = r and li+j ≥ r. An r-packed sequence is increasing r-packed if
elements in (Li, · · · , Li+j) are in increasing order. Such a sequence is maximal if it is not
a subsequence of another increasing r-packed sequence.

The increasing r-packed condition highly depends on T since it only applies to con-
secutive T-singlet blocks. Note that T-singlet blocks in r-packed sequence are all r-bad.
It is the most concentrated arrangement that makes these blocks all r-bad. We allow
increasing r-packed sequence of length 1 by convention.

Lemma 2.11. Let S = {M1, M2, · · · , Mj} ∈ UP(T), where T = {t1 < t2 < · · · < tm} and
n /∈ T. Enumerate the elements of Mi in increasing order, so Mi = {ti1 < ti2 < · · · < tiw}.
Then elements of Kr(S) are in bijection with elements of Kr({{t1}, {t2}, · · · , {tm}}) having
increasing r-packed sequence ({ti1}, {t2}, · · · , {tiw}) for all i.

Proof. Given a decorated ordered set partition P ∈ Kr(S), P has a block (Mi)l which is
r-bad. So l ≥ r|Mi| = rw. Change (Mi)l to {ti1}r,{ti2}r,...,{tiw}l−r(w−1). Since l − r(w−
1) ≥ r, the sequence ({ti1}, {ti2}, · · · , {tiw}) will be increasing r-packed. This process
does not change the winding number and new T-singlet blocks are all r-bad. Repeating
this process for all i we get the desired correspondence.

Example 2.12. See Figure 2. The figure on the left is a decorated ordered partition
({1, 2, 4}6, {5, 8, 9, 10, 13}1, {6, 7}4, {11, 12}1). When T = {1, 2, 4, 6, 7} and r = 2, the fig-
ure on the left has r-bad blocks {1, 2, 4} and {6, 7}, so belongs to Kr({{1, 2, 4}, {6, 7, }}).
Under the correspondence stated in Lemma 2.11, the decorated ordered set partition
above goes to ({1}2, {2}2, {4}2, {5, 8, 9, 10, 13}1, {6, }2, {7}2{11, 12}1), a decorated ordered
set partition for the figure on the right. The winding number does not change.

Remark 2.13. The condition n /∈ T is essential for Lemma 2.11. Without this condition,
the correspondence changes the winding number as shown in Figure 3. The winding
number on the left figure is 1 but the winding number on the right is 2. We spread
elements in blocks in increasing order but since there is a cyclic symmetry, "increasing"
might not be meaningful if n ∈ T.

Now fix T = {t1 < t2 < · · · < tm} ⊆ {1, 2, · · · , n} such that n /∈ T. For S ∈ UP(T),
the correspondence in Lemma 2.11 gives an embedding

iS : Kr(S)→ Kr({{t1}, {t2}, · · · , {tm}}).



8 Donghyun Kim

{1,2,4}

{5,8,9,10,13}
{6,7}

{11,12}
{1}

{2}

{4}

{5,8,9,10,13}
{6}

{7}

{11,12}

Figure 2: Correspondence in Lemma 2.11 for T = {1, 2, 4, 6, 7} and r = 2.

{1,7}

{2,3,4}

{5,6}

{1}

{7}{2,3,4}

{5,6}

Figure 3: Correspondence in Lemma 2.11 for T = {1, 7} and r = 2.

Let χS : Kr({{t1}, {t2}, · · · , {tm}})→ {0, 1} to be the characteristic function of iS(Kr(S)).
In other words, χS(P) = 0 if P /∈ iS(Kr(S)) and χS(P) = 1 if P ∈ iS(Kr(S)). Then

Hr(T) = ∑
S∈UP(T)

(−1)|S||Kr(S)| = ∑
S∈UP(T)

(−1)|S||iS(Kr(S))| (2.3)

= ∑
S∈UP(T)

(−1)|S|

 ∑
P∈Kr({{t1},{t2},··· ,{tm}})

χS(P)


= ∑

P∈Kr({{t1},{t2},··· ,{tm}})

 ∑
S∈UP(T)

(−1)|S|χS(P)

 .

Proposition 2.14. If P does not have increasing r-packed sequence of length greater than 1, then
∑

S∈UP(T)
−(1)|S|χS(P) = (−1)|T|. Otherwise it is zero.

Proof. For P ∈ Kr({{t1}, {t2}, · · · , {tm}}), define Ŝ(P) to be unordered partition of T by
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putting ti and tj in same part if they belong to same increasing r-packed sequence (this
will partition T by maximal increasing r-packed sequences of P). If χS(P) = 1, then S
should be finer partition than Ŝ(P). When P has no increasing r-packed sequence of
length greater than 1, Ŝ(P) = {{t1}, {t2}, · · · , {tm}}, the finest unordered partition of T.
So χS(P) = 1 only when S = Ŝ(P) thus ∑

S∈UP(T)
−(1)|S|χS(P) = (−1)|T|. Now assume

there is M ∈ Ŝ(P) such that |M| = a ≥ 2. To split M into b parts such that resulting
finer partition S still satisfies χS(P) = 1, we should choose (b− 1) spots among (a− 1)
spaces between adjacent elements of M and put bars in those spots to split M. So there
are total (a−1

b−1) ways to do that. Then we have

∑
S∈UP(T)

−(1)|S|χS(P) = ∏
M∈Ŝ(P),|M|≥2

( |M|
∑
b=1

(−1)b
(
|M| − 1

b− 1

))
∏

M∈Ŝ(P),|M|=1

(−1).

Since
|M|
∑

b=1
(−1)b(|M|−1

b−1 ) = 0, ∑
S∈UP(T)

−(1)|S|χS(P) = 0 whenever P has increasing r-packed

sequence of length greater than 1, that is, Ŝ(P) has part with more than one element.

Let K̂r(T) be a subset of Kr({{t1}, {t2}, · · · , {tm}}) consisting of decorated ordered
set partition without increasing r-packed sequence of length greater than 1. By Propo-
sition 2.14 and (2.3), we have Hr(T) = (−1)|T||K̂r(T)|. We will count the number of
elements in K̂r(T) by defining the second winding vector for each element. The second
winding vector is a modified version of winding vector that we previously defined.

Assume we are given P ∈ Kr({{t1}, {t2}, · · · , {tm}}). There are k spots total on the
circle including empty spots that are recording distances and T-singlet blocks {t1}, {t2},
· · · , {tm} are r-bad blocks so for each {ti}, there will be at least (r− 1) empty spots after
{ti} as the distance to the next block is at least r. Color these r spots, that is, the spot
occupied by {ti} with (r− 1) empty spots after that red. Doing this for all i, r|T| = rm
spots will be colored red. And color the remaining (k− rm) spots blue.

Define second winding vector v = (v1, v2, · · · , vn), by setting vi to be the number of
blue spots passed while moving from i to (i + 1) in clockwise fashion. Do not include
the starting point but include the arriving point (if it’s blue) and when the starting point
and the arriving point are in same block (spot), set vi = 0. Since the winding number is
d, the whole path winds around the circle d times. So we have v1 + · · ·+ vn = (k− rm)d.

If i /∈ T, we are starting from the blue spot so vi can range from 0 to (k − rm− 1).
However when i ∈ T, we claim vi cannot be zero. If vi = 0, then path from i to i + 1
should not include any blue spots. So the path will be of the form {i}, φ, · · · , φ, {a1}, φ,
· · · , φ, · · · , {aq}, φ, · · · , φ, {i+ 1}where φ means an empty spot. The sequence ({i}, {a1},
· · · , {aq}, {i + 1}) is r-packed, but P does not have an increasing r-packed sequence of
length greater than 1, which is a contradiction. It is possible to have vi = k− rm since i
is not in the blue spot. We conclude 1 ≤ vi ≤ k− rm.
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Example 2.15. Figure 4 shows how to read off the second winding vector. We are given
T = {1, 2, 9}, and r = 2. The upper left figure is a picture for the decorated ordered
set partition ({2}2, {1}2, {5, 6}1, {7, 8}1, {9}3, {11, 12, 13}1, {10, 14}1, {3, 4}1). Note that
the sequence ({2}, {1}) is r-pacekd but not increasing r-packed. So P has no increasing
r-packed sequence of length greater than 1. After coloring spots with the rule above
we get the upper right figure. There will be r|T| = 6 red spots and k − r|T| = 6 blue
spots. To get v1, wind from 1 to 2 clockwise as shown in the lower figure, and count the
number of blue spots passed. Here v1 = 6. Continuing this process we have the second
winding vector v = (6, 6, 0, 1, 0, 1, 0, 0, 3, 5, 0, 0, 1, 1).

{2}

{1}

{5,6}

{7,8}{9}

{11,12,13}

{10,14}

{3,4} {2}

{1}

{5,6}

{7,8}{9}

{11,12,13}

{10,14}

{3,4}

{2}

{1}

{5,6}

{7,8}{9}

{11,12,13}

{10,14}

{3,4}

Figure 4: Reading off the second winding vector.

We saw that a second winding vector v = (v1, v2, · · · , vn) satisfies v1 + · · · + vn =
(k− rm)d, 0 ≤ vi ≤ k− rm− 1 if i /∈ T, and 1 ≤ vi ≤ k− rm if i ∈ T.

It turns out these are the only restrictions for the second winding vectors of the
elements of K̂r(T).

Proposition 2.16. Elements of K̂r(T) are in bijection with elements of

{(v1, v2, · · · , vn) ∈ Zn | 0 ≤ vi ≤ k− rm− 1 if i /∈ T, 1 ≤ vi ≤ k− rm if i ∈ T,
v1 + · · ·+ vn = (k− rm)d}.
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Proof. The forward direction is done by the second winding vector. For the reverse
direction, we should recover the decorated ordered set partition (in K̂r(T)) whose second
winding vector is the specified vector. First draw (k − rm) spots on the circle (recall
|T| = m) and put 1 in one spot. Having put i in some spot, move clockwise wi spots and
put i + 1 in that spot. After placing every element, let’s denote the resulting decorated
ordered set partition with P. We construct P̃ ∈ K̂r(T) as follows. For each block B of P
with B ∩ T 6= φ, let B ∩ T = {i1 < · · · < is}. We replace B with B\T and then add rs
spots immediately after B\T as follows: first a T-singlet block {is} then (r − 1) empty
spots then T-singlet block {is−1} then (r− 1) empty spots · · · T-singlet block {i1} then
(r− 1) empty spots.

{1} {1̃,2̃,3,4}

{5,6}

{7,8,9̃}{11,12,13}

{10,14}

{3,4} {2}

{1}

{5,6}{7,8}{9}

{11,12,13}

{10,14}

Figure 5: Constructing the decorated ordered set partition associated to the second
winding vector v = (6, 6, 0, 1, 0, 1, 0, 0, 3, 5, 0, 0, 1, 1).

Example 2.17. Figure 5 shows how to recover a decorated ordered set partition from a
second winding vector as stated in Proposition 2.19. We are given T = {1, 2, 9}, r = 2,
and the second winding vector v = (6, 6, 0, 1, 0, 1, 0, 0, 3, 5, 0, 0, 1, 1). In the upper left
figure, there are 6 = k− r|T| spots (k = 12) on the circle and 1 is in one spot. Then put
elements according to the second winding vector. The upper right figure shows this. The
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elements in T are denoted with a tilde. Consider the first block {1̃, 2̃, 3, 4}. The numbers
3 and 4 will form a block and 1 and 2 will spread to the right into the space between
blocks {1̃, 2̃, 3, 4} and {5, 6}, making four new red spots. The same thing happens for
the block {7, 8, 9̃}, making two new red spots. The lower figure is the picture for the
resulting decorated ordered set partition in K̂r(T). We recovered Example 2.15.

For a second winding vector v = (v1, · · · , vn), let v′ = (v′1, · · · , v′n) be a vector such
that v′i = vi if i /∈ T, and v′i = vi − 1 if i ∈ T. By the property of a second winding vector,
we have 0 ≤ v′i ≤ k− rm− 1 and v′1 + · · ·+ v′n = (k− rm)d− |T| = (k− rm)d−m. So
the number of such v′ is ( n

(k−rm)d−m)k−rm
which gives

H(T) = (−1)|T||K̂r(T)| = (−1)m
(

n
(k− rm)d−m

)
k−rm

. (2.4)

Proof of Conjecture 1.5. By Proposition 2.9, and (2.4), the number of r-hypersimplicial dec-
orated ordered set partitions (of type (k, n) with winding number d) is

∑
T⊆{1,2,...,n}

Hr(T) = ∑
m≥0

(−1)m
(

n
m

)(
n

(k− rm)d−m

)
k−rm

.

Now compare with the formula (2.2).
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