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Abstract. Lascoux stated that the type A Kostka–Foulkes polynomials Kλ,µ(t) (Lusztig’s
t-analogue of weight multiplicity) expand positively in terms of so-called atomic poly-
nomials. We define, in arbitrary type, a combinatorial version of the atomic decompo-
sition, based on the connected components of a modified crystal graph. We prove this
property in type A, as well as in types B, C, and D in a stable range for t = 1. We also
discuss other cases, applications, and a geometric interpretation.

Résumé. Lascoux a formulé en type A la proprieté des polynômes de Kostka d’admettre
une décomposition positive en polynômes dits atomiques. Nous formulons une ver-
sion combinatoire de la décomposition atomique pour tous les types, réalisée à l’aide
des cristaux modifiés. Nous démontrons cette proprieté en type A, et en type B, C et
D pour t = 1 lorsque le rang est suffisamment grand. Finalement, nous donnons des
applications et une interprétation géométrique de nos résultats.

Keywords: Kostka–Foulkes polynomial, atomic decomposition, crystal graph, domi-
nance order.

1 Introduction

The starting point of this paper is a result of Lascoux on the (type A) Kostka–Foulkes
polynomials Kλ,µ(t), which are well-known t-analogues of the Kostka numbers Kλ,µ, i.e.,
the number of semistandard Young tableaux of shape λ and content µ. Lascoux [5] stated
the decomposition of the Kostka–Foulkes polynomials into so-called atomic polynomials.
Some arguments of the proof in [5] remained elusive, and it was not until the work of
Shimozono [12] that the type A atomic decomposition was completely accepted, this time
in larger generality (for the so-called generalized Kostka–Foulkes polynomials). However,
the latter proof involves several intricate combinatorial arguments and related concepts,
such as plactic monoid, cyclage, and catabolism. We provide a simpler, more conceptual
approach, which has the additional advantage of extending beyond type A.

We formulate the t-atomic decomposition property in arbitrary Lie type as a nonneg-
ative expansion for both a Kostka–Foulkes polynomial Kλ,µ(t) (Lusztig’s t-analogue
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of weight multiplicity [9]), and a t-analogue χ+
λ (t) of the dominant part of an irre-

ducible character (defined in terms of Kλ,µ(t)). The t-atomic decomposition property
is a strengthening of the monotonicity of Kλ,µ(t) [1].

As opposed to the above algebraic approach, we also define a t-atomic decomposition
property at the combinatorial level of the highest weight crystal B(λ) [3]. This property
involves a partition of the dominant part B(λ)+ of B(λ), and a statistic on B(λ)+.

We prove the combinatorial t-atomic decomposition in type A, thus realizing combi-
natorially the classical result, while also providing a simple, conceptual proof of it. We
also prove this property in types B, C, and D for t = 1 in a stable range. Our main ingre-
dients are: the partial order on dominant weights, and a modified crystal graph structure on
B(λ)+, whose connected components define the needed partition. See [7] for the details.

We conjecture that our result in types B, C, D holds without specializing t. Further-
more, in type C, we conjecture that this result, together with our combinatorial formula
for the corresponding Kλ,0(t) [8], leads to a statistic which computes any Kλ,µ(t). Such a
statistic (charge) has been long sought. We conclude with a geometric interpretation of
the atomic decomposition in terms of the geometric Satake correspondence [10].

2 The atomic decomposition: definitions and basic facts

2.1 Characters and t-deformations

Let g be a simple Lie algebra over C of rank r. Let R ⊃ R+ ⊃ S be the corresponding sets
of roots, positive roots, and simple roots, realized in a real Euclidean space of dimension
r with inner product 〈 · , · 〉. For any α ∈ R, we write α∨ = 2α

〈α,α〉 for the corresponding
coroot. The set P of integral weights for g consists of vectors β satisfying 〈β, α∨〉 ∈ Z

for any α ∈ R. We write P+ = {β ∈ P | 〈β, α∨〉 ≥ 0 for any α ∈ S} for the cone of
dominant weights of g, and denote by ω1, . . . , ωr the fundamental weights. Let W be the
Weyl group of g, and write `(·) for the corresponding length function. The dominance
order ≤ on P+ is defined by α < β if and only if β− α decomposes as a sum of positive
roots (or equivalently, simple roots) with nonnegative integer coefficients.

Let χλ be the character of the finite-dimensional irreducible representation V(λ) of
g with highest weight λ ∈ P+. Let Kλ,γ denote the multiplicity of the weight γ in
V(λ). Let P(λ) be the set of weights of V(λ), i.e., the set of γ such that Kλ,γ > 0. Set
P+(λ) = P(λ) ∩ P+, and note that P+(λ) = {µ ∈ P+ | µ ≤ λ}. Since Kλ,γ = Kλ,w(γ) for
any w ∈W, the character χλ is determined by its dominant part

χ+
λ := ∑

µ∈P+(λ)

Kλ,µ eµ .

Lusztig [9] defined a remarkable t-analogue Kλ,µ(t) of Kλ,µ (a polynomial in t satis-
fying Kλ,µ(1) = Kλ,µ) by introducing a variable t in the Weyl character formula for χλ:
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∑w∈W(−1)`(w)ew(λ+ρ)−ρ

∏α∈R+(1− te−α)
= ∑

γ∈P(λ)
Kλ,γ(t) eγ ; (2.1)

here ρ is the half sum of positive roots. We define the t-analogue of χ+
λ by

χ+
λ (t) := ∑

µ∈P+(λ)

Kλ,µ(t) eµ . (2.2)

When γ = µ is dominant, the polynomial Kλ,µ(t) is known as a Kostka–Foulkes polynomial.
This polynomial has remarkable properties, such as being an affine Kazhdan–Lusztig

polynomial, which implies that it has nonnegative integer coefficients. More precisely,

Kλ,µ(t) = t〈λ−µ,ρ∨〉Pwµ,wλ
(t−1) , (2.3)

where wλ denotes the longest element of WtλW, and tλ is the translation by λ in the
extended affine Weyl group [4]; note that 〈λ− µ, ρ∨〉 is the number of simple roots in
the decomposition of λ− µ, counted with multiplicity. Based on (2.3), we let

K̃λ,µ(t) := t〈λ−µ,ρ∨〉Kλ,µ(t−1) , so K̃λ,µ(t) = Pwµ,wλ
(t) . (2.4)

To each irreducible representation V(λ) is associated an abstract Kashiwara crystal
B(λ) [3]. This is a colored directed graph which encodes the action of certain modified
versions of the Chevalley generators, upon passing to the quantum group of g and letting
the quantum parameter go to 0. Denoting by wt(b) the weight of the vertex b ∈ B(λ),
we have

χλ = ∑
b∈B(λ)

ewt(b) . (2.5)

2.2 The definition of the atomic decomposition

For any dominant weight µ, define the layer sum polynomials by

wµ := ∑
γ∈P(µ)

eγ , w+
µ := ∑

ν∈P+(µ)

eν = ∑
ν≤µ

eν , and (2.6)

w+
µ (t) := ∑

ν∈P+(µ)

t〈µ−ν,ρ∨〉eν = ∑
ν≤µ

t〈µ−ν,ρ∨〉eν . (2.7)

Consider the expansion

χλ = ∑
µ∈P+(λ)

Aλ,µ wµ , or equivalently χ+
λ = ∑

µ∈P+(λ)

Aλ,µ w+
µ . (2.8)
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Similarly, consider the polynomials Aλ,µ(t) defined by

χ+
λ (t) = ∑

µ∈P+(λ)

Aλ,µ(t)w+
µ (t) . (2.9)

We have Aλ,λ(t) = 1. It is not hard to prove that the expansion (2.9) is equivalent to

Kλ,ν(t) = ∑
ν≤µ≤λ

t〈µ−ν,ρ∨〉Aλ,µ(t) , for all ν ∈ P+(λ) . (2.10)

Definition 2.1. The character χλ admits an atomic decomposition if Aλ,µ ∈ Z≥0. Similarly,
we say that χ+

λ (t) admits a t-atomic decomposition if Aλ,µ(t) ∈ Z≥0[t]. These polynomials
are called atomic polynomials.

We state a property equivalent to the t-atomic decomposition. To this end, by analogy
with (2.2) and using (2.4), we define

χ̃+
λ (t) := ∑

µ∈P+(λ)

K̃λ,µ(t) eµ .

Like in (2.9), consider the polynomials Ãλ,µ(t) defined by

χ̃+
λ (t) = ∑

µ∈P+(λ)

Ãλ,µ(t)w+
µ , (2.11)

where we recall that w+
µ := w+

µ (1). Like above, we can then prove that the expansion
(2.11) is equivalent to

K̃λ,ν(t) = ∑
ν≤µ≤λ

Ãλ,µ(t) , for all ν ∈ P+(λ) . (2.12)

Proposition 2.2. The polynomials Aλ,µ(t) and Ãλ,µ(t) satisfy

Ãλ,µ(t) = t〈λ−µ,ρ∨〉Aλ,µ(t−1) .

Thus, the t-atomic decomposition is equivalent to the fact that Ãλ,µ(t) ∈ Z≥0[t].

Remarks 2.3. (1) Lascoux [5] stated the atomic decomposition in type A as in (2.10).
However, there is a slight difference in the definition of K̃λ,µ(t), for given partitions λ, µ;
namely, Lascoux defined K̃λ,µ(t) := tn(µ) Kλ,µ(t−1), where n(µ) := ∑i(i− 1)µi.

(2) The t-atomic decomposition, as stated in Definition 2.1, implies the monotonic-
ity of the Kostka–Foulkes polynomials, which holds in the full generality of Kazhdan–
Lusztig polynomials for finite and affine Weyl groups [1, Corollary 3.7], cf. (2.4). Indeed,
this property says that, for x ≤ y ≤ z in such a Weyl group, the difference of Kazhdan–
Lusztig polynomials Px,z(t)− Py,z(t) is in Z≥0[t].

(3) We will give a simpler, conceptual proof of the t-atomic decomposition in type A,
cf. Section 1. However, even the atomic decomposition (i.e., the positivity in (2.8)) might
fail beyond type A; but this failure seems limited to small ranks, as explained below.
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2.3 Atomic decomposition of finite crystals

Let B(λ)+ be the subset of B(λ) consisting of vertices with dominant weights.

Definition 2.4. An atomic decomposition of the crystal B(λ) is a partition

B(λ)+ =
⊔

h∈H(λ)

B(λ, h) , (2.13)

where H(λ) ⊂ B(λ)+, h ∈ B(λ, h) is a distinguished vertex, and each component B(λ, h)
consists of exactly one vertex of weight ν for each ν ≤ wt(h).

An atomic decomposition of B(λ) clearly gives the atomic decomposition (2.8) of χ+
λ ,

where Aλ,µ is the number of vertices of weight µ in H(λ).

Definition 2.5. A t-atomic decomposition of the crystal B(λ) is an atomic decomposition
together with a statistic c : H(λ)→ Z≥0 such that the following polynomials satisfy (2.9):

Aλ,µ(t) = ∑
h∈H(λ)

wt(h)=µ

tc(h) . (2.14)

As we see, the t-atomic decomposition of χ+
λ (t) is part of Definition 2.5. Assuming

that B(λ) has a t-atomic decomposition, one can extend the statistic c to B(λ)+ by setting

c(b) := c(h) + 〈wt(h)−wt(b), ρ∨〉 , for any b ∈ B(λ, h) . (2.15)

The t-analogue of the combinatorial formula (2.5) follows from Definition 2.5:

χ+
λ (t) = ∑

b∈B(λ)+
tc(b)ewt(b) . (2.16)

Moreover, by comparing (2.16) with (2.2), we obtain the following combinatorial formula
for Kostka–Foulkes polynomials:

Kλ,µ(t) = ∑
b∈B(λ)

wt(b)=µ

tc(b) . (2.17)

To summarize, the existence of a t-atomic decomposition of a crystal is highly desir-
able because: (i) it gives the t-atomic decomposition of χ+

λ (t) and of Kλ,µ(t), which are
now realized combinatorially; (ii) it leads to combinatorial formulas for both Kλ,µ(t) and
the atomic polynomials Aλ,µ(t), namely (2.17) and (2.14), respectively.
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3 The partial order on dominant weights

Before we consider the atomic decomposition of finite crystals, we need some informa-
tion about the dominant weight poset defined in Section 2.1. In full generality, this poset
was first studied in [13], so we will recall some results from this paper.

The components of the dominant weight poset are lattices. Each cocover is of the form
µm µ− α, where α is a positive root, so we represent it as a downward edge in the Hasse
diagram labeled by α. The cocovers were completely described in [13, Theorem 2.8].
Fixing a dominant weight λ, we will consider the lower order ideal determined by λ.
This is an interval [0̂, λ], with 0̂ a minimal element of the dominant weight poset.

3.1 Type An−1

Now λ is a partition (λ1 ≥ . . . ≥ λn−1 ≥ 0), and let |λ| := ∑i λi. We denote a partition
with p parts a, q parts b (a ≥ b) etc. by (apbq . . .). In the interval [0̂, λ] mentioned above,
0̂ is the partition ωp = (1p), where p := |λ| mod n. The cocovers µ m µ − αij, where
αij = εi − ε j is a positive root (i.e., i < j), are labeled by (i, j). There are two types of
cocovers:

(. . . ab . . .)m (. . . (a− 1)(b + 1) . . .), and (. . . (a + 1)ap(a− 1) . . .)m (. . . ap+2 . . .) . (3.1)

where the first cocover is labeled by a simple root. These types are referred to as (*) and
(**), respectively, while a cocover of type (**) which is not of type (*) is called proper.

An important result in [2] concerns the structure of “short intervals” in the domi-
nance order. To state it, we need some more definitions. Consider two distinct cocovers
µ m ν and µ m π of a partition µ, which are labeled (i, j) and (k, l), where we assume
i < k. These cocovers can only have one of the following relative positions (in terms of
their labels): (i) nonoverlapping if j < k; (ii) partially overlapping if j = k; (iii) fully overlap-
ping if k = j− 1. By [2, Proposition 3.2], the interval [ν ∧ π, µ] can only have one of the
following structures; the two cocovers above are shown in the diagrams below in bold.

Case A1: cocovers which are (a) nonoverlapping; (b) partially overlapping and both
of type (*); (c) fully overlapping and both proper of type (**). As subcase (a) is easy, only
subcases (b) and (c) are represented in the diagrams below.

In subcase (b), we have a ≥ c + 2 and c ≥ e + 2, while i is the position of a in µ.

. . . ace . . .
(i,i+1)

ss

(i+1,i+2)

++ss ss ++ ++
. . . (a− 1)(c + 1)e . . .

(i+1,i+2) **

. . . a(c− 1)(e + 1) . . .

(i,i+1)tt
. . . (a− 1)c(e + 1) . . .
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In subcase (c), we have b = a− 1, c = b− 1, d = c− 1, p, q ≥ 1, while i is the position
of a, j = i + p + 1 is the position of the first c, and k = j + q is the position of d.

. . . abpcqd . . .
(i,j)

uu

(j−1,k)

))uu uu )) ))

. . . bp+2cq−1d . . .

(j,k) ))

. . . abp−1cq+2 . . .

(i,j−1)uu

. . . bp+1cq+1 . . .

Case A2: partially overlapping cocovers, where (a) the first is of type (*) and the
second proper of type (**); (b) vice versa.

In subcase (a), we have a ≥ c + 2, d = c− 1, e = d− 1, p ≥ 1, while i is the position
of a in the partition µ and j = i + p + 2 is the position of e.

. . . acdpe . . .
(i,i+1)

tt (i+1,j)

##

tt tt

## ##

. . . (a− 1)(c + 1)dpe . . .

(i+1,i+2)

��

. . . adp+2 . . .

(i,i+1)

||

. . . (a− 1)c2dp−1e . . .

(i+2,j) **

. . . (a− 1)cdp+1 . . .

In subcase (b), we have a similar pentagon.
Case A3: partially overlapping cocovers, both proper of type (**). Here b = a − 1,

c = b− 1, d = c− 1, e = d− 1, p, q ≥ 1, while i is the position of a in the partition µ,
j = i + p + 1 is the position of c, and k = j + q + 1 is the position of e.

. . . abpcdqe . . .

(j−1,j+1)
��

(i,j)

tt

(j,k)

**tt tt ** **

. . . bp+2dqe . . .

(j,j+1)
��

. . . abp−1c3dq−1e . . .

(i,j−1)tt (j+1,k) **

. . . abpdq+2 . . .

(j−1,j)
��

. . . bp+1c2dq−1e . . .

(j+1,k) **

. . . abp−1c2dq+1 . . .

(i,j−1)tt

. . . bp+1cdq+1 . . .
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Given two distinct covers µ l ν and µ l π of µ, the isomorphism type of the interval
[µ, ν ∨ π] is always given by one of the above graphs turned upside down.

3.2 Types Bn, Cn, and Dn

We start with type Cn. Now λ is a partition (λ1 ≥ . . . ≥ λn ≥ 0). It is easy to see that the
minimal element 0̂ mentioned above (i.e., the unique minimal element below λ) is either
0 or ω1 = (10n−1), depending on |λ| being even or odd, respectively.

Proposition 3.1. If n > (|λ|+ 1)/2, then the cocover (. . . 120k)m (. . . 0k+2) is the only one
which can appear in the Hasse diagram of the interval [0̂, λ] beside the type A cocovers in (3.1).

We turn to type Dn. Now λ is a sequence (λ1 ≥ . . . ≥ λn) with λi ∈ 1
2Z, all congruent

mod Z, such that λn−1 + λn ≥ 0. We will now assume that λi ∈ Z. This implies that the
interval [0̂, λ] only contains weights µ = (µ1 ≥ . . . ≥ µn) with µi ∈ Z. Note that, in this
case, there are the same possibilities for the minimal element 0̂ as in type C.

Proposition 3.2. If n > |λ|, then the cocover (. . . 120k)m (. . . 0k+2) is the only one which can
appear in the Hasse diagram of the interval [0̂, λ] beside the type A cocovers in (3.1).

Type Bn is completely similar.
We will work under the assumptions of Propositions 3.1 and 3.2, and we call this the

stable range. We derived a corresponding classification of the short intervals, consisting
of the same cases as in type A, and a few extra ones involving the new cover.

4 Modified crystal operators on classical crystals

Now consider a classical Lie algebra, with Dynkin diagram labeled in the standard way.

4.1 Definition of the modified crystal operators

Given a positive root α ∈ Wα1, consider the shortest length element in the Weyl group
W satisfying w(α1) = α. We define the modified crystal operators fα and eα as the
conjugations

fα := w f̃1w−1 , eα := wẽ1w−1 (4.1)

of the ordinary crystal operators f̃1 and ẽ1 by the Kashiwara action of w on B(λ) [3]. This
means that fα(b) = 0 precisely when f̃1 applied to w−1(b) is 0. In addition, for a positive
root α ∈ Wαn in type Bn, we define fα and eα as the appropriate conjugations of fn and
en. Clearly, fα and eα are inverses to one another. Moreover, for any b ∈ B(λ), we have
wt(fα(b)) = wt(b)− α. We endow the vertices of B(λ) with the structure of a colored
directed graph B(λ) with edges b

α
99K b′ when b′ = fα(b). The graph B(λ) is different

from the Kashiwara crystal B(λ) and, unlike the latter, it is generally not connected.
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4.2 Properties of the modified crystal operators

Lemma 4.1. For b ∈ B(λ) and a positive root α ∈Wα1, if 〈wt(b), α〉 > 0, then fα(b) 6= 0.

Theorem 4.2. Consider two positive roots α and β in Wα1 and a vertex b in B(λ) such that
〈wt(b), α〉 > 0 and 〈wt(b), β〉 > 0.

1. Assume that the pair (α, β) satisfies: (i) it is (εi − ε j, ε j ± εk) or (ε j ± εk, εi − ε j), for
i < j < k; (ii) it is (ε j−1 + ε j, εi− ε j) for i < j− 1, and 〈wt(b)− β, ε j−1− ε j〉 = 0. Then
we have fαfβ(b) = fα+β(b) 6= 0 .

2. Assume that the pair (α, β) is in the W-orbit of (α1, α3). Then fαfβ(b) = fβfα(b) 6= 0 .

Theorem 4.3. Consider two positive roots α and β in Wα1 and a vertex b in B(λ) such that
〈wt(b), α〉 ≥ 0 and 〈wt(b), β〉 ≥ 0. Assume also that eα(b) 6= 0 and eβ(b) 6= 0.

1. Assume that the pair (α, β) satisfies: (i) it is (εi − ε j, ε j ± εk) or (ε j ± εk, εi − ε j), for
i < j < k; (ii) it is (εi − ε j, ε j−1 + ε j) for i < j− 1, and 〈wt(b), ε j−1 − ε j〉 = 0. Then we
have eαeβ(b) = eα+β(b) 6= 0 .

2. Assume that the pair (α, β) is in the W-orbit of (α1, α3), and w is a shortest length element
satisfying w(α1, α3) = (α, β). Let γ := w(α2), and also assume that 〈wt(b), γ〉 > 0.
Then eαeβ(b) = eβeα(b) 6= 0.

5 The main results

Fix a dominant weight λ for a classical Lie algebra. Consider the subgraph of B(λ)

consisting of the vertices of dominant weight, and the edges b
α

99K fα(b) for which
wt(b)m wt(fα(b)) is a cocover in the dominant weight poset. This new colored directed
graph on the vertices of B(λ)+ will be denoted by B(λ)+. It can also be viewed as a poset
(with cocovers given by the above edges), and the weight function is a poset projection
to the interval [0̂, λ] in the dominant weight poset. The two points of view will be used
interchangeably.

The main goal is to identify situations in which the components of the poset B(λ)+

define an atomic, respectively t-atomic decomposition, cf. Definitions 2.4 and 2.5.

5.1 Type An−1

Lemma 5.1. 1. Consider two distinct edges b99Kb′ and b99Kb′′ in B(λ)+. The vertices b′

and b′′ have a lower bound in this poset.

2. Consider two distinct edges b′99Kb and b′′99Kb in B(λ)+. The vertices b′ and b′′ have an
upper bound in this poset.
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1 1 1
2 2
3

(1,3)

��

(2,4)

��

1 1 3
2 2
3

(3,4)
��

1 1 1
2 4
3

(1,2)
��

1 1 4
2 2
3

1 1 2
2 3
3

(3,4) ��

1 1 1
2 3
4

(1,2)��

1 1 3
2 2
4

1 1 2
2 4
3

1 1 2
2 3
4

Figure 1: The modified crystal graph B(λ)+ in Example 5.3.

The proof of this lemma relies on the structure of the short intervals in the dominant
weight poset, discussed in Section 3.1. More precisely, we consider one by one all the
types of short intervals, and for each of them, we show that we obtain the same structure
in the poset B(λ)+. This is achieved by using the commutation relations between the
modified crystal operators discussed in Section 4.1, namely Theorems 4.2 and 4.3.

Theorem 5.2. The components of B(λ)+ define a t-atomic decomposition. These components are
isomorphic to intervals of the form [0̂, µ] in the dominant weight poset via the weight projection,
and the distinguished vertex h ∈ H(λ) in each of them is chosen to be the respective maximum.

The proof has two parts. First, the atomic decomposition is proved (i.e., the t = 1
case), by using Lemma 5.1 to derive the existence of a maximum and a minimum in
each interval. Using the realization of B(λ) in terms of semistandard tableaux, we show
that we can choose the statistic c(·) in Definition 2.5 to be the Lascoux–Schützenberger
charge [6], which expresses the type A Kostka–Foulkes polynomials combinatorially; only
some basic properties of charge are needed. See [7] for the details.

Example 5.3. Consider λ = (3, 2, 1) in type A3. The modified crystal graph B(λ)+

is shown in Figure 1. Its vertices are labeled by semistandard Young tableaux whose
content is a partition, and its edges are labeled as above. In particular, this graph gives
the following atomic decomposition of the character:

χλ = w(3,2,1) + w(2,2,2) + w(3,1,1,1) + w(2,2,1,1) .
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5.2 Types Bn, Cn, and Dn

We study the graph/poset B(λ)+ in types B, C, D via a similar approach to that in
type A.

Theorem 5.4. The components of B(λ)+ define an atomic decomposition. These components are
isomorphic to intervals of the form [0̂, µ] in the dominant weight poset via the weight projection.

6 Additional facts and perspectives

We conjecture that the atomic decompositions in type B, C, D, as stated in Theorem 5.4,
are t-atomic decompositions, for appropriate choices of the statistic c(·) in Definition 2.5.
Let us describe a possible such choice in type C, for partitions λ of even size. In [8], we
gave a combinatorial formula for Kλ,0(t) based on a new statistic on King tableaux of zero
weight (indexing the crystal vertices of zero weight). We can translate this statistic via
the Sheats bijection [11] between King and Kashiwara–Nakashima tableaux (the crystal
structure is only known on the latter), and then we can extend it recursively on B(λ)+

via (2.15). By (2.17), such a statistic would give a combinatorial formula for all Kλ,µ(t).
In [7] we also derive a t-atomic decomposition for: (1) the crystal B(∞) in types A−D

and G2; (2) the crystal of the adjoint representation of g in any type.

7 Geometric interpretation

We give an interpretation of the combinatorial atomic decomposition in terms of the
geometric Satake correspondence. For a reductive group G, this important theory exhibits
a geometric realization of the irreducible representation V(λ) of highest weight λ of
the Langlands dual group, as the intersection cohomology IH∗(Grλ) of the Schubert variety
denoted Grλ in the affine Grassmannian GrG for G; there is also a geometric basis of
MV cycles [10]. However, it is hard to give concrete formulas for the MV cycles and the
action. We will show how one can understand the combinatorics of the geometric Satake
correspondence via our combinatorial atomic decomposition.

The module IH∗(Grλ) has the truncation filtration (or standard Grothendieck filtration),
which gives the Kostka–Foulkes polynomials when restricted to the weight spaces [10].
The degree 0 piece in this filtration is the cohomology of the constant sheaf H∗(Grλ), so

IH∗(Grλ) ' H∗(Grλ)⊕ other summands . (7.1)

On another hand, H∗(Grλ) has the basis of classes of Schubert varieties inside Grλ, which
are indexed by the weights of V(λ) considered without multiplicity, as recorded by the
layer sum polynomials. In this language, the atomic decomposition decomposition (2.9),



12

cf. Definition 2.1, is expressing the fact that there is a refinement of the truncation filtra-
tion (with the H∗(GrG)-action), whose successive quotients are isomorphic to H∗(Grµ)
for µ ∈ P+(λ). These quotients correspond precisely to the blocks of the partition in the
combinatorial atomic decomposition, cf. Definition 2.4.

Acknowledgments

The second author gratefully acknowledges the partial support from the NSF grant
DMS–1362627, and the hospitality of IHÉS during July-August 2018.

References

[1] T. Braden and R. MacPherson. “From moment graphs to intersection cohomology”. Math.
Ann. 321.3 (2001), pp. 533–551. Link.

[2] T. Brylawski. “The lattice of integer partitions”. Discrete Math. 6 (1973), pp. 201–219. Link.

[3] M. Kashiwara. “Crystal bases of modified quantized enveloping algebra”. Duke Math. J.
73.2 (1994), pp. 383–413. Link.

[4] S. Kato. “Spherical functions and a q-analog of Kostant’s weight multiplicity formula”.
Invent. Math. 66.3 (1982), pp. 461–468. Link.

[5] A. Lascoux. “Cyclic permutations on words, tableaux and harmonic polynomials”. Pro-
ceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989). Manoj Prakashan,
Madras, 1991, pp. 323–347.

[6] A. Lascoux and M.-P. Schützenberger. “Sur une conjecture de H. O. Foulkes”. C. R. Acad.
Sci. Paris Sér. I Math. 288 (1979), pp. 95–98.

[7] C. Lecouvey and C. Lenart. “Atomic decomposition of characters and crystals”. 2018.
arXiv:1809.01262.

[8] C. Lecouvey and C. Lenart. “Combinatorics of generalized exponents”. Int. Math. Res. Not.
(2018). In press. Link.

[9] G. Lusztig. “Singularities, character formulas, and a q-analog of weight multiplicities”.
Analysis and Topology on Singular Spaces, II, III (Luminy, 1981). Astérisque 101. Soc. Math.
France, Paris, 1983, pp. 208–229.

[10] C. Mirković and V. Vilonen. “Geometric Langlands duality and representations of algebraic
groups over commutative rings”. Ann. of Math. (2) 166.1 (2007), pp. 95–143. Link.

[11] J. Sheats. “A symplectic jeu de taquin bijection between the tableaux of King and of De
Concini”. Trans. Amer. Math. Soc. 351.9 (1999), pp. 3569–3607. Link.

[12] M. Shimozono. “Multi-atoms and monotonicity of generalized Kostka polynomials”. Euro-
pean J. Combin. 22.3 (2001), pp. 395–414. Link.

[13] J. Stembridge. “The partial order of dominant weights”. Adv. Math. 136.2 (1998), pp. 340–
364. Link.

http://dx.doi.org/10.1007/s002080100232
http://dx.doi.org/10.1016/0012-365X(73)90094-0
http://dx.doi.org/10.1215/s0012-7094-94-07317-1
http://dx.doi.org/10.1007/bf01389223
https://arxiv.org/abs/1809.01262
http://dx.doi.org/10.1093/imrn/rny157
http://dx.doi.org/10.4007/annals.2007.166.95
http://dx.doi.org/10.1090/S0002-9947-99-02166-2
http://dx.doi.org/10.1006/eujc.2000.0465
http://dx.doi.org/10.1006/aima.1998.1736

	Introduction
	The atomic decomposition: definitions and basic facts
	Characters and t-deformations
	The definition of the atomic decomposition
	Atomic decomposition of finite crystals

	The partial order on dominant weights
	Type An-1
	Types Bn, Cn, and Dn

	Modified crystal operators on classical crystals
	Definition of the modified crystal operators
	Properties of the modified crystal operators

	The main results
	Type An-1
	Types Bn, Cn, and Dn

	Additional facts and perspectives
	Geometric interpretation

