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Abstract. The Hillman–Grassl correspondence is a well-known bijection between mul-
tisets of rim hooks of a partition shape λ and reverse plane partitions of λ. We use the
tools of quiver representations to generalize Hillman–Grassl in type A and to define
an analogue in all minuscule types.

Résumé. La correspondence de Hillman–Grassl est une bijection bien connue entre
les multiensembles des équerres de bord (« rim hooks ») d’un partage λ et les parti-
tions planes renversées (« reverse plane partitions ») de forme λ. Nous utilisons les
représentations des carquois afin de généraliser la correspondence de Hillman–Grassl
dans le type A et de définir un analogue dans tous les types minuscules.
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A reverse plane partition of a Young diagram is a filling of the boxes with {0, 1, 2, . . .}
such that the entries in rows and columns are weakly increasing. They are prominent
combinatorial objects with connections to areas like symmetric functions and represen-
tation theory (see for example [12]). Their generating function was discovered by Stanley
and is as follows, where h(u) denotes the hook length of the cell u in partition λ and |ρ|
denotes the sum of the entries in reverse plane partition ρ.

Theorem 1. [12] The generating function for reverse plane partitions of shape λ with respect to
the sum of its entries is

∑
ρ

q|ρ| = ∏
u∈λ

1
1− qh(u)

.

The first bijective proof of this generating function was found by Hillman and Grassl
in [7]. The authors give a bijection between nonnegative integer arrays of shape λ—
which can be thought of as multisets of rim hooks of λ—and reverse plane partitions of
λ, which is now known as the Hillman–Grassl correspondence. This correspondence has
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since been well studied, for example by Gansner in [4] and by Morales, Pak, and Panova
in [9]. Another such bijection was given by Pak in [10] and rediscovered in a different
form by Sulzgruber in [14].

More generally, one can define a reverse plane partition on any poset P to be an order-
reversing map ρ : P → {0, 1, 2, . . .}. In the case where P is a minuscule poset, Proctor
[11] proves the following analogous generating function for reverse plane partitions of P
with respect to the sum of its entries:

∑
ρ∈RPP(P)

q|ρ| = ∏
u∈P

1
1− qrank(u)

.

In this paper, we use quiver representations to give a uniform bijective proof of this
generating function for all minuscule types that generalizes the Hillman–Grassl and
Pak correspondences in type A. Our bijection is between certain isomorphism classes
of representations of a simply-laced Dynkin quiver and reverse plane partitions on the
corresponding minuscule poset; see Theorems 2 and 5. The interested reader may see
[5] for a full version of this paper with proofs included.

In Theorem 2, we describe our bijection as a sequence of piecewise-linear maps that
involve an operation known as toggling. There is an action on the set of reverse plane
partitions known as promotion defined using toggles. An important application of our
work is that promotion applied h times to a reverse plane partition of a minuscule poset
is the identity where h is the Coxeter number of the associated root system.

1 Quiver representations

We briefly review the basics of quiver representations; see [1] for more details. A quiver
Q is a directed graph. In other words, Q is a 4-tuple (Q0, Q1, s, t), where Q0 is a set of
vertices, Q1 is a set of arrows, and s, t : Q1 → Q0 are two functions defined so that for
every a ∈ Q1, we have s(a) a−→ t(a). In all of our results, we will assume that Q is a
Dynkin quiver, meaning that its underlying graph is a simply-laced Dynkin diagram.

A representation V = ((Vi)i∈Q0 , ( fa)a∈Q1) of a quiver Q is an assignment of a finite-
dimensional k-vector space Vi to each vertex i and a k-linear map fa : Vs(a) → Vt(a)
to each arrow a where k is a field. The dimension vector of V is the vector dim(V) :=
(dim Vi)i∈Q0 . In all of our results, we will assume that k is algebraically closed.

Let V = ((Vi)i∈Q0 , ( fa)a∈Q1) and W = ((Wi)i∈Q0 , (ga)a∈Q1) be two representations of
a quiver Q. A morphism θ : V → W consists of a collection of linear maps θi : Vi → Wi
that are compatible with each of the linear maps in V and W. That is, for each arrow
a ∈ Q1, we have θt(a) ◦ fa = ga ◦ θs(a). We let Hom(V, W) denote the k-vector space
of all morphisms θ : V → W. Additionally, we say that a collection of linear maps
{θi : Vi → Vi}i∈Q0 is compatible with a representation V if they define a morphism of V.
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Figure 1: Let Q = 1→ 2→ 3← 4 with m = 3. On the left is the set of indecomposable
representations (up to isomorphism) of Q that have support over vertex 3 and their
dimension vectors. On the right is the minuscule poset (in black) inside of the AR
quiver of Q. The action of τ is shown in red; the leftmost representations map to 0.

The representations of a quiver Q along with morphisms between them form an
abelian category, which is equivalent to the category of finitely generated left modules
over the path algebra of Q. It is therefore natural to ask for a classification of the in-
decomposable representations of Q, i.e., those which cannot be written as a direct sum
of two non-zero representations. Since we will restrict to the case when Q is Dynkin,
Gabriel’s Theorem [3] implies that the indecomposable representations of Q are in one-
to-one correspondence with the positive roots of the root system corresponding to Q,
under the map sending a representation to its dimension vector. Figure 1 shows ex-
amples of indecomposable representations of a Dynkin quiver of type A4 with their
dimension vectors.

One can understand a great deal about the category of representations of Q by con-
structing the Auslander–Reiten quiver (or AR quiver) of Q. In this paper, we use the AR
quiver of Q to relate the representation theory of Q to the combinatorics of minuscule
posets. By definition, the AR quiver of Q is the quiver whose vertices are indexed by the
isomorphism classes of indecomposable representations of Q and whose arrows index a
basis of the space of irreducible morphisms between the corresponding representations.
In Figure 1, we show an example of an AR quiver.

There is a well-known endofunctor on the category of representations of Q, called
the Auslander–Reiten translation and denoted by τ. We omit its homological definition,
but we show how τ acts on indecomposables in Figure 1. For our work, the important
fact is that τ partitions the indecomposable representations of Q into τ-orbits.
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2 Minuscule posets

A vertex m of Q is called minuscule if every positive root in the root system of Q has
the simple root corresponding to vertex m appearing in its simple root expansion with
coefficient 0 or 1. In other words, a vertex m of Q is minuscule if every indecomposable
representation of Q supported over m has dimension 1 at m. For example, every vertex of
a type A Dynkin quiver is minuscule. Figure 2 shows the possible choices of minuscule
vertices.

Each choice of minuscule vertex gives rise to a minuscule poset. We now give explicit
descriptions of the minuscule posets, which appear in the context of minuscule repre-
sentations of complex semisimple Lie algebras and were classified up to isomorphism by
Proctor in [11]. Recall that for a poset P, we let J(P) denote its poset of order ideals (i.e.,
subsets of O ⊂ P where if x ∈ O and y ≤P x, one has that y ∈ O), ordered by inclusion. By
[6, Theorem 8.3.10], there is a minuscule poset for each choice of a simply-laced Dynkin
diagram other than E8 with a chosen minuscule vertex. Their isomorphism types appear
in Table 1. There, we write [n] for the poset that is a chain whose elements are 1, . . . , n
in increasing order. Figure 2 shows some examples of minuscule posets.

Type m minuscule poset

An k [k]× [n + 1− k]
Dn 1 Jn−3([2]× [2])
Dn n− 1, n J([2]× [n− 2])
E6 1, 5 J2([2]× [3])
E7 6 J3([2]× [3])

Table 1: The isomorphism types of the minuscule posets. Here we are referring to the
vertex labeling of the Dynkin diagrams appearing in Figure 2.

Our next result shows how the minuscule posets are related to the representation
theory of quivers. Given a minuscule vertex m ∈ Q0, let PQ,m denote the poset that is
the transitive closure of the arrows in the full subquiver of the AR quiver of Q whose
vertex set is the set of isomorphism classes of representations supported at m. Examples
for type A quivers are shown in Figures 1, 3 and 6. We let CQ,m denote the category
consisting of all direct sums of indecomposable representations of Q supported at m.

We will need the following lemma, which is not hard to verify but appears to be new.

Lemma 1. The poset PQ,m is isomorphic to the minuscule poset determined by the underlying
graph of Q and minuscule vertex m.
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Figure 2: The possible choices of minuscule vertices of Dynkin diagrams are shown on
the left in red. On the right, we have the minuscule poset of type A4 with m = 3, of
type D5 with m = 1, and type D5 with m = 4, respectively, in (a), (b), and (c).

3 Quiver representations and reverse plane partitions

Our main result is the following theorem.

Theorem 2. Let Q be a Dynkin quiver with minuscule vertex m. There is a bijection between
isomorphism classes of objects in CQ,m and reverse plane partitions of the minuscule poset PQ,m.

Remark 3. It is also possible to give a bijection between reverse plane partitions in any order
filter of PQ,m and the isomorphism classes of objects in a suitable category. For simplicity, we
only discuss the bijection for the full posets here.

Remark 4. Theorem 2 provides a proof of Proctor’s generating function identity from the In-
troduction. We may re-express that equation as follows, where the first equality is implied by
Theorem 2 and the second holds since any representation in CQ,m uniquely decomposes as a direct
sum of indecomposable representations Mu belonging to CQ,m:

∑
ρ∈RPP(PQ,m)

q|ρ| = ∑
V∈CQ,m

qdim V = ∏
u∈PQ,m

1
1− qdim Mu

.

In [5, Corollary 4.9], we show that there is a multivariate version of this generating function
identity that recovers an identity of Gansner [4, Corollary 5.2].

In Section 3.2, we describe the bijection explicitly in terms of toggling, which we
introduce in the next section. In Section 3.3, we give an alternative description of the
bijection using the geometry of representation varieties.



6 Alexander Garver, Rebecca Patrias, and Hugh Thomas

3.1 Toggling

Let ρ : P→ [0, N] be a reverse plane partition. For x an element of P, we define the toggle
of ρ at x ∈ P by

txρ(y) =

 max
yly1

ρ(y1) + min
y2ly

ρ(y2)− ρ(y) : if y = x

ρ(y) : if y 6= x,

where y is any element of P. If y is maximal, we interpret maxyly1 ρ(y1) as 0, and if y
is minimal, we interpret miny2ly ρ(y2) as N. Since ρ is a reverse plane partition, so is
txρ. Additionally, observe that tx ◦ tx(ρ) = ρ. This is the toggle operation considered by
Einstein and Propp (up to rescaling, and restricted to lattice points) [2].

3.2 Combinatorial Description

We now give an explicit description of the bijection in Theorem 2, which we will denote
by ρQ,m(−). We must first establish a linear order on the indecomposable representations
of Q. Choose a linear order on the indecomposable representations of Q compatible
with the opposite of the AR quiver order. Let M1, . . . , Ms denote the indecomposable
representations of Q in this order.

Let M =
⊕s

j=1 M
cj
j ∈ CQ,m. The reverse plane partition ρQ,m(M) corresponding to M

is obtained by constructing a sequence of fillings of the minuscule poset PQ,m, starting
with ρ0, which is the zero filling. These fillings are defined by

ρk(x) :=


max
xly

ρk−1(y) + ck : if x is the element of PQ,m corresponding to Mk,

(txρk−1)(x) : if x corresponds to τ`(Mk) for some ` < 0, and
ρk−1(x) : otherwise,

where x is any element of PQ,m. Then we have that ρQ,m(M) = ρs.
Note that using this description of the algorithm, the intermediate fillings ρk for k < s

are not reverse plane partitions of PQ,m. However, by restricting ρk to the elements of
PQ,m corresponding to M1, . . . , Mk, we do obtain a reverse plane partition on the induced
subposet of PQ,m whose elements correspond to M1, . . . , Mk.

Observe that in the process of constructing ρs, we never toggle at a minimal element
of one of these induced posets. Therefore, the result of the procedure does not depend
on the choice of N used in the definition of toggling. See Figures 3 and 6 for examples
in type A worked out step-by-step using this explicit description.

3.3 Nilpotent endomorphisms of quiver representations

Let V be a representation of Q with dimension vector d, over an algebraically closed
ground field k. Let φ be a nilpotent endomorphism of V. At each vertex i of Q, the
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Figure 3: The top left image is the AR quiver associated with the quiver Q = 1 ←
2← 3 ← 4← 5 with chosen minuscule vertex 3. The dimension vectors with support
on vertex 3 are black, while the others are gray. The top right image represents a
representation M whose indecomposable summands all have support on vertex 3. The
images below show the steps in computing ρQ,m(M), starting at ρ4, and the bottom
right shows the corresponding reverse plane partition of a Young diagram. Note that
these posets are oriented from left to right. The computation of ρ8 is the first time
in the process that we apply a toggle. The computation of ρ10 is the first time in the
process that we apply only a toggle.
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endomorphism φ induces an endomorphism φi of Vi. We can consider the Jordan form
of each of these vector space endomorphisms, which gives us a sequence of partitions
λi ` di. We show that for a generic choice of φ, the n-tuple λ = (λ1, . . . , λn) is well-
defined. We refer to this as the Jordan data of V, and we write it as GenJF(V). The
following is an alternate description of the bijection ρQ,m(−).
Theorem 5. For V ∈ CQ,m, define a map ρV : PQ,m →N as follows: The values of ρV restricted
to the τ-orbit corresponding to vertex j are the entries of GenJF(V)j, padded with extra zeros if
necessary, and ordered so that, restricted to this τ-orbit, the function is order-reversing. Then ρV
is a reverse plane partition of PQ,m. The map from isomorphism classes in CQ,m to reverse plane
partitions of PQ,m, sending V to ρV , is a bijection that agrees with ρQ,m(−).
Example 6. Let Q = 1→ 2← 3 and m = 2. By identifying indecomposable representations of
Q with their dimension vectors, each V ∈ CQ,2 is isomorphic to 010a ⊕ 011b ⊕ 110c ⊕ 111d

for some a, b, c, d ∈ Z≥0. By direct calculation, GenJF(V) = ((c + d), (max(b, c) + a +
d, min(b, c)), (b + d)). We obtain the corresponding reverse plane partition shown in Figure 4.

010a ⊕ 011b ⊕ 110c ⊕ 111d ←→

b + d

min(b, c)max(b, c) + a + d

c + d

Figure 4: The correspondence between isomorphism classes of representations of Q =

1→ 2← 3 belonging to CQ,2 and reverse plane partitions of PQ,2.

3.4 Periodicity

For this section, we assume that the vertices of Q are labeled with the numbers 1, . . . , n
so that the arrows of Q are oriented from vertices with larger labels to vertices with
smaller labels.

Note that tx and ty commute unless x and y are related by a cover. For PQ,m, and
i ∈ Q0, the elements of τ-orbit corresponding to i are never related by a cover, so we
can define Ti = ∏x tx, where we toggle at each element x of the τ-orbit containing the
projective at i, without worrying about the order in which the composition is taken.

Define proQ = Tn ◦ · · · ◦ T1. Define h to be the Coxeter number of Q: by definition,
this is the order of the product of the simple reflections in the Coxeter group, or, equiv-
alently, the largest degree of the root system. Figure 5 illustrates the following theorem.
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Figure 5: An example of periodicity, where N = 8. In each step, we first toggle the
elements in the middle τ-orbit, and then we toggle the top and bottom τ-orbits.

Theorem 7. For Q a Dynkin quiver and m a minuscule vertex, proh
Q is the identity transforma-

tion on RPPs on PQ,m with entries in [0, N].

4 Type A examples

Suppose we start with the type A quiver Q shown in Figure 3, where 3 is the chosen
minuscule vertex. The corresponding AR quiver is also shown in the figure. The type A
minuscule poset PQ,m associated with vertex 3 is shown in black in the figure.

We denote a representation M as a labeling of the poset PQ,m, where the label at a
vertex denotes how many copies of the corresponding indecomposable are in M. The
representation M in Figure 3 contains 4 copies of the indecomposable with dimension
vector 11100 and 3 copies of the indecomposable with dimension vector 01100.
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= ρQ,m(M)

Figure 6: The top left image is the AR quiver associated with the quiver Q = 1 →
2→ 3 ← 4← 5 with chosen minuscule vertex 3. The dimension vectors with support
on vertex 3 are black, while the others are gray. The top right image represents a
representation M whose indecomposable summands all have support on vertex 3. The
images below show the steps in computing ρQ,m(M), shown on the corresponding
Young diagram.

The order we use to compute ρQ,m(M) is indicated in the subscripts on the AR quiver.
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The procedure is shown step by step in the 12 fillings in Figure 3. In future sections, it
will be useful to realize the resulting reverse plane partition as a reverse plane partition
for the Young diagram of shape (3, 3, 3), as shown.

Figure 6 shows another example using a different orientation Q and a representation
that assigns the same multiplicities to the representations with the same dimension vec-
tors as above. In this figure, we show how to carry out the algorithm by identifying the
intermediate fillings with fillings of a Young diagram.

A reader who is familiar with the known bijections between multisets of rim hooks of
a Young diagram and reverse plane partitions of the same Young diagram can check that
the example in Figure 3 agrees with the well-known Hillman–Grassl correspondence and
the example in Figure 6 agrees with the bijection first described by Pak [10] and later
by Sulzgruber [14] and Hopkins [8]. In fact, this is not a coincidence, and we make the
correspondence precise in Sections 5 and 6.

5 The Hillman–Grassl Correspondence

A rim hook of the Young diagram λ is a connected strip of border boxes in λ such that
the result of removing these boxes is again a Young diagram. The Hillman–Grassl cor-
respondence [7] is a bijection between multisets of rim hooks of λ and the set of reverse
plane partitions of λ. See, for example, [13].

Let M be a representation in CQ,m, where Q is a type A Dynkin quiver. Then as shown
in Figure 3, ρQ,m(M) can be viewed as a reverse plane partition of the Young diagram
of shape m(n+1−m). We may identify the indecomposable summands of M as rim hooks
of m(n+1−m) by reading through the southeast border of m(n+1−m) from southwest to
northeast and including a box in the rim hook exactly when the corresponding entry
in the dimension vector of the indecomposable is 1. See Figure 7. In this way, we may
identify M with a multiset of rim hooks of m(n+1−m). Given a multiset M of rim hooks
of m(n+1−m) (i.e., an M in CQ,m), let HG(M) denote the reverse plane partition of shape
m(n+1−m) obtained using the Hillman–Grassl correspondence.

←→ 00110

Figure 7: A rim hook and the corresponding dimension vector.

Theorem 8. Let Q be a type An quiver with chosen minuscule vertex m and the following
orientation.

Q = 1← 2← · · · ← n− 1← n

Then for any M ∈ CQ,m, ρQ,m(M) = HG(M).
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Remark 9. We can, in fact, recover the Hillman–Grassl correspondence for any shape λ—not
just for rectangles—using ρQ,m(−).

6 The Pak correspondence

In [10], Pak gives a different bijection between multisets of rim hooks of a partition λ

and reverse plane partitions of λ, which involves toggles. We again use the identification
between rim hooks of a rectangle and dimension vectors of indecomposable represen-
tations in CQ,m from Section 5. Let Pak(M) denote the reverse plane partition obtained
from Pak’s correspondence using the multiset of rim hooks determined by M. The fol-
lowing result is illustrated in Figure 6.

Theorem 10. Let Q be a type An quiver with chosen minuscule vertex m and the following
orientation.

Q = 1→ · · · → m← · · · ← n

Then for any M ∈ CQ,m, ρQ,m(M) = Pak(M).

Remark 11. We can, in fact, recover the Pak correspondence for any shape λ using ρQ,m(−).

Fix n and m ∈ {1, . . . , n}. For each type An Dynkin quiver, we obtain a bijection
ρQ,m(−) that we can think of as a map between multisets of rim hooks of m(n+1−m) and
reverse plane partitions of m(n+1−m). We have shown that for two particular orientations,
we recover the Hillman-Grassl and Pak correspondences. For other orientations, we
obtain different bijections. We demonstrate this with an example.

We begin with the quiver

Q = 1← 2→ 3← 4→ 5

with minuscule vertex 3 and use the following multiset of rim hooks of the 3-by-3 rect-
angle.

01100, 01110, 11111, 11111, 00110, 00110

This multiset of rim hooks determines the representation M of the quiver Q shown be-
low. We then obtain ρQ,m(M) as shown. We leave it to the reader to check that both
Hillman–Grassl and the Pak correspondences applied to this same multiset of rim hooks
yield a reverse plane partition where the maximal element is labeled with 0.
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