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Abstract. For any finite graph, the Tutte polynomial is the generating function of span-
ning trees counted by their numbers of active external, respectively internal, edges. We
consider two restrictions of this definition, either summing over a subset of spanning
trees or counting only the activities in a subset of edges. Adding to the (infinite)
square lattice one projective vertex in a (rational) direction ~θ, we define the restricted
Tutte polynomial T~θ,W×H(q, t) summing over some periodic spanning forests of period
W × H and considering only activities on edges of the fundamental domain. Those
polynomials are symmetric in q and t by self-duality of square lattice. Our main result
is a family of bijections indexed by a finite number of ~θ proving that (T~θ,W×H(q, 1))~θ
does not depend on ~θ. Auto-duality preserving the number of trees per period and
their common slope, we obtain refinements (T~θ,W×H(w, z; q, t))~θ still symmetric in q
and t.
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This work is motivated by results on the sandpile model presented in Section 5 at the
end of this document. We focus first on the combinatorial result on an analogue of Tutte
polynomial for the infinite square lattice.

1 Tutte polynomial

For any finite connected graph G = (V, E), the Tutte polynomial [10] is a classical graph
invariant defined as follow:

TG(q, t) := ∑
T

qext(T)tint(T)

where T runs over the set TG of spanning trees of G and ext(T), respectively int(T), is
the soon defined external, respectively internal, (Tutte) activity. Tutte activities depend
on an arbitrary permutation of the edges of G also denoted as a total order <E. There
are |E|! orders/permutations. The fundamental cycle of an external edge e /∈ T of the
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spanning tree T is the unique cycle in T ∪ {e} and is noted Ce(T). An external edge
e /∈ T is (externally) active if minimal according to <E among edges on Ce(T). An internal
edge e ∈ T is (internally) active if minimal according to <E in the fundamental cutset that
is the set of edges between the two connected components of T \ {e}. The external, re-
spectively internal, activity is the number of external, respectively internal, active edges.
The activities of a given tree may change with the order <E but the Tutte polynomial
does not [10]. While Tutte shows this results taking account both activities, we propose
a lightened proof for its marginal TG(q, 1).

Our lightened proof also relies on the effect of same exchange of two consecutive
edges in <E: the (elementary) transposition τi that exchanges the two consecutive edges
ei, ei+1 in the order <E:= (ei)i=1,...|E| leading to <τi.E:= e1, . . . ei−1, ei+1, ei, ei+2, . . . e|E|. A
pair of edges (ej, ek) is a critical pair in tree T for the order <E if ej is an external edge,
ek belongs to Cej(T), and ej and ek are the two minimal edges in this cycle. We define a
map Φτi,<E on spanning trees by Φτi,<E(T) = (T \ {ei}) ∪ {ei+1} if (ei, ei+1) is a critical
pair for order <E, Φτi,<E(T) = (T \ {ei+1}) ∪ {ei} if (ei+1, ei) is a critical pair for order
<E and Φτi,<E(T) = T otherwise. When non trivial, this update is a case of the exchange
property of graphic matroids.

Lemma 1. For any order <E, any elementary transposition τi = (i, i + 1), the involution Φτi,<E

maps a tree T of external activity k for order <E to a tree Φτi,<E(T) with the same external
activity k for order <τi.E.

Proof. Following Tutte proof’s beginning, the activities are preserved by the exchange
when ei and ei+1 are both internal or both external. Otherwise, there are still preserved
if the internal edge is not on the fundamental cycle of the external edge. In the later case,
if there are not both minimal in the fundamental cycle, there is an internal edge that is
smaller than both in the cycle since there are consecutive in <E. Then, the exchange
preserves the external activity. It remains the case where the edges are the two minimal
edges of the cycle. Suppose (ei, ei+1) is a critical pair without loss of generality. Then
Φτi,<E maps the tree T to the tree T′ := T∆{ei, ei+1}, the symmetric difference of edges.
This map exchanges ei and ei+1 in the tree and in the order. Then Cei(T) and Cei+1(T

′)
are identical, so the activities of the external edges ei or ei+1 in T or T∆{ei, ei+1} are the
same. An internal edge e /∈ {ei, ei+1} of T remains internal in T′ so it does not change
external activity. It remains to consider the external edge e not in {ei, ei+1}. We consider
the two connected components of the vertices on the cycle Cei(T) after the deletion of
ei and ei+1 then discuss if the fundamental cycle Ce(T) of the external edge e contains
one vertex of each component or not. If it does not, this cycle is the same in T and T′

so activity is preserved. If it does, this cycle Ce(T) in T becomes Ce(T′) := Ce(T)∆Cei(T)
in T′, hence all the new edges in Ce(T′) belongs to Cei(T). Hence the two exchanged set
of edges in the fundamental cycles of e in T and T′ are Ce(T)/Cei(T) and Cei(T)/Ce(T)
whose minimal edges are ei or ei+1. Since ei and ei+1 remain consecutive in the order, it
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Figure 1: Example of weakly acyclic parenthood function on K4 (left) and Z2 (right).
Here Ray(b) = {bd, da, aa}

means that the activity of e is the same in T and T′.

1.1 Spanning tree as parenthood function

Let G = (V, E) be a finite simple connected graph. We define object similar to oriented
cycle rooted spanning forests (OCRSF) [7]. We describe the orientation by a function in
a formalism closer to infinite matroids in graphs [1]. The neighborhood of v ∈ V noted
V(v) the set of vertices adjacent to v in G. We call parenthood function an endofunction R
that maps for any vertex v ∈ V a vertex in V(v) ∪ {v}.

Let R be a parenthood function.

Definition 2. The ray of u ∈ V in R is the set of edges in the orbit (u, R(u), R2(u) . . . ) of u in
R: Ray(u) := (Ri(u)Ri+1(u))i≥0 (see Figure 1).

Definition 3. An edge uv ∈ E is external for R if R(u) 6= v and R(v) 6= u. The fun-
damental cycle of this edge is the symmetrical difference of Ray(u) and Ray(v): Cuv(R) =
Ray(u)∆Ray(v).

A rooted spanning tree is a parenthood function where each vertex maps to its father
in the tree and where the root maps to itself. In this case, Definition 3 matches with the
usual definition of fundamental cycle. A k-cycle in R is a sequence vertices (v1, v2, . . . , vk)
such that vi+1 = R(vi) for 1 ≤ k− 1 and v1 = R(vk). Then, rooted spanning trees match
with the parenthood functions with exactly one cycle of length 1 that codes the root (see
Figure 1). The bijection from parenthood functions to spanning trees consist on removing
the loop on the root and removing the orientation. The rooted spanning forests are the
functions whose cycles have size 1.

Definition 4. A parenthood function is said weakly acyclic if all its cycles have length 1.
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We extend the definition of fundamental cycle for rooted spanning forests using this
definition. Thus we can define the external activity for any rooted spanning forests using
this extension.

1.2 Parenthood functions for infinite graphs

Let G = (V, E) be a infinite simple connected graph and R be an weakly acyclic parent-
hood function. In this setup, rays may be infinite. For each external edge, we associate
its fundamental cycle using Definition 3. Let uv be an external edge. Either u and v are
in the same connected component of R then Cuv(R) is finite, or Ray(u) and Ray(v) are
finite then Cuv(R) is finite, or Ray(u) and/or Ray(v) are infinite then Cuv(R) is infinite.
In the finite cases, the activity of uv is decidable for any order on the edges. In the
infinite case, the activity of uv is not straight forward unless we have some guarantees
on the order and R.

To avoid considerations on orders on the infinite set of edges, we only consider orders
on edges that verify the following property.

Definition 5 (k−order assumption). Let k be an integer. A pair of an order <E and a set F of
weakly acyclic parenthood functions verifies the k−order assumption if for any f ∈ F and any
vertex u ∈ V, the minimal edge of Ray f (u) with respect to <E is among the k firsts edges of the
ray.

Under the k−order assumption, we can compute effectively the activity of any exter-
nal edge still by its minimality in its fundamental cycle.

1.3 Restriction for summability

Let G = (V, E) be a infinite simple connected graph. We want to define an analogue
of Tutte polynomial on G using the weakly acyclic parenthood functions to study the
distribution of the external activity. However, the sum would be infinite and the external
activity of a weakly acyclic parenthood function might also be infinite. Let F be a finite
set of weakly acyclic parenthood function of G and E′ a finite subset of edges of E. Under
the k−order assumption we can define an polynomial

TF ,E′,<E(q) := ∑
F∈F

qextE′ (F)

encoding the distribution of external activity on F restricted to the edges of E′.

2 Restricted Tutte polynomial on the square lattice

From this section, we work on the infinite square lattice indexed by Z2 where (x′, y′) ∈
V(x, y) ⇐⇒ |x′ − x|+ |y′ − y| = 1. Generic restrictions of Tutte polynomials defined in
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previous Section 1.3 allow to consider some well-defined polynomials on this graph. We
consider spanning forests of Z2. First we give two restrictions and an order to explicitly
compute the distribution of the external activity on finite families of spanning forests.
Secondly, by observing that the square lattice is self-dual, we define a family of restricted
polynomials on the distribution of both activities.

A natural finite subset spanning forests of Z2 is the set of periodic spanning forests
of given fundamental domain.

Definition 6. A spanning forest F of Z2 is periodic of period (W, H) ∈ N2
+ if for any edge

uv ∈ F, the edge obtained by the translation of vector (kW, lH) is in F for any (k, l) ∈ Z2.

From motivation in Section 5, we only consider spanning forests without finite tree.
These forests are said admissible and consist on infinite periodic branches and finite sub-
trees are grafted on these branches (see Figure 2). We denote by FW×H the set of ad-
missible periodic spanning forests of period (W, H). The notion of fundamental cycle
is not well defined in this context unless we give an orientation on spanning trees as in
Section 1.2. On finite graph, the orientation of edges is given thanks to the root. Here
we orient the infinite branches towards a “projective” root at the infinity in a direction
that can be seen as the merging point of infinite branches.

Let ~θ ∈ Z2 be a non null vector coding the direction of the root and ~θ⊥ = (−θy, θx).
We define a total order <Eθ

on edges of the square lattice:

ei <Eθ
ej ⇐⇒ (〈~ei,~θ〉, 〈~ei,~θ⊥〉) <lex (〈~ej,~θ〉, 〈~ej,~θ⊥〉)

where edges are geometrically identified by its middle point in the usual embedding,
〈., .〉 denotes the usual scalar product and <lex is the usual lexicographic order giving
priority to the first coordinate. Let F be an admissible periodic spanning forest. We
associate a parenthood function ~F coding the orientation of the edges. For any vertex
u on a finite subtree, ~F(u) is its father as in finite graphs. Infinite branches can have
two orientations. In order to verify the k−order assumption, we orient the edges such
that infinite branches are periodically increasing for <Eθ

: let M > 0 be the period of the
infinite branch, for any u on the infinite branch (~FiM(u)~FiM+1(u))i>0 is increasing. Then
~F is an acyclic parenthood function and is said admissible for ~θ.

Lemma 7. The order <Eθ
and the set of admissible periodic parenthood function for ~θ of period

(W, H) verify the k−order assumption with k = 2WH.

The natural finite subset of edges on which we want to compute the activity is the
set of edges in a fundamental domain of the forests. We denote by EW×H := {ei |
~ei = (x, y) where 0 ≤ x ≤ W + 1/2 and 0 ≤ y ≤ H + 1/2} this subset of 2WH edges
that contains one copy of each edge in the torus W × H, in the usual copy of the torus
containing the origin and sometimes called the fundamental domain.



6 Henri Derycke and Yvan Le Borgne

Figure 2: Examples of acyclic periodic parenthood function of period (4, 3) (left non
admissible, center admissible, right dual)

The external activity of F ∈ FW×H with respect to <Eθ
restricted on EW×H is the

well defined external activity of ~F on the edges of EW×H. Now we can define and com-
pute effectively the following polynomial encoding the distribution of external activity:
TFW×H ,EW×H ,<Eθ

(q) := ∑F∈FW×H qextEW×H
(F).

The set of admissible spanning forests is stable by duality (see Figure 2). We can
define and compute the internal activity of an admissible periodic spanning forest as the
external activity of its dual forest.

Definition 8 (Bivariate restricted Tutte polynomial).

T~θ,W×H(q, t) := TFW×H ,EW×H ,<Eθ
(q, t) = ∑

F∈FW×H
qextEW×H

(F)tintEW×H
(F).

Proposition 9. By design this polynomial is symmetric in q and t: T~θ,W×H(q, t) = T~θ,W×H(t, q)

Theorem 10. For any two rational directions ~θ and ~θ′ we have T~θ,W×H(q, 1) = T~θ′,W×H(q, 1).

By symmetry, T~θ,W×H(1, q) is the same polynomial independent of ~θ but the full poly-

nomial T~θ,W×H(q, t) may depend on ~θ, see Section 4 for examples. Section 3 gives ele-
ments of proof for Theorem 10. This proof follows the same line as in the finite case
where a bijection similar to Lemma 1 allows to prove the invariance by an elementary
transposition on the order <E of edges. The main difficulty is that turning the order <Eθ

into the order <Eθ+dθ
, even for small dθ requires an infinite number of elementary trans-

positions on the infinite number of edges so one has to ensure that updates commute
and then directly describe the result of an infinite sequence of elementary updates. The
periodicity of forests allows to do so.

3 Distribution independent of ~θ: elements of proof

Let F be a periodic admissible forest of FW×H. We show that there exists a finite set
of directions (θi)i∈Zk indexed counterclockwise such that the restricted external activity
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extEW×H(
~F) is piecewise constant on every [θi, θi+1) and that for any θi, there exists bijec-

tively a forest F′ ∈ FW×H such that extEW×H(
~F) for <Eθi

equals extEW×H(
~F′) for <Eθi+1

.

We denote by ~π(~F) ∈WZ× HZ the common period vector of any infinite branch of
~F with respect to W × H. Let e be an external edge of ~F. Let H = Hull(Ce(~F)) be the
convex hull of the middle points of the edges of Ce(~F) (Figure 3). Note that if Ce(~F) is
finite, then the corners of H are finitely many. Otherwise Ce(~F) contains infinite periodic
branches then H is a super sets of every H + k~π(~F) where k > 0. The convex hull H
has two semi infinite sides of slope ~π(~F) with endpoint in Ce(~F). Moreover, these two
endpoints are on the infinite branches, so they are internal edges of ~F. Since the path
lengths from the endpoints of e to infinite branches is bounded by 2WH, H has finitely
many corners.

Lemma 11. For any e, Hull(Ce(~F)) has finitely many corners.

We note (hi)1≤i≤k the corners of H indexed counterclockwise where h1 and hk are the
endpoint of the infinite sides when required. Based on the corners of the convex hull we
can show the following results.

Lemma 12. Let e be an external edge of ~F. If an edge is minimal on Ce(~F) for the direction ~θ,
then it is a corner of Hull(Ce(~F)). Reciprocally if an edge is a corner of Ce(~F) that is not an
endpoint of a semi infinite side, then there exists a direction for which it is minimal.

Since the order defined from ~θ comes from usual scalar product, the minimality of
f ∈ Ce(~F) for the direction ~θ means that Ce(~F) is in the halfplane D f ,~θ := {e ∈ E(Z2) |
〈e − f ,~θ〉 ≥ 0}. This compatibility gives the previous lemma. In particular, for any
consecutive corners hi and hi+1 of H, hi+1 is minimal for the direction

−−−→
hihi+1

⊥. Then an
external edge can be active if it is a corner of its fundamental cycle.

When Ce(~F) is infinite, e cannot be active for the direction ~π(~F)⊥ since it is not on
the infinite sides. For this direction, the repetitions of each edge of infinite branches of
~F are decreasing. We define ~F the oriented forest obtained by reversing the orientation
of the edges of the infinite branches.

Lemma 13. ~F and ~F have the same set of active external edges for the direction ~π(~F)⊥.

Indeed none of the external edges of infinite fundamental cycles is active and the
finite fundamental cycles are preserved in ~F.

We call a triplet (ae, e, be) a critical triplet if e is external and if (ae, e, be) are consecutive
corners of Hull(Ce(~F)). Each critical triplet defines two directions −→aee⊥ and

−→
ebe
⊥ and e is

active for a direction θ if and only if θ ∈ [−→aee⊥,
−→
ebe
⊥). The set of critical triplets is finite

up to translations. We denote by Θ~F the finite set of these directions in addition to the
direction ~π(~F)⊥. We select among Θ~F the (θi)1≤i≤k such that (〈~π(~F),~θi〉, 〈~π(~F)⊥,~θi〉) >lex

(0, 0). We index them counterclockwise with θk ≡ ~π(~F)⊥ where ~u ≡ ~v ⇐⇒ ∃α >
0 s.t. ~u = α~v.
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Figure 3: Periodic oriented forest ~F. e1 is a corner of Hull(Ce1(~F)) and e2 is not a corner
of Hull(Ce2(~F)). The corners of the convex hulls are the blue and red dots.

Lemma 14. For any 1 ≤ i < k, the set of active external edges is invariant for any direction
θ ∈ [θi, θi+1).

We consider θi+1 for 1 ≤ i < k. For any critical triplet (ae, e, be), the pair (ae, e) (resp.
(e, be)) is a critical pair for the direction θi+1 if −→aee⊥ ≡ θi+1 (resp.

−→
ebe
⊥ ≡ θi+1). Then, we

can show that these critical pairs of ~F are pairwise disjoint and we note Pc~F,θi+1
the set

of the critical pairs.
If θi+1 = ~π(~F)⊥, then we replace ~F by ~F while preserving the critical pairs thanks to

Lemma 13. We can assume that θi+1 6≡ ~π(~F)⊥.
We construct step by step F̃ = F∆Pc~F,θi+1

the forest obtained by swapping the edges
of each critical pairs in F. On each step, we swap periodically one critical pair. Let (e, f )
be a critical pair. We can define F′ = F∆∪v∈WZ×HZ {e + v, f + v}. It does not create any
finite cycle or finite tree, so F′ and F̃ are admissible periodic forests.

A swap may change the direction of infinite branches of F (see Figure 4). We skip
here the details to only sketch the proof. We can show that the set of critical pairs of F′

for the direction θi+1 is the same as F. And the newly created external edge of F′ has the
same activity for θi+1 than the previous external edge of F for the direction θi. Finally,
the other external edges keep their activity through this swap.

Since we preserve the critical pairs and the activity of all external edges that do not
appear in critical pairs, the order of the swap is not relevant. We can do all the swaps in
parallel. Moreover, since the critical pairs are preserved, this is an involution.

Corollary 15. The external activity of F̃ for the direction θi+1 is the same as the external activity
of F for θi.
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Figure 4: Example of critical pair swap that changes the infinite branches

Let Θ = ∪F∈FW×H Θ~F. Since FW×H is finite, Θ is finite. We reuse the notation Θ =
(θi)i∈Z|Θ| indexed counterclockwise. For any F and any θi+1, we map bijectively a F̃ such
that the external activity of F̃ for the direction θi+1 is the same as the external activity of
F for θi.

So for any rational directions θ and θ′, we map step by step for each F a unique Fθ→θ′

preserving the external activity, ending the proof of Theorem 10.

4 Restricted Tutte polynomials T~θ,W×H(q, t) for H = 1

When H = 1, the admissible periodic forests different from horizontal cycle on the tore
are naturally in bijection with the spanning trees of the wheel graph WW+1. Each cycle
(of length 1) is map to an edge toward the center in the wheel graph, and the other edges
maps to edges on the cycle of the wheel. Thus the T~θ,W×H(1, 1)− 1 counts the number
of these trees.

This case gives one of the smallest counter-example against the invariance on θ of
T~θ,W×H(q, t): T~0,3×1(q, t) = q3t3 + 3q2 + 3qt + 3t2 + 3q + 3t + 1 and T ~π/2,3×1(q, t) = q3t3 +

3q2t + 3qt2 + 3q + 3t + 4.
We can refine these polynomials taking account of the slope of the infinite branches

using T~θ,W×H(w, z; q, t) where for any (i, j) coprime and for any k > 0, the polyno-
mial coefficient [wkizkj]T~θ,W×H(w, z; q, t))~θ count the Tutte polynomial restricted to forests
with k cycles on the torus and where the slope of infinite branches is ±(iW, jH). For
instance T~0,3×1(w, z; q, t) = w + 3z(1 + q + t) + 3z2(q2 + t2) + z3q3t3. The polynomial
T~θ,W×H(w, z; 1, 1) can be extracted from a determinantal formula (see [7, 4]). Polynomials
for some (W, H) can be found on https://www.labri.fr/perso/hderycke/biperiodic_
forests.

https://www.labri.fr/perso/hderycke/biperiodic_forests
https://www.labri.fr/perso/hderycke/biperiodic_forests
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5 Application for the sandpile model

The sandpile model [5], also called Chip-Firing Game, is a discrete model for diffusion on
graphs. Let G = (V, E) be a simple connected finite graph. A configuration η = (ηv)v∈V
for G is a function from V to N. A vertex v is unstable in configuration η if ηv is at least
the degree of v. The toppling of an unstable vertex v moves along each edge incident
to v a grain from v to the opposite endpoint, so v losses its degree in grains and each
neighbour gains one grain. An extra vertex s, called the sink, is added to the vertices and
some edges Es connect this sink to some other vertices leading to Gs := (V ∪ {s}, E∪ Es).
A configuration is stable if all vertices are stable, except possibly at the sink s.

Given a configuration η on Gs, we topple the unstable vertices except the sink until
none remains. This algorithm is called stabilization and terminates on a stable configu-
ration noted stab(η) whatever the order on the toppled vertices is. When η is stable, we
denote by dhar(η) the result of the toppling of the sink s followed by a stabilization. The
application dhar is called the Dhar operator. A recurrent configuration is a stable config-
uration that is a fixed point of the Dhar operator. Note that for such configuration, all
vertices topple exactly once during this algorithm. This is called the Dhar criterion.

Various schedulings of this Dhar criterion provided many bijections from recurrent
configurations in Gs to spanning trees of Gs, e.g. [9, 2], where one records for each vertex
distinct from the sink the edge crossed by the grain allowing toppling.

We consider the generating function Gs(q) := ∑
u

qlevel(u) where u runs over recurrent

configurations and level(u) :=
(
∑v 6=s uv

)
− |E| is up to a constant the number of grains

in configuration u. This generating function Gs(q) is also the generating function of
spanning trees according to the Tutte external activity [8] so an evaluation at t = 1 of the
bivariate Tutte polynomial TGs(q, t).

In a recent work [4], the authors proposed a generalisation of the notion of recurrent
configuration for the infinite square lattice, usually denoted Z2. Other approaches exist,
for example in [6] where recurrent configurations are defined as the image of some
spanning trees via an extension of a bijection of the finite case [9]. First, we focus on
periodic stable configurations of period W × H, where (W, H) ∈ N2

+. Our aim was
to define the notion of recurrent configuration for such periodic configurations via an
extension of Dhar criterion.

Selecting one vertex, say the origin, as the sink, will break the periodicity. Our
intuitive choice was to add the sink as an extra “projective” vertex of the square lat-
tice at infinity in a direction ~θ as in Section 2. With this choice, the definition of a
toppling of the sink now at infinity becomes challenging. We consider the half-plane
Dp,~θ := {v ∈ Z2 | 〈v− p,~θ〉 ≥ 0} where p is a vertex. Intuitively, this half-plane is made

of vertices at least as close as p to the sink at infinity in direction ~θ.

Definition 16 (Weak Dhar Criterion). A periodic stable configuration is recurrent for the
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direction ~θ if for any p, after a forced toppling of the half-plane Dp,~θ, all other vertices in the
complement of Dp,~θ topple (once).

Proposition 17 ([4]). There exists an algorithm performing weak Dhar criterion on any periodic
stable configuration for any rational angle ~θ and the result do not depend on the choice of the
vertex p for the half-plane Dp,~θ.

As in the finite case, the algorithm performing the weak Dhar criterion leads to a
bijection, extending the one in [2] with some admissible parenthood function for ~θ. Let
FW×H
+ the subset of admissible spanning forests which infinite branches are strongly

positive.

Proposition 18 ([4]). Recurrent configurations of period W × H defined by weak Dhar criterion
with projective sink in direction ~θ are in bijection with admissible spanning forests of FW×H

+ ,
hence excluding those of slope orthogonal to ~θ.

The details of the proof, see [3], initially depends on the vertex p defining the half-
plane Dp,~θ. But the scheduling of weak Dhar criterion, initially only periodic in the

orthogonal direction ~θ⊥ becomes also periodic in the direction ~θ and then independent
of p. This ultimate periodic behaviour leads via an adaptation of the used finite case
bijection, to the expected admissible forests.

We consider a new version of the weak Dhar criterion that will allow to extends
the set of recurrent configurations to obtain a bijection with all the admissible spanning
forests, hence the number of recurrent configurations of a given period W × H will no
more depend on ~θ.

The bijection from Proposition 18 links the number of grains on recurrent configu-
rations in direction ~θ with the activities of the edges on spanning forests with respect
to ~θ by placing grains on the endpoints of each edge. Lemma 14 says that the activity
per edges is piece-wise constant with respect to ~θ. Similar refinement exists for previous
bijection but with a larger still finite Θ′ ⊃ Θ. In other words, the bijection is stable for
small variations of the direction ~θ. Using the same notation, we assume θ ∈ [θ′i , θ′i+1) and
define θ+ = (θ + θ′i+1)/2.

Proposition 19. For any direction ~θ, the new weak Dhar criterion for ~θ+ defines a bijection
between recurrent configurations of period W × H and all the admissible spanning forests of the
same period.

The polynomials studied in Section 2 satisfies T~θ,W×H(q, 1) = ∑
u

qlevel(u) where the left

member is the generating function of recurrent configurations of period W × H defined
for the new weak Dhar criterion ~θ+ and the level is the number of grains on uW×H on
the torus (or one period) minus 2WH that is the number of edges on the torus. This
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identity relies on the fact that the used bijection, like in the finite case [2], turns the level
of a configuration into the external activity of the spanning tree for an order of edges
related to ~θ. It was a priori unclear that this polynomial summing over a strict subset of
spanning trees does not depend on θ and our main result states that it is.
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