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Abstract. It is shown that the direct limit of the semistandard decomposition tableau
model for polynomial representations of the queer Lie superalgebra exists, which is
believed to be the crystal for the upper half of the corresponding quantum group. An
extension of this model to describe the direct limit combinatorially is given. Further-
more, it is shown that the polynomials representations may be recovered from the limit
in most cases.
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1 Introduction

In the 1990s, Kashiwara began the study of crystals, a combinatorial skeleton of a quan-
tum group representation Uq(g), where g is a symmetrizable Kac–Moody algebra. Kashi-
wara showed that irreducible highest weight representations have crystal bases B(λ) and
that the lower half of the quantum group has a crystal basis B(∞) [10]. Furthermore, it
was shown that the direct limit of B(λ) is isomorphic to B(∞) and one can recover B(λ)
by cutting a part of B(∞) by taking the tensor product with a specific crystal Rλ. Using
the direct limit, numerous combinatorial models for B(∞) have been developed such as
(marginally) large tableaux [3, 9] and rigged configurations [15].

For Lie superalgebras, there are two natural analogs of gl(n). The first is the basic
Lie superalgebra gl(m|n), where crystal bases have been constructed for the polynomial
representations [2] and Kac modules [14]. The other is the queer superalgebra q(n). The
tensor powers of the fundamental representation form a semisimple category [8], the
irreducible representations are called the polynomial representations, and crystal bases
of these irreducible representations have been constructed using semistandard decom-
position tableaux [7, 6]. One important feature of the polynomial representations is that
their characters are Schur P-functions. Recently, a local characterization of the crystals
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for polynomial representations of q(n) was given [1, 5] in analogy to the Stembridge
axioms [16].

The goal of this extended abstract is to construct the direct limit of the polynomial
representations. From the model, it is easier for us to consider the direct limit of the
lowest weight elements, which we believe to be the q(n)-analog of B(−∞) (the crystal
basis of the upper half of Uq

(
q(n)

)
). In order to show this is indeed B(−∞), one requires

a recognition theorem of B(−∞) similar to [13, Prop. 3.2.3] and the existence of B(−∞).
Instead, we follow the construction of (marginally) large tableaux for semistandard de-
composition tableaux SDT(λ) by showing the we can construct a directed system and
the q(n)-crystal operators respect enlarging the shape. We then identify elements in each
SDT(λ) based on their distance from the lowest weight element and take a distinguished
representative.

We then describe how we can recover SDT(λ) from our limit crystal SDT(−∞) using
a dual version of Rλ. In the case where λ corresponds to a strict partition that has
maximal length, we show that the resulting tensor product SDT(−∞) ⊗ R∨λ recovers
SDT(λ). We also discuss how to extend this to the general case, including a possible
construction of crystal bases of dual representations.

This extended abstract is organized as follows. In Section 2, we give the requisite
background. In Section 3, we give our main results.

2 Background

2.1 Crystals for the superalgebra q(n)

Let I0 = {1, . . . , n − 1} and I = I0 t {1}. Denote the standard basis vectors of Zn by
ε1, . . . , εn and define αi = εi − εi+1 for each i ∈ I0. Set

Λ− =

{
λ = −λ1ε1 − · · · − λnεn ∈ Zn

≤0 :
λi ≥ λi+1 and λi = λi+1 implies
λi = λi+1 = 0 for all i = 1, . . . , n

}
.

Equip Λ− with a partial order λ ≤ µ if and only if µ − λ ∈ Λ−. An element λ =
−λ1ε1− · · · − λnεn in Λ− will be henceforth be identified with the strict partition w0λ =
(λn, . . . , λ1).

Definition 2.1 ([11, Definition 1.2.1]). An abstract gl(n)-crystal is a set B together with
maps ei, fi : B −→ B t {0}, ϕi, εi : B −→ Z t {−∞}, for i ∈ I0, and wt : B −→ Zn

satisfying the following conditions:

1. wt(eib) = wt(b) + αi if i ∈ I0 and eib 6= 0;

2. wt( fib) = wt(b)− αi if i ∈ I0 and fib 6= 0;
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3. for any i ∈ I0 and b ∈ B, we have ϕi(b) = εi(b) + µi − µi+1 for wt(b) = ∑i∈I0
µiεi;

4. for any i ∈ I0 and b, b′ ∈ B, we have fib = b′ if and only if b = eib′;

5. for any i ∈ I0 and b ∈ B such that eib 6= 0, we have εi(eib) = εi(b) − 1 and
ϕi(eib) = ϕi(b) + 1;

6. for any i ∈ I0 and b ∈ B such that fib 6= 0, we have εi( fib) = εi(b) + 1 and
ϕi( fib) = ϕi(b)− 1;

7. for any i ∈ I0 and b ∈ B such that ϕi(b) = −∞, we have eib = fib = 0.

Definition 2.2 ([7, Definition 1.9]). An abstract q(n)-crystal is an abstract gl(n)-crystal B
together with maps e1, f1 : B −→ B t {0} such that

1. wt(B) ⊂ Zn
≥0;

2. wt(e1b) = wt(b) + α1 provided e1b 6= 0;

3. wt( f1b) = wt(b)− α1 provided f1b 6= 0;

4. for any b, b′ ∈ B, f1b = b′ if and only if b = e1b′;

5. if 3 ≤ i ≤ n− 1, we have

(a) the operators e1 and f1 commute with ei and fi, and

(b) if e1b ∈ B, then εi(e1b) = εi(b) and ϕi(e1b) = ϕi(b).

Let B and C be abstract q(n)-crystals. A crystal morphism is a map ψ : B −→ C t {0}
such that

1. if b ∈ B and ψ(b) ∈ C, then for all i ∈ I0,

wt
(
ψ(b)

)
= wt(b), εi

(
ψ(b)

)
= εi(b), ϕi

(
ψ(b)

)
= ϕi(b);

2. for b ∈ B and i ∈ I, we have ψ(eib) = eiψ(b) provided ψ(eib) 6= 0 and eiψ(b) 6= 0;

3. for b ∈ B and i ∈ I, we have ψ( fib) = fiψ(b) provided ψ( fib) 6= 0 and fiψ(b) 6= 0.

A morphism ψ is called strict if ψ commutes with ei and fi for all i ∈ I. Moreover, a
morphism ψ : B −→ C t {0} is called an embedding if the induced map ψ : B −→ C t {0}
is injective and is called an isomorphism if the induced map ψ : B t {0} −→ C t {0} is a
bijection.
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Again let B and C be abstract q(n)-crystals. The tensor product B ⊗ C is defined to be
the Cartesian product B × C equipped with crystal operations defined, for i ∈ I0, by

ei(b⊗ c) =

{
eib⊗ c if ϕi(c) < εi(b),
b⊗ eic if ϕi(c) ≥ εi(b),

e1(b⊗ c) =

{
b⊗ e1c if e1b = f1b = 0,
e1b⊗ c otherwise.

fi(b⊗ c) =

{
fib⊗ c if ϕi(c) ≤ εi(b),
b⊗ fic if ϕi(c) > εi(b),

f1(b⊗ c) =

{
b⊗ f1c if e1b = f1b = 0,
f1b⊗ c otherwise.

Remark 2.3. This is equivalent to the rule in [5]. Moreover, this is the reverse convention
of the tensor product to that given in [6].

Following the method of [12, p. 74], one can construct direct limits in the category
of abstract q(n)-crystals. Indeed, let {Bj}j∈J be a directed system of crystals and let
ψk,j : Bj −→ Bk, j ≤ k, be a crystal morphism (with ψj,j being the identity map on Bj)
such that ψk,jψj,i = ψk,i. Let ~B = lim−→Bj be the the direct limit of this system and let
ψj : Bj −→ ~B. Then ~B has a crystal structure induced from the crystals {Bj}j∈J . Indeed,
for ~b ∈ ~B and i ∈ I, define ei~b to be ψj(eibj) if there exists bj ∈ Bj such that ψj(bj) = ~b
and ei(bj) 6= 0. This definition does not depend on the choice of bj. If there is no such bj,
then set ei~b = 0. The definition of fi~b is similar. Moreover, the functions wt, εi, and ϕi
on Bj extend to functions on ~B.

2.2 Semistandard decomposition tableaux

This section summarizes the results of [6] using the conventions of [5].

Definition 2.4. Let λ = (λn, . . . , λ1) be a strict partition. Define |λ| = λ1 + · · ·+ λn and
`(λ) to be the number of 1 ≤ i ≤ n such that λi 6= 0.

1. The shifted Young diagram of shape λ is an array of boxes in which the i-th row has
λn+1−i cells, and is shifted i− 1 units to the right with respect to the top row.

2. A word u = u1u2 · · · uN is a hook word if there exists 1 ≤ k ≤ N such that

u1 ≥ u2 ≥ · · · ≥ uk < uk+1 < · · · < uN.

3. A semistandard decomposition tableau of shifted shape λ is a filling T of λ with letters
from {1, 2, . . . , n} such that

(a) the word vi formed by reading the i-th row from left to right is a hook word
of length λn−i+1, and

(b) vi is a hook subword of maximal length in vi+1vi for 1 ≤ i ≤ `(λ)− 1.
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4. Set read(T) to be the word obtained by reading T in rows from right to left starting
at the top.

5. For λ ∈ Λ−, let SDT(λ) denote the set of all semistandard decomposition tableaux
of shape w0λ.

Definition 2.5. Let T be a semistandard decomposition tableau of shape w0λ.

1. Suppose i ∈ I0. Create a subword w of read(T) consisting of only the letters i and
i + 1 such that pairs of letters of the form (i + 1, i) (in that order) are sequentially
removed. The remaining subword is a list of i’s followed by (i + 1)’s.

(a) If there is no such letter, then eiT = 0. Otherwise, eiT is the tableau obtained
from T by changing the (i + 1)-box corresponding to the leftmost i + 1 in the
subword above to an i-box.

(b) If there is no such letter, then fiT = 0. Otherwise, fiT is the tableau obtained
from T by changing the i-box corresponding to the rightmost i remaining in
the subword above to an i + 1 box.

2. If i = −1, consider the subword w of read(T) consisting of only the letters 1 and 2.

(a) If the leftmost letter in w is 1, then e1T = 0. Otherwise e1T is the tableau
obtained from T by changing the 2-box corresponding to the leftmost 2 in w
to a 1-box.

(b) If the leftmost letter in w is 2, then f1T = 0. Otherwise f1T is the tableau
obtained from T by changing the 1-box corresponding to the leftmost 1 in w
to a 2-box.

For a λ ∈ Λ− with `(λ) = N, define Lλ ∈ SDT(λ) to be the tableau whose i-th row
from the bottom contains only the letter i.

Example 2.6. Let n = 5 and w0λ = (7, 5, 3, 2, 1). Then

Lλ =

5 5 5 5 5 5 5
4 4 4 4

3 3 3
2 2

1

.

Theorem 2.7 ([6, Theorem 2.5]). For λ ∈ Λ−, the set SDT(λ) together with the operators
defined in Definition 2.5 form an abstract q(n)-crystal isomorphic to the crystal of the irreducible
highest weight q(n)-module with highest weight w0λ. Moreover, the unique lowest weight vector
in SDT(λ) is Lλ.
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3 Main results

3.1 Auxiliary crystals

We begin by defining some auxiliary crystals that we will use in describing the direct
limit and recovering the polynomial representations from the direct limit. There are
analogous crystals in the Kac–Moody setting perform similar roles.

Lemma 3.1. Let λ = (λ1, . . . , λn) ∈ Zn.

1. Define Tλ = {tλ} with operations

eitλ = e1tλ = fitλ = f1tλ = 0, εi(tλ) = ϕi(tλ) = −∞, wt(tλ) = λ,

for i ∈ I0. Then Tλ is an abstract q(n)-crystal.

2. Define R∨λ = {r∨λ} with operations

eir∨λ = e1r∨λ = fir∨λ = f1r∨λ = 0,
εi(r∨λ ) = 0, ϕi(r∨λ ) = λi − λi+1,

wt(r∨λ ) = λ,

for i ∈ I0. Then R∨λ is an abstract q(n)-crystal. Moreover, R∨λ ∼= R∨µ as abstract q(n)-
crystals where µ = λ + (1n).

3.2 Candidate for B(−∞)

Now we describe our candidate for B(−∞) by taking the direct limit of the crystals
corresponding to the polynomial representations taken as lowest weight representations.

Definition 3.2. A semistandard decomposition tableau T for q(n) is called dual large if

1. T has n rows,

2. for all 1 ≤ i ≤ n, the number of leftmost i-boxes in row n− i + 1 is strictly greater
than the total number of boxes in row n− i + 2.

Example 3.3. Consider the following semistandard decomposition tableaux for q(3):

dual large:
3 3 3 3

2 2 2
1

not dual large:
3 3 3 3

2 1 2
1
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Definition 3.4. A semistandard decomposition tableau T for q(n) is called dual marginally
large if it is large and for all 1 ≤ i ≤ n, the number of leftmost i-boxes in row n− i + 1 is
greater than the total number of boxes in row n− i + 2 by exactly one. Denote the set of
all dual marginally large semistandard tableaux for q(n) by SDT(−∞).

Example 3.5. Consider the following semistandard decomposition tableaux for q(3):

not dual marginally large:
3 3 3 3

2 2 2
1

dual marginally large:
3 3 3

2 2
1

Definition 3.6. Let T ∈ SDT(−∞) for q(n).

1. Suppose i ∈ I0. Create a subword w of read(T) consisting of only the letters i and
i + 1 such that pairs of letters of the form (i + 1, i) (in that order) are sequentially
removed. The remaining subword is a list of i’s followed by (i + 1)’s.

(a) Let T′ be the tableau obtained from T by changing the (i + 1)-box correspond-
ing to the leftmost i + 1 in the subword above to an i-box. If T′ is dual
marginally large, then T′ = eiT. Otherwise, let T′′ be the tableau obtained
from T′ by adding a (n− k + 1)-box in row k, for each 1 ≤ k ≤ n− i + 1. Then
T′′ = eiT.

(b) If there is no such letter, then fiT = 0. Otherwise, let T′ be the tableau obtained
from T by changing the i-box corresponding to the rightmost i remaining in
the subword above to an i+ 1 box. If T′ is dual marginally large, then T′ = fiT.
Otherwise, let T′′ be the tableau obtained from T′ by removing a (n− k + 1)-
box in row k, for each 1 ≤ k ≤ n− i + 1. Then T′′ = fiT.

2. Both e1 and f1 are defined exactly as in Definition 2.5, except for the need to main-
tain the dual marginally large condition as in (1a) and (1b) above.

Example 3.7. Let n = 3 and

T =
3 3 3 3 2

2 2 1
1

∈ SDT(−∞).

Then read(T) = 233331221. After pairing off all possible (2, 1), there is no 1 remaining
and the leftmost 2 remaining corresponds to the 2 in 233331221. Hence f1T = 0, but

e1T =
3 3 3 3 3 2

2 2 1 1
1

and e1T =
3 3 3 3 1

2 2 1
1

.
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3 3 3 3 3 1
2 2 1 2

1

3 3 3 2
2 2

1

3 3 3 3 2
2 2 1

1

3 3 3 3 3 2 2
2 2 1 2

1

3 3 3 3 2 2
2 2 1

1

3 3 3 2 2
2 2

1

3 3 3 3 1
2 2 1

1

3 3 3 3 3 2
2 2 1 1

1

3 3 3 3 3 2
2 2 1 2

1

3 3 3 1
2 2

1

3 3 3 2 1
2 2

1

3 3 3 3 3 3 3
2 2 1 1 1 2

1

3 3 3 3 3 3
2 2 1 1 2

1

3 3 3 2 2 2
2 2

1

3 3 3
2 2

1

3 3 3 3 3
2 2 1 1

1

3 3 3 3
2 2 1

1

3 3 3 3 3 3
2 2 1 1 1

1

3 3 3 3 3
2 2 1 2

1

3 3 3 3 3 3 2
2 2 1 1 2

1

1122 2

1

2 11 1 12

112

2

1

1 11

1 1

12

21

2

Figure 3.1: A bottom portion of the q(3)-crystal SDT(−∞) containing the lowest weight
element L−∞ created using SageMath [4].

Note that a 3-box needed to be added to the first row and a 2-box needed to be added
to the second row to maintain the dual marginally large condition in e1T.

After pairing off all possible (3, 2) in read(T), the leftmost 3 and rightmost 2 remain-
ing are the highlighted letters in 233331221. Hence

e2T =
3 3 3 3 2 2

2 2 1
1

and f2T =
3 3 3 3

2 2 1
1

.

Note that a 3-box needed to be added to the first row of e2T and removed from the first
row of f2T to maintain the dual marginally large condition.

A diagram of the crystal graph SDT(−∞) up to height 3 is included in Figure 3.1.

Lemma 3.8. Suppose λ ≤ µ. Then there exists a q(n)-crystal embedding

υλ,µ : SDT(λ)⊗ T−λ ↪−→ SDT(λ + µ)⊗ T−λ−µ

such that Lλ ⊗ t−λ 7→ Lλ+µ ⊗ t−λ−µ.

The method of proof is to make such an embedding explicit. Indeed, define υλ,µ as
follows. Let T ∈ SDT(λ). Then υλ,µ(T) is obtained from T by adding enough i-boxes to
row n− i + 1, for each 1 ≤ i ≤ n so that the result has the requisite shape. The result
now follows from careful comparison between read(T) and read

(
υλ,µ(T)

)
.
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Corollary 3.9. The collection {SDT(λ) ⊗ T−λ}λ∈Λ− together with the inclusion maps from
Lemma 3.8 form a directed system.

To prove the corollary, one makes repeated use of Lemma 3.8 applied to diagrams of
the following form:

SDT(λ)⊗ T−λ SDT(λ + µ)⊗ T−λ−µ

SDT(λ + µ + ξ)⊗ T−λ−µ−ξ .

υλ,µ

υλ,µ+ξ

υλ+µ,ξ

Theorem 3.10. The set SDT(−∞) together with ei, fi from Definition 3.6 is an abstract q(n)-
crystal such that

SDT(−∞) ∼= lim−→
λ∈Λ−

SDT(λ)⊗ T−λ.

Define L−∞ to be the decomposition tableau L−nε1−(n−1)ε2−···−εn .

3.3 Recovering SDT(λ) from SDT(−∞)

Our construction is parallel to the gl(n)-crystal construction of B(λ) from B(∞) by es-
sentially undoing the direct limit construction and adjusting εi(b) to be the number of
times we can apply ei before getting 0. See Figure 3.2 for an example. However, we
note that whenever λ1 − λ2 = 0, we obtain a connected component that is too large as
we should have e1(L−∞ ⊗ r∨λ ) = 0. Thus, we would require a modification to the tensor
product rule, but we can obtain SDT(λ) when λi < λi+1 for all i ∈ I0.

Theorem 3.11. Let λ ∈ Λ− such that λi < λi+1 for all i ∈ I0. As q(n)-crystals using
the modified tensor product rule, the connected component of SDT(−∞)⊗R∨w0λ generated by
L−∞ ⊗ r∨w0λ is isomorphic to SDT(λ).

Let us discuss how to extend Theorem 3.11 to more general cases. Consider the
examples in Figure 3.3. For λ = −ε1 − ε2, we note that the connected component we
obtain after also setting e1(L−∞⊗ r∨λ ) = 0 is isomorphic to SDT(λ). Therefore, a suitably
modified tensor product rule will yield SDT(λ) when λ may contain zero entries. Fur-
thermore, we would expect a modified tensor product rule to yield dual representations.
For instance, if we consider λ = −ε1, note that after setting e1(e2e1L−∞ ⊗ r∨λ ) = 0, we
would obtain the dual version of SDT(−ε1 − ε2).



10 Ben Salisbury and Travis Scrimshaw

3 3 3
2 2

1 ⊗ r∨−3ε1−2ε2

3 3 3 3
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 2 3
2 2

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 2 3
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 1 2
2 2

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 2 1 2
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 1
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 1
2 2

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 2 1
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 2 1
2 2

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 2 2 1
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 1 1
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 1 1
2 2

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 2 1 1
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 2 2 3
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 1 3
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 1 3
2 2

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 2 1 3
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 2
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 2
2 2

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 2 2
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 2 2
2 2

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 2 2 2
2 2 1

1 ⊗ r∨−3ε1−2ε2

3 3 3 3 1 2
2 2 1

1 ⊗ r∨−3ε1−2ε2

2

2

1

1 2

1

11

1

2

1

2

2

2

1

2

2

1 1

21

1

11

2

1

2

1 1

11

1

11 1 1

2

1

Figure 3.2: The q(3)-crystal SDT(λ) with λ = −3ε1 − ε2 created using SageMath [4].
Compare with [6, Figure 1].
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