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Abstract. The distribution of descents in fixed conjugacy classes of Sn has been studied,
and it is shown that its moments have interesting properties. Kim and Lee showed,
by using Curtiss’ theorem and moment generating functions, how to prove a central
limit theorem for descents in arbitrary conjugacy classes of Sn. In this paper, we prove
a modified version of Curtiss’ theorem to shift the interval of convergence in a more
convenient fashion and use this to show that the joint distribution of descents and
major indices in conjugacy classes is asymptotically bivariate normal.
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1 Introduction

The theory of descents in permutations has been studied thoroughly and is related to
many questions. In [16], Knuth connected descents with the theory of sorting and the
theory of runs in permutations, and in [8], Diaconis, McGrath, and Pitman studied
a model of card shuffling in which descents play a central role. Bayer and Diaconis
also used descents and rising sequences to give a simple expression for the chance of
any arrangement after any number of shuffles and used this to give sharp bounds on
the approach to randomness in [1]. Garsia and Gessel found a generating function for
the joint distribution of descents, major index, and inversions in [12], and Gessel and
Reutenauer showed that the number of permutations with given cycle structure and
descent set is equal to the scalar product of two special characters of the symmetric
group in [13]. Diaconis and Graham also explained Peirce’s dyslexic principle using
descents in [7]. Petersen also has an excellent and very thorough book on Eulerian
numbers [17].

Definition 1.1. A permutation π ∈ Sn has a descent at position i if π(i) > π(i + 1), where
i = 1, . . . , n− 1. The descent number of π, denoted d(π), is defined as the number of all
descents of π plus 1. The major index of π, denoted maj(π), is the sum of the positions
at which π has a descent.
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It is well known ([2] [9]) that the distribution of d(π) in Sn is asymptotically normal
with mean n+1

2 and variance n+1
12 . Fulman also used Stein’s method to show that the

number of descents of a random permutation satisfies a central limit theorem with error
rate n−1/2 in [11]. In [18], Vatutin proved a central limit theorem for d(π) + d(π−1),
where π is a random permutation.

Fulman [10] proved that the distribution of descents in conjugacy classes with large
cycles is asymptotically normal, and Kim [14] proved that descents in fixed point free
involutions (matchings) is also asymptotically normal. After the latter result was proved,
Diaconis [6] conjectured that there are asymptotic normality results for descents in con-
jugacy classes that are fixed point free. Kim and Lee, in [15], proved a more general
result that descents in arbitrary conjugacy classes are asymptotically normal, where the
parameters depend only on the ratio of fixed points to n.

There have been central limit theorems proven about major indices as well. In [4],
Chen and Wang also use generating functions and Curtiss’ theorem to prove asymptotic
normality results about major indices of derangements. Billey et al, in [3], consider the
distribution of major indices on standard tableaux of arbitrary straight shape and certain
skew shapes.

In this paper, we show that the joint distribution of descents and major indices in any
conjugacy classes of Sn is asymptotically bivariate normal. The precise formulation of
the main statement is as follows.

Theorem 1.2. For each conjugacy class Cλ of Sn, write α1 for the density of fixed points of any
permutations in Cλ and define

Wλ =

d(π)− 1−α2
1

2 n
n1/2 ,

maj(π)− 1−α2
1

4 n2

n3/2

 ,

where π is chosen uniformly at random from Cλ. Then, along any sequence of Cλ’s such that
n → ∞ and α1 → α ∈ [0, 1], Wλ converges in distribution to a bivariate normal distribution of
zero mean and the covariance matrix Σα depending only on α.

We will need two major ingredients for this; one is a modification of Curtiss’ theo-
rem relating pointwise convergence of moment generating function (m.g.f.) to the con-
vergence in distribution of corresponding random variables, and the other is a uniform
estimate on the m.g.f. of the joint distribution of descents and major index. The asymp-
totic joint normality will then follow as an immediate corollary. This uniform estimate
will be strong enough to prove an analogous result for a more general class of subsets of
of Sn, encompassing the asymptotical joint normality for derangements.

Theorem 1.3. Suppose that An is a subset of Sn which is invariant under conjugation and that
all π ∈ An have the same number of fixed points. Denote by α1,n the common density of fixed
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points of elements in An, and define

Wn =

d(π)− 1−α2
1,n

2 n
n1/2 ,

maj(π)− 1−α2
1,n

4 n2

n3/2

 ,

where π is chosen uniformly at random from An. If α1,n → α ∈ [0, 1] as n → ∞, then Wn
converges in distribution to a bivariate normal distribution of zero mean and the covariance
matrix Σα.

This paper is organized as follows: In Section 2, we modify Curtiss’ theorem in the
form which is applicable to our proof. In Section 3, we establish a formula for the joint
generating function of (d(π), maj(π)) for π in the conjugacy class Cλ. In Section 4, we
analyze this formula analytically to provide a uniform estimate on the m.g.f. MWλ

and
then apply the modified Curtiss’ theorem to conclude both main theorems.

2 A modification of Curtiss’ theorem

For a random variable X taking values in Rd, its moment generating function (m.g.f.) is
defined as

MX(s) = E
[
e〈s,X〉

]
, s ∈ Rd.

In his paper [5], Curtiss showed a version of continuity theorem that, if {Xn}n∈N is a
sequence of random variables in R such that

(C) MXn(s) converges pointwise on a neighborhood of s = 0,

then {Xn}n∈N converge in distribution. This result has an advantage over Lévy’s conti-
nuity theorem in that the pointwise limit of MXn ’s is guaranteed to be a m.g.f. Such a
stronger conclusion is possible because (C) guarantees the tightness of {Xn}n∈N.

In some applications, however, (C) is quite costly to verify and requires extra inputs,
while the stronger part of its conclusion - that the limit is always a m.g.f. of some distri-
bution - is not essential. For instance, in [14] and [15], the m.g.f.s of normalized descents
in conjugacy classes are analyzed with their series expansions, which fail to converge for
s > 0. In [14], Kim circumvented this technical difficulty by establishing a bijection to
show the convergence for s > 0. In [15], Kim and Lee calculated an alternative form of
the m.g.f. that is convergent for s > 0 by expanding the original generating function in
Laurent series at ∞ rather than at 0. Moreover, in both proofs, the limit is shown explic-
itly to be the m.g.f. of the normal distribution. If we were to take a similar approach, we
would have to show that MWλ

, the m.g.f.s of the normalized descent/major-index pairs
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Wλ, converge pointwise on an open set containing (0, 0). However, as the known se-
ries expansion of MWλ

is convergent only on {(s, r)|s ≤ 0, r ≤ 0}, we would need to use
similar methods used in [15] in order to come up with possibly several expressions for
MWλ

that are convergent on different regions, whose union covers an open set containing
(0, 0).

In this section, we provide a simple result that takes cares of this situation.

Proposition 2.1. Let Xn be random vectors in Rd for each n ∈ N ∪ {∞}. Suppose that
there is a non-empty open subset U ⊆ Rd such that limn→∞ MXn(s) = MX∞(s) for all
s ∈ U. Then, Xn converges in distribution to X∞.

Before we prove the proposition, we introduce the following lemma:

Lemma 2.2. Let Xn be random vectors in Rd for each n ∈ N ∪ {∞}. Then the followings are
equivalent:

1. Xn converges in distribution to X∞.

2. Xn converges vaguely to X∞, i.e., limn→∞ E[ϕ(Xn)] = E[ϕ(X∞)] for all ϕ ∈ Cc(Rd),
where Cc(Rd) denotes the set of all continuous compactly supported functions ϕ : Rd →
R.

Proof of Proposition 2.1. Fix a ∈ U and introduce random vectors Yn in Rd whose laws are
given by the exponential tilting

P[Yn ∈ dx] =
e〈a,x〉

MXn(a)
P[Xn ∈ dx].

For each t ∈ Rd, there exists δ > 0 such that a + st ∈ U for all s ∈ (−δ, δ). Then, for all
s ∈ (−δ, δ), we have

lim
n→∞

M〈t,Yn〉(s) = lim
n→∞

MXn(a + st)
MXn(a)

=
MX∞(a + st)

MX∞(a)
= M〈t,Y∞〉(s),

and so, 〈t, Yn〉 converges to 〈t, Y∞〉 in distribution by Curtiss’ continuity theorem. By
Cramer-Wold device, this implies that Yn converges in distribution to Y∞. Then, for each
ϕ ∈ Cc(Rd), the function ϕ(·)e〈a,·〉 is bounded, and so,

MXn(a)E
[

ϕ(Yn)e〈a,Yn〉
]
−−−→
n→∞

MX∞(a)E
[

ϕ(Y∞)e〈a,Y∞〉
]

.

In other words, E[ϕ(Xn)] → E[ϕ(X∞)], and so, by Lemma 2.2, Xn converges to X∞ in
distribution.
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3 Generating function of (d(π), maj(π))

For each finite set A, we write |A| for the cardinality of A. For each integers a ≤ b, the
double-struck interval notation [[a, b]] = [a, b] ∩Z denotes the set of all integers between
a and b.

Throughout this article, λ will always denote an integer partition of a non-negative
integer n. For each permutation π ∈ Sn, we write mk(π) for the number of k-cycles in
π. Then, Cλ = {π ∈ Sn : mk(π) = λk for all k ∈ [[1, n]]} denotes the conjugacy class of
Sn with the cycle structure λ. Associated to each λ is the density α1 = α1(λ) = λ1/n of
fixed points. We will see that α1 is essentially the only parameter that determines the
shape of the limiting distribution of the descent/major index pair.

We will set up some probability notations. For each integer partition λ, Pλ will
denote the probability law under which π has the uniform distribution over Cλ and σi
has the uniform distribution over Sλi for each i ∈ [[1, n]]. We will always assume, without
mentioning, that π and σi’s have their respective, aforementioned distributions under Pλ.
Then, Eλ will denote the expectation corresponding to Pλ.

It is convenient to consider some special functions. Let Γ(s) denote the gamma func-
tion. By setting x! = Γ(x + 1), the factorial extends to all of R \ {−1,−2, · · · }. Then,
we extend binomial coefficients accordingly. We also introduce the q-bracket notation
[a]q =

1−qa

1−q .
In [10, Theorem 1], Fulman derived a formula for the generating function of descent

numbers in conjugacy classes. This formula was a key ingredient in [14] and [15] for
establishing the central limit theorems. In this section, we would like to derive an anal-
ogous formula for the generating function of pairs of descent/major-index in conjugacy
classes, which is the statement of the following proposition.

Proposition 3.1. Let fi,a(q) = 1
i ∑d|i µ(d)[a]i/d

qd . If σi has the uniform distribution over Sλi

under Pλ for each i ∈ [[1, n]], then,

∑π∈Cλ
td(π)qmaj(π)

(1− t)(1− qt) · · · (1− qnt)
= ∑

a≥1
ta

(
n

∏
i=1

Eλ

[
∏
k≥1

fi,a(qk)mk(σi)

])
. (3.1)

Proof. Recall that for non-negative integers r1, · · · , rn summing to n, the quantity

M(r1, · · · , ra) =
1
n ∑

d|r1,··· ,ra

µ(d)
(n/d)!

(r1/d)! · · · (ra/d)!

counts the number of primitive circular words of length n from the alphabet [[1, a]] in
which the letter i appears ri times. Associated to this quantity, we define Ji,m,a by

Ji,m,a = ∑
r1+···+ra=i

1r1+···+ara=i+m

M(r1, · · · , ra).
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Then, one of the main results in [10] is the generating function

∑
n≥0

yn ∑π∈Sn td(π)qmaj(π) ∏i xmi(π)
i

(1− t)(1− qt) · · · (1− qnt)
= ∑

a≥1
ta ∏

i≥1
m≥0

(
1

1− qmxiyi

)Ji,m,a

. (3.2)

Our strategy is to expand the huge product on the right-hand side. In the course of
computations, the following lemmas will be useful.

Lemma 3.2. For q ∈ [0, 1], we have fi,a(q) = ∑m≥0 Ji,m,aqm.

Lemma 3.3. Suppose that σ is uniformly distributed over Sn. Then,

E

[
∏

k
xmk(σ)

k

]
= ∑

r`n

[
∏

k

1
rk!

(xk
k

)rk

]
. (3.3)

Returning to the proof of Equation (3.1), we find that the coefficient of the right-hand
side of (3.2) can be rearranged, by using the series expansion − log(1− x) = ∑∞

k=1
1
k xk

and Lemma 3.2, as

∏
i≥1
m≥0

(
1

1− qmxiyi

)Ji,m,a

= exp

{
∑
i≥1

∑
k≥1

1
k

fi,a(qk)xk
i yik

}
. (�)

For each given i and k, we apply the Taylor series ex = ∑∞
s=0

xs

s! to expand the factor
exp{1

k fi,a(qk)xk
i yik}. Since the generic variable s needs to be distinguished for different

choices of i and k, we explicate this dependence by writing the generic variables as si,k.
The resulting expansion takes the form

(�) = ∑
(si,k)i,k∈N

∏
i,k≥1

1
si,k!

(
fi,a(qk)xk

i yik

k

)si,k

.

Now, for each λ ` n, we collect all terms satisfying ∑k ksi,k = λi for each i ∈ [[1, n]]. Then,
by Lemma 3.3, (�) simplifies to

(�) = ∑
n≥0

∑
λ`n

∑
(si,k)i,k∈N

∑k ksi,k=λi

[
∏

i,k≥1

1
si,k!

(
fi,a(qk)

k

)si,k
]

yn ∏
i≥1

xλi
i

(3.3)
= ∑

n≥0
∑
λ`n

(
n

∏
i=1

Eλ

[
∏
k≥1

fi,a(qk)mk(σi)

])
yn ∏

i≥1
xλi

i .

Plugging this back into the generating function proves (3.1) as required.
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As a sanity check, recall that E
[

x∑i mi(σ)
]
= (n+x−1

n ) holds if σ is uniformly dis-
tributed over Sn. Taking the limit as q ↑ 1 to the key identity (3.1), we obtain

∑π∈Cλ
td(π)

(1− t)n+1 = ∑
a≥1

ta ∏
i≥1

(
λi + fi,a(1)− 1

λi

)
,

which is exactly the conclusion of [10, Corollary 3].

4 Main result

Let π be chosen uniformly at random from Cλ. In order to establish the asymptotic
normality of (d(π), maj(π)), we consider the following normalization

Wλ =

d(π)− 1−α2
1

2 n
n1/2 ,

maj(π)− 1−α2
1

4 n2

n3/2

 .

We aim to prove that Wλ is asymptotically normal with mean zero and covariance matrix
Σα1 , where Σα is defined by the following 2 by 2 matrix

Σα =

( 1
12(1− 4α3 + 3α4) 1

24(1− 4α3 + 3α4)
1

24(1− 4α3 + 3α4) 1
36(1− α3)

)
.

Since any real symmetric matrix determines a quadratic form and vice versa, we will
abuse the notation to write Σα(x) = xTΣαx for any x ∈ R2. The goal of this section is to
establish the proof of the following uniform estimate.

Theorem 4.1. For each s > 0 and r > 0, there exists a constant C = C(r, s) > 0, depending
only on s and r, such that∣∣∣MWλ

(−s,−r)− e
1
2 Σα1 (s,r)

∣∣∣ ≤ C(r, s)n−1/6 (4.1)

holds for any n ≥ 1 and for any conjugacy class Cλ of Sn.

4.1 Notations and conventions

For the remainder of this paper, we fix two positive reals s, r > 0. It will become clear
that the window of scale r/n3/2 is a natural choice for analyzing the behavior of Wλ. For
brevity’s sake, we write

δ = r/n3/2.
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Comparing the m.g.f. of Wλ to the generating function (3.1) shows that q and t are related
to n by q = e−r/n3/2

= e−δ and t = e−s/n1/2
= e−

sn
r δ, and we assume so hereafter. We also

choose ε > 0 such that 2e(s + r)ε/r < 1.
In what follows, the asymptotic notations f (x) = Oa(g(x)) and f (x) .a g(x) will

denote the fact that there exists a constant C > 0, depending only on s, r and the
parameter a, such that | f (x)| ≤ Cg(x) holds for all x in the prescribed range. If no
parameter a is involved, we simply write f (x) = O(g(x)) or f (x) . g(x).

Along the proof, we will encounter large chunks of expressions. Since it is counter-
productive and not aesthetic to carry them all the way through the proof, we will intro-
duce generic symbols to replace them. First, we define Kλ,r,a,i and Lλ,s,r by

Kλ,r,a,i := λi!iλi Eλ

[
∏
k≥1

fi,a(qk)mk(σi)

]
,

and

Lλ,s,r :=
t

α2
1
2 nq

α2
1
4 n2

1
δn+1

∫ 1
0 u

sn
r −1(1− u)n du

(
∑
a≥1

ta

(
n

∏
i=1

Kλ,r,a,i

))
.

For the definition of Kλ,r,a,i, we recall that σi has the uniform distribution over Sλi un-
der Pλ for each i ∈ [[1, n]]. Also, for convenience, we decompose L further into

Lλ,s,r = Lsmall,λ,s,r + Llarge,λ,s,r,

where Lsmall,λ,s,r (respectively, Llarge,λ,s,r) is the restriction of the sum in the definition of
L onto the range a < ε/δ (respectively, a ≥ ε/δ). Then, we define Fn,r,k(u) and Gλ,s,r(u)
by

Fn,r,k(u) :=
δk−1

k2
1− uk

(1− u)k ,

and

Gλ,s,r(u) := t
α2

1
2 nq

α2
1
4 n2

λ1! ∑
µ`λ1

∏
k≥1

Fn,r,k(u)µk

µk!
.

The roles of these quantities will become clear as the proof proceeds. Finally, for these
quantities, s, r and λ will be suppressed notationally whenever the dependence on these
variables is clear from context.
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4.2 Separating the contribution of fixed points

In this section, we provide a representation of the m.g.f. of Wλ which is adequate for
analyzing the effect of fixed points. Rewrite MWλ

as

MWλ
(−s,−r) = t−

1−α2
1

2 nq−
1−α2

1
4 n2

Eλ

[
td(π)qmaj(π)

]
, (4.2)

where we recall that π is uniformly distributed over Cλ under Pλ and that q and t are
defined by q = e−r/n3/2

and t = e−s/n1/2
. To prevent the reader from being distracted by

the jumble of computations, we first state the main result of this subsection. This is a
combination of Propositions 4.3, 4.4 and 4.6.

Theorem 4.2. As n→ ∞, we have

MWλ
(−s,−r) =

(
1 +O

(
n−1/2)) e

1
2 Σ0(s,r) (Llarge + Lsmall

)
,

where Lsmall decays at least exponentially fast and Llarge is asymptotically the ratio of two inte-
grals

Llarge =
(

1 +O
(
n−1/2)) ∫ e−ε

0 u
sn
r −1(1− u)nG(u)du∫ 1

0 u
sn
r −1(1− u)n du

.

Returning to the problem of estimating (4.2), we will adopt (3.1) as our starting point.
Since |t| < 1 and |q| < 1, the generating function (3.1) converges absolutely. We first
analyze the asymptotic behavior of the common factor ∏n

j=0(1− tqj).

Proposition 4.3. As n→ ∞, we have

1
n!

n

∏
j=0

(1− tqj) =
(

1 +O
(
n−1/2)) t

1
2 nq

1
4 n2

e
1
2 Σ0(s,r)

1
δn+1

∫ 1
0 u

sn
r −1(1− u)n du

. (4.3)

Consequently,

MWλ
(−s,−r) =

(
1 +O

(
n−1/2)) e

1
2 Σ0(s,r)L. (4.4)

Proposition 4.3 illuminates the meaning of L as the normalized m.g.f.

Proposition 4.4. As n→ ∞, we have

Lsmall . n1/2 (2e(s + r)ε/r)n+1 . (4.5)
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Our next goal is to estimate Llarge. From now on, we focus on the case a ≥ ε/δ. A
trivial but crucial observation is that 0 ≤ qa ≤ qε/δ = e−ε holds, hence qa is uniformly
away from 1. This fact will be extensively used in the sequel, and is indeed one of the
main reasons for separating the small range, a ≤ ε/δ, from our main computation. We
begin by improving the estimate on Ki,a’s.

Lemma 4.5. For any integer a ≥ ε/δ and for any real x satisfying x ≥ ε/δ and |x− a| ≤ 1,
we have

∏
i≥1

Ka,i =
1 +O

(
n−1/2)

δn (1− qx)n λ1!Eλ

[
∏
k≥1

(kFk(qx))mk(σ1)

]
(4.6)

This lemma already hints that the contribution of fixed points is the only factor that
affects the asymptotic distribution of the normalized pair Wλ. This point is more clearly
seen from the following result, which is also last piece of the main claim of this section.

Proposition 4.6. We have

Llarge =
(

1 +O
(
n−1/2)) ∫ e−ε

0 u
sn
r −1(1− u)nG(u)du∫ 1

0 u
sn
r −1(1− u)n du

. (4.7)

This result tells us that G accounts for the perturbation caused by the presence of
fixed points. Before proceeding to the general case, we rejoice this result by looking into
the case where Cλ is free of fixed points, i.e. λ1 = 0. In such case, we identically have
G(u) = 1, and hence quickly establish the following partial result.

Corollary 4.7. For each s > 0 and r > 0, there exists a constant C, depending only on s and r,
such that ∣∣∣MWλ

(−s,−r)− e
1
2 Σ0(s,r)

∣∣∣ ≤ Cn−1/2

holds for any n ≥ 1 and for any fixed-point-free conjugacy class Cλ of Sn. Consequently, along
any sequence of Cλ’s such that n → ∞ and α1 = 0, Wλ converges in distribution to a bivariate
normal distribution of zero mean and the covariance matrix Σ0.

Proof of Corollary 4.7. Combining all the estimates and setting λ1 = 0, we have

M(−s,−r) = O
(
n−1/2)+ e

1
2 Σ0(s,r)

(
1−

∫ 1
e−ε u

sn
r −1(1− u)n du∫ 1

0 u
sn
r −1(1− u)n du

)
.

It is easy to check that the ratio of two integrals above vanishes exponentially fast. There-
fore, the first claim follows, and the second claim is a direct application of Proposi-
tion 2.1.
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4.3 Investigating the contribution of fixed points

The aim of this subsection is to analyze the effect of the perturbation term G in Propo-
sition 4.6 and finalize the proof of the main theorem. To do so, we prove the following
estimate on Llarge.

Proposition 4.8. We have

Llarge =
(

1 +O
(
n−1/6)) e

1
2(Σα1 (s,r)−Σ0(s,r)). (4.8)

This is the last ingredient towards establishing Theorem 4.1 and consequently Theo-
rems 1.2 and 1.3.

Proof of Theorems 1.2, 1.3 and 4.1. Combining Theorem 4.2 and Proposition 4.8, we have

MWλ
(−s,−r) =

(
1 +O

(
n−1/6)) e

1
2 Σα1 (s,r) +O(Lsmall).

By noting that Lsmall decays at least exponentially fast, it can be absorbed into the error
term O(n−1/6), and hence, Theorem 4.1 follows.

Since Theorem 1.2 is a special case of Theorem 1.3, it is enough to prove the latter.
Fix s, r > 0 and let C = C(s, r) > 0 be as in Theorem 4.1. Let An and α1,n satisfy the
hypotheses of Theorem 1.3. Then, for each n ∈ N, there exists a family Λn of integer
partitions of n such that An =

⋃
λ∈Λn Cλ and that α1(λ) = α1,n for all λ ∈ Λn. Then,∣∣∣MWn(−s,−r)− e

1
2 Σα1,n (s,r)

∣∣∣ ≤ ∑
λ∈Λn

|Cλ|
|An|

∣∣∣MWλ
(−s,−r)− e

1
2 Σα1(λ)

(s,r)
∣∣∣

≤ Cn−1/6.

Since α1,n → α by the hypothesis, MWn(−s,−r)→ e
1
2 Σα(s,r), and therefore, the conclusion

follows from the modified Curtiss’ theorem.
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