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Abstract. We enumerate factorizations of a Coxeter element into arbitrary factors in
the complex reflection groups G(d, 1, n) (the wreath product of the symmetric group
with a cyclic group) and its subgroup G(d, d, n), applying combinatorial and algebraic
methods, respectively. After a change of basis, the coefficients that appear are the same
as those that appear in the corresponding enumeration in the symmetric group.

Résumé. Nous comptons les factorisations d’un élément de Coxeter en facteurs arbi-
traires dans les groupes de réflexion complexes G(d, 1, n) (le produit en couronne du
groupe symétrique avec un groupe cyclique) et de son sous-groupe G(d, d, n), en appli-
quant des méthodes combinatoires et algébriques, respectivement. Après un change-
ment de base, les coefficients qui apparaissant sont le même que ceux figurant dans
l’énumération correspondante du groupe symétrique.
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1 Introduction

The motivation for this abstract is the following uniform formula of Chapuy–Stump for
the generating function for the number of factorizations of a fixed Coxeter element by
reflections in any complex reflection group.

Theorem 1.1 (Chapuy–Stump [5]). Let W be an irreducible well-generated complex reflection
group of rank n. Let c be a Coxeter element in W, letR andR∗ be the set of all reflections and all
reflecting hyperplanes in W, and for ` ≥ 1 let N`(W) := #{(τ1, . . . , τ`) ∈ R` | τ1 · · · τ` = c

}
be the number of factorizations of c as a product of ` reflections in R. Then

∑
`≥0

N`(W)
t`

`!
=

1
|W|

(
et|R|/n − e−t|R∗|/n

)n
.
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Near t = 0, the generating function gives the well known result that the number of
shortest factorizations of a Coxeter element is n!hn/|W|, where h is the Coxeter number
of W. In addition, when W is the symmetric group Sn, the result above reduces to a
result of Jackson [7] on the generating function for factorizations of the n-cycle (12 · · · n)
into transpositions. Chapuy and Stump prove their result by an algebraic approach with
irreducible characters that dates back to Frobenius. (Recently, Michel [9] gave a uniform
proof of this result when W is a Weyl group using Deligne–Lusztig representations.)

A natural question is whether there are extensions to complex reflection groups of
other factorization results in the symmetric group. In the same paper, Jackson [7] gave
formulas for the generating polynomial of factorizations of a fixed n-cycle as a product
of a fixed number of factors, keeping track of the number of cycles of each factor. We
state the result for two factors, as reformulated by Schaeffer and Vassilieva.

Theorem 1.2 (Jackson, Schaeffer–Vassilieva [7, 12]). Let c be a fixed n-cycle in Sn, and for
integers r, s let ar,s be the number of pairs (u, v) of elements in Sn such that u has r cycles, v has
s cycles, and u · v = c. Then

1
n!
· ∑

r,s≥1
ar,sxrys = ∑

p,q≥1

(
n− 1

p− 1; q− 1; n− p− q + 1

)
(x)p

p!
(y)q

q!
,

where (x)p denotes the falling factorial (x)p := x(x − 1) · · · (x − p + 1). In particular, the
leading coefficient ar,n−1−r is the Narayana number NarA(n, r) := 1

n (
n
r)(

n
r−1).

In this abstract we give analogues of this result, and its generalizations to k factors, for
two infinite families of complex reflection groups: the group G(d, 1, n) of n× n matrices
having one nonzero entry in every row and column, each of which is a dth root of unity
(i.e., the wreath product (Z/dZ) oSn; at d = 2, the Coxeter group of type Bn) and its
subgroup G(d, d, n) (at d = 2, the Coxeter group of type Dn). The analogue of an n-cycle
in a complex reflection group is a Coxeter element. In G(d, 1, n), the Coxeter elements are
the matrices whose underlying permutation is an n-cycle and in which the product of
the nonzero elements is a primitive nth root of unity. (The Coxeter elements in G(d, d, n)
are described in Section 4.) The analogue of the number of cycles of a group element is
the fixed space dimension. Our results for G(d, 1, n) are in terms of the polynomials

(x)(d)k := x(x− d)(x− 2d) · · · (x− (k− 1)d) =
k

∏
i=1

(x− e∗i ).

Here the roots e∗i are the coexponents of this group, one of the fundamental sets of invari-
ants associated to every complex reflection group.

Theorem 1.3. For d > 1, let G = G(d, 1, n) and let a(d)r,s be the number of factorizations of a
fixed Coxeter element c in G as a product of two elements of G with fixed space dimensions r and
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s, respectively. Then

1
|G| ∑

r,s≥0
a(d)r,s xrys = ∑

p,q≥0

(
n

p; q; n− p− q

)
(x− 1)(d)p

dp p!
(y− 1)(d)q

dqq!
. (1.1)

In particular, the leading coefficient a(d)r,n−r is the type B Narayana number NarB(n, r) := (n
r)

2.

In Section 3, we give a combinatorial proof of this result and its generalization to k
factors. As a special case, we recover the Chapuy–Stump result for G(d, 1, n) (see Sec-
tion 6). Our proof works directly with the group elements and permutations. However,
the proof could also be written in terms of maps [8, 11], as in [1, 2, 4, 12] (for example).

Our results for the subgroup G(d, d, n) involve a notion of transitive factorization,
defined in Section 4 below, and are in terms of the polynomials

P(d)
x (k) := (x− (k− 1)(d− 1)) · (x− 1)(d)k−1 =

k

∏
i=1

(x− e∗i ),

where again the e∗i are the coexponents of the group.

Theorem 1.4. For d > 1, let G = G(d, d, n) and let b(d)r,s be the number of transitive factoriza-
tions of a Coxeter element c in G as a product of two elements of G with fixed space dimensions
r and s, respectively. Then

1
dn−1(n− 1)(n− 1)! ∑

r,s≥0
b(d)r,s xrys = ∑

p,q≥1

(
n− 2

p− 1; q− 1; n− p− q

)
P(d)

p (x)
dp−1p!

P(d)
q (x)

dq−1q!
. (1.2)

In particular, the leading term b(d)r,n−r equals dn ·NarA(n− 1, r).

In Section 4, we sketch a proof of this result and its generalization to k factors using
character theory. As a special case, we recover the Chapuy–Stump result for G(d, d, n).

In Section 5, we also include some suggestive evidence from factorization data of
rank 2 complex reflection groups that indicates that the results above could be particular
cases of a uniform statement like the Chapuy–Stump result.

2 Known factorization results in Sn

Theorem 1.2 is a special case of a more general result for factorizations of an n-cycle into
k factors. To state this theorem we need to define a number that counts certain tuples of
sets. Given a positive integer k and nonnegative integers n and p1, . . . , pk, define

Mn
p1,...,pk

:=
min(pi)

∑
t=0

(−1)t
(

n
t

) k

∏
i=1

(
n− t
pi − t

)
= [xp1

1 · · · x
pk
k ]
(
(1 + x1) · · · (1 + xk)− x1 · · · xk

)n
,

(2.1)
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which counts n-tuples (S1, . . . , Sn) of proper subsets Si ( [k] such that exactly pj of
the sets contain j. From this interpretation, it is easy to see that Mn

p1,p2
is given by a

multinomial coefficient ( n
p1;p2;n−p1−p2

) and that the Mn
p satisfy the following recurrence.

Proposition 2.1. One has Mn
p1,...,pk

= ∑
∅ 6=S⊆[k]

Mn−1
p−1+eS

where 1 is the all-ones vector and eS

denotes the indicator vector for the set S.

Let c be a fixed n-cycle in Sn, and for integers r1, . . . , rk let ar1,...,rk be the number of
k-tuples (π1, . . . , πk) of elements in Sn such that πi has ri cycles for i = 1, . . . , k, and
π1 · · ·πk = c.

Theorem 2.2 (Jackson [7]). One has

1
(n!)k−1 · ∑

r1,...,rk≥1
ar1,...,rk xr1

1 · · · x
rk
k = ∑

p1,...,pk≥1
Mn−1

p1−1,...,pk−1
(x1)p1

p1!
· · ·

(xk)pk

pk!
. (2.2)

Jackson’s proof used the Frobenius approach with irreducible characters. Bijective
proofs of the case k = 2 were given by Schaeffer–Vassilieva [12], Chapuy–Féray–Fusy
[4], and Bernardi [1]. Bernardi–Morales [2, 3] extended Bernardi’s approach to give a
combinatorial proof of Jackson’s formula for all k in terms of maps. These combinatorial
proofs use an interpretation of the change of basis in (2.2) that we describe now.

Let Cp1,...,pk be the set of factorizations in Sn of the fixed n-cycle c as a product
π1 · · ·πk such that for each i, the cycles of πi are colored with the colors in [pi], and
every color is used at least once. Let cp1,...,pk be the number of such factorizations.

Proposition 2.3. With ar1,...,rk and cp1,...,pk as above, one has

∑
r1,...,rk≥1

ar1,...,rk xr1
1 · · · x

rk
k = ∑

p1,...,pk≥1
cp1,...,pk

(
x1

p1

)
· · ·
(

xk
pk

)
. (2.3)

Proof. Let each xi be a nonnegative integer. The LHS above counts factorizations of the
cycle (12 · · · n) as a product c = π1 · · ·πk, where for i = 1, . . . , k, each cycle of πi is
colored with a color in [xi]. These colored factorizations are also counted by the RHS
above: for p1, . . . , pk ∈ Z>0 and i = 1, . . . , k, choose pi colors from xi colors available and
a colored factorization Cp1,...,pk where exactly pi colors are used in the factor πi.

3 The group G(d, 1, n)

The conjugacy classes in G(d, 1, n) are uniquely determined by the following combi-
nation of data: first, one needs to know the cycle type of the underlying permutation
(i.e., when we take the projection G(d, 1, n) � Sn whose kernel is exactly the diagonal
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matrices), and then for each cycle one needs to know the product of the roots of unity
that appear in it. Equivalently, for each power 0, . . . , d− 1, which we call the weight, we
have a partition (possibly empty) recording the lengths of the cycles whose product of
elements is that power of exp(2πi/d). Thus, conjugacy classes in G(d, 1, n) are unam-
biguously indexed by tuples (λ(0), . . . , λ(d−1)) of partitions of total size n. The following
proposition is straightforward.

Proposition 3.1. The fixed space dimension of an element w in G whose conjugacy class is
indexed by (λ(0), . . . , λ(d−1)) is equal to `(λ(0)), the number of cycles of weight 0 in w.

We are now prepared to state our main enumerative theorem for G(d, 1, n).

Theorem 3.2. For d > 1, let G = G(d, 1, n), so that |G| = dnn!, let c be a fixed Coxeter element
in G, and let a(d)r1,...,rk be the number of factorizations of c as a product of k elements of G with
fixed space dimensions r1, . . . , rk, respectively. Then

1
|G|k−1 ∑

0≤r1,...,rk≤n
a(d)r1,...,rk xr1

1 · · · x
rk
k = ∑

0≤p1,...,pk≤n
Mn

p1,...,pk

(x1 − 1)(d)p1

dp1 p1!
· · ·

(xk − 1)(d)pk

dpk pk!
,

where Mn
p1,...,pk

is defined in (2.1).

The case of two factors k = 2 follows immediately as a corollary.

Proof of Theorem 1.3. Substitute k = 2 in Theorem 3.2 and use the fact that Mn
p1,p2

=
( n

p1,p2,n−p1−p2
).

Combinatorial proof of Theorem 3.2. It is enough to show that if we define constants Cp1,...,pk

by

∑
r1,...,rk

a(d)r1,...,rk(x1d + 1)r1 · · · (xkd + 1)rk = ∑
p1,...,pk

Cp1,...,pk

(
x1

p1

)
· · ·
(

xk
pk

)
,

then Cp1,...,pk = (dnn!)k−1Mn
p1,...,pk

. To prove this polynomial identity, it suffices to prove
that it is valid when each of the xi is a nonnegative integer. In this case, the LHS counts
factorizations of c as a product c = u1 · · · uk, where for i = 1, . . . , k, each cycle of weight
0 in ui is colored with a color in Xi := {0i, 1i, 2i, . . . , (xid)i}, and the cycles ui of weights
other than 0 are colored with the color 0i. (The subscripts i on the colors are to emphasize
that, for example, the allowable colors for cycles of u1 are not the same as the allowable
colors for cycles of u2.)

Within the color set Xi, a d-strip is any of the following collections of d consecutive
colors: {1i, . . . , di}, {(d + 1)i, . . . , (2d)i}, . . . , {((xi − 1)d + 1)i, . . . , (xid)i}. Thus, for each
i, there are exactly xi d-strips in Xi (and the color 0i does not belong to any d-strip).
We use these d-strips to divide the set of colored factorizations counted by the LHS into
disjoint subsets, as follows: for p1, . . . , pk ∈ Z≥0, consider the colored factorizations in
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which colors from exactly pi of the d-strips in Xi are used to color cycles of the factor ui.
The number of ways to choose the pi d-strips is (xi

pi
); consequently, the coefficient Cp1,...,pk

on the RHS counts factorizations of c as a product c = u1 · · · uk where for i = 1, . . . , k,
each cycle of weight 0 in ui is colored with colors from a prescribed set of pi d-strips in
Xi, or with the color 0i, in such a way that at least one color is used from each of the
prescribed d-strips, and the cycles ui of weights other than 0 are colored with the color
0i. We now wish to relate this number to certain factorizations in the symmetric group.

We claim there is the following connection between the Cs (the numbers of colored
factorizations in G(d, 1, n)) and the cs (the numbers of colored factorizations in Sn), with
proof given below.

Lemma 3.3. For any p = (p1, . . . , pk) in (Z≥0)
k, we have Cp = d(k−1)n ∑

∅ 6=S⊆[k]
cp+eS where

eS is the indicator vector for S.

We have by Jackson’s Theorem 2.2 that cp+eS = (n!)k−1 · Mn−1
p−1+eS

where 1 is the
all-ones vector. Then Theorem 3.2 follows by Lemma 3.3 and Proposition 2.1.

Proof of Lemma 3.3. Given a colored factorization c = u1 · · · uk of the Coxeter element c
for G(d, 1, n) of the relevant kind, we associate to it a colored factorization (1 · · · n) =
π1 · · ·πk in Sn, as follows: πi is the projection of ui in Sn; if a cycle of ui is colored with
a color in the d-strip {((a − 1)d + 1)i, . . . , (ad)i}, then the corresponding cycle of πi is
colored with color a; if a cycle of ui is colored with color 0i, then the corresponding cycle
of πi is colored with color 0. Thus, in the resulting colored factorization of (1 · · · n),
the ith factor is colored in either pi or pi + 1 colors, with every color appearing. Let
S ⊆ [k] denote the set of indices i such that πi is colored in pi + 1 colors (rather than pi);
equivalently, it is the set of indices i such that some cycle of ui is colored with color 0i.

First, we observe that S 6= ∅: the product c = u1 · · · uk has total weight nonzero, so
at least one of the factors ui has a cycle with weight different from zero. Such a cycle
is colored with the special color 0i, and so at least for this value of i we have i ∈ S.
Thus the collection of underlying factorizations is in the disjoint union of pieces Cp+eS

for nonempty sets S ⊆ [k].
Second, we must consider how many preimages each factorization in Cp+eS has under

this map. To choose a preimage, we must assign weights to the entries of each factor πi
in such a way that the product of the resulting factors ui really is the Coxeter element c,
and so that in each ui, any factor of nonzero weight was originally colored by the color
0i; and we must choose one of d colors from a d-strip for each of the cycles in ui that
corresponds to a cycle in πi of nonzero color.

In order to do this, we consider a too-large set of factorizations in G(d, 1, n): we
choose a total order on all the entries of all the πi, in such a way that the last entry
chosen belongs to a cycle of color 0j for some j. (Note that such cycles must exist, since
S 6= ∅.) Then we weight the entries in order, choosing the weights arbitrarily except in
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two cases: if an element belongs to a cycle of nonzero color and is the last element in
its cycle to be weighted, we assign it the unique weight so that the total weight of its
cycle is 0; and we choose the weight of the specially selected final element so that the
total weight of all elements is 1. (These two exceptions never conflict because the special
element was chosen in a cycle of color 0.) The number of ways to perform these choices
is dnk−1−#(cycles not colored 0). Finally, for each cycle of πi that is colored some nonzero
color, there are d choices for the color in the associated d-strip of the corresponding cycle
of the lift ui of πi; this contributes a factor of d#(cycles not colored 0), for a total of dnk−1 lifts.

Each lift is a colored factorization u1 · · · uk in G(d, 1, n) of some element c∗ of weight
1 whose underlying permutation is the n-cycle (1 · · · n). The number of such elements is
dn−1; they are all conjugate to c by some diagonal matrix a in G(d, 1, n). Moreover, since
a is a diagonal matrix, conjugating any w ∈ G(d, 1, n) by a preserves the weight of every
cycle of w. Consequently, conjugation by a extends to a bijection between factorizations
of c and factorizations of c∗ that respects the underlying permutation of each factor and
the weight of each cycle of each factor. Thus, in particular it gives a bijection between
the lifts of π1 · · ·πk that factor c and those that factor c∗. Thus, of the total dnk−1 lifts,
exactly 1

dn−1 · dnk−1 = dn(k−1) of them are factorizations of c. This completes the proof of
the lemma.

3.1 Specializations and leading terms for factorizations of G(d, 1, n)

We first remark on two natural specializations of the factorization results for G(d, 1, n).
Let Fd(x, y) denote the RHS of (1.1). One can check from Theorem 1.3 that Fd(1, 1) =
( n

0;0;n) · 1 = 1 as expected: by the definition of Fd, we have Fd(1, 1) = 1
|G| · |G| = 1. The

next specialization is more interesting.

Proposition 3.4. One has Fd(x, 1) =
1
|G| ∑

g∈G
xdim fix(g) =

1
|G|

n

∏
i=1

(x + id− 1).

Proof. By Theorem 1.3, we have

Fd(x, 1) = ∑
p≥0

(
n
p

)
(x− 1)(d)p

dp p!
=

(
n + (x− 1)/d

n

)
=

1
|G|

n

∏
i=1

(x + id− 1),

where the second equality is the Vandermonde identity. On the other hand, by the
definition of Fd we have

Fd(x, 1) =
1
|G| ∑

g∈G
xdim fix(g),

so we recover in this case the general fact that the generating function for fixed space
dimension in a finite complex reflection group splits into linear factors, with roots equal
to 1− di where {di} are the degrees of the group.
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Lastly, we show that the leading term ar,n−r of |G| · Fd(x, y) is given by the type B
Narayana number (n

r)
2 A008459 [10, Table 12.3]. In particular, it is independent of d.

Corollary 3.5. For d > 1, let G = G(d, 1, n), and let ar,n−r be the number of factorizations of
a Coxeter element c in G as a product of two elements u and v with fixed space dimension r and
n− r respectively, then ar,n−r = (n

r)
2.

Proof. The leading coefficients of (1.1) have total degree n. Extracting such coefficients
from the RHS gives ar,n−r = |G|( n

r;n−r;0)
1

r!(n−r)!dn which equals the desired formula.

4 The subgroup G(d, d, n)

The hyperoctahedral group of signed permutations (the Coxeter group of type Bn) has
an index-2 subgroup of “even-signed permutations” (the Coxeter group of type Dn),
consisting of matrices in which the total number of negative entries is even. Similarly,
for every d, the group G(d, 1, n) has an irreducible rank-n well generated reflection sub-
group: the group G(d, d, n) of n× n weighted permutation matrices in which the prod-
uct of the nonzero entries is 1 (equivalently, in which the total weight is 0), of order
|G(d, d, n)| = |G(d,1,n)|

d = dn−1n!. The Coxeter elements in G(d, d, n) are the elements
whose underlying permutation is an (n− 1)-cycle and the weight of the fixed point is 1
(and so also the weight of the (n− 1)-cycle is −1).

Most of the results in this section rely on the Frobenius character approach, which is
based on the following lemma.

Lemma 4.1 (Frobenius, e.g. [13, Ex. 7.67(b)]). Let W be a finite group, g an element of W,
and A1, . . . , Ak subsets of W that are each closed under conjugation by elements of W. Then
the number of factorizations of g as a product g = t1 · · · tk, such that for each i the factor ti is
required to lie in the set Ai, is equal to

1
|W| ∑

λ∈Irr(W)

dim(λ)χλ(g−1)χ̃λ(z1) · · · χ̃λ(zk),

where Irr(W) is the set of irreducible representations of W, dim(λ) is the dimension of the
representation λ, χλ is the character associated to λ, χ̃λ = χλ

dim(λ)
is the normalized character

associated to λ, and for i = 1, . . . , k, zi is the formal sum in the group algebra of elements in Ai.

4.1 Results in Sn for factorizations of an (n− 1)-cycle

If one factors an (n− 1)-cycle c in Sn as a product of other permutations, there are two
possibilities: either every factor shares c’s fixed point, or some factor acts nontrivially on
it. The factorizations in the former case correspond to factorizations of an (n− 1)-cycle

https://oeis.org/A008459
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in Sn−1. The factorizations in the latter case have a more elegant description: they are
exactly the factorizations in which the factors act transitively on the set [n]. The study of
transitive factorizations plays an important role in the field of permutation factorizations;
it is present already in the late 19th century work of Hurwitz [6].

Theorem 4.2. Let c be a fixed (n − 1)-cycle in Sn. For integers r1, . . . , rk let br1,...,rk be the
number of k-tuples (u1, . . . , uk) of elements in Sn such that ui has ri cycles for i = 1, . . . , k,
u1 · · · uk = c, and (u1, . . . , uk) is a transitive factorization. Then

∑
r1,...,rk≥1

br1,...,rk xr1
1 · · · x

rk
k =

(n− 1)!k

n! ∑
p1,...,pk≥1

Mn
p1,...,pk

(x1)p1

(p1 − 1)!
· · ·

(xk)pk

(pk − 1)!
, (4.1)

where Mn
p1,...,pk

is as defined in (2.1).

We were surprised not to find this statement in the literature. In the case of two
factors, there is a simple combinatorial proof. We sketch here the algebraic proof for any
number k of factors.

Proof sketch. By the Murnaghan–Nakayama rule, the character values on an (n− 1)-cycle
in Sn are usually 0, so the sum in Lemma 4.1 simplifies considerably. We first use
this lemma on the generating polynomial of all factorizations of c into k factors (not
necessarily transitive). We then subtract the generating polynomial of the non-transitive
factorizations. It is not hard to see that this is just the product of x1 · · · xk and the
generating polynomial of factorizations of a long cycle in Sn−1 into k permutations.
Unexpected cancellations occur when we subtract, and we finally rewrite the expression
in terms of the basis (x1)p1 · · · (xk)pk to obtain the desired formula.

4.2 Results for transitive factorizations in G(d, d, n)

As G(d, 1, n) is a wreath product, it and its subgroups carry a natural permutation action:
they act on d copies of [n] indexed by dth roots of unity. (Equivalently, they act on
{ziej : 0 ≤ i < d, 1 ≤ j ≤ n} where z is a primitive dth root of unity and ej are the
standard basis vectors for Cn.) The Coxeter elements for G(d, 1, n) act transitively on
this set, and consequently every factorization of a Coxeter element in G(d, 1, n) is a
transitive factorization. However, the same is not true for the subgroup G(d, d, n), where
the underlying permutations of the Coxeter elements are (n− 1)-cycles. In this abstract,
we consider only the case of transitive factorizations of a Coxeter element in G(d, d, n).
As mentioned in the introduction, our generating function in this case is in terms of the
polynomials P(d)

k (x) defined by P(d)
0 (x) = 1, P(d)

1 (x) = x, and for k > 1 by

P(d)
k (x) :=

k

∏
i=1

(x− e∗i ) = (x− (k− 1)(d− 1)) · (x− 1)(d)k−1 = (x− 1)(d)k + k(x− 1)(d)k−1, (4.2)
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where the e∗i are the coexponents of the group G(d, d, k).

Theorem 4.3. For d > 1, let G = G(d, d, n) and let b(d)r1,...,rk be the number of transitive factor-
izations of a Coxeter element c in G as a product of k elements of G with fixed space dimensions
r1, . . . , rk, respectively. Then

∑
r1,...,rk≥0

b(d)r1,...,rk xr1
1 · · · x

rk
k =

|G|k−1

nk ∑
r1,...,rk≥1

Mn
r1,...,rk

P(d)
r1 (x1)

dr1−1(r1 − 1)!
· · ·

P(d)
rk (xk)

drk−1(rk − 1)!
,

where Mn
r1,...,rk

is as defined in (2.1).

Proof sketch. The character values on a Coxeter element are usually zero, so when ap-
plying Lemma 4.1 the sum simplifies considerably. The relevant character values are
provided in [5]. It is technically but not conceptually challenging to use this to produce
a formula for the generating function of all factorizations of the Coxeter element. One
then subtracts the generating function for non-transitive factorizations.

As in the case of the (n − 1)-cycle in the symmetric group, the non-transitive fac-
torizations are exactly those in which the underlying permutations of the factors all fix
the element 1, and so (ignoring the fixed point) these factorizations correspond to fac-
torizations of a Coxeter element in G(d, 1, n − 1). However, there is a wrinkle: in the
symmetric group, this correspondence increases the number of cycles (fixed space di-
mension) of each factor by exactly 1 (the new fixed point); in G(d, d, n), whether the
extra cycle increases the fixed space dimension or not depends on whether it has weight
0 (i.e., whether the (1, 1) entry of the matrix is 1 or some other root of unity). This
requires a second set of technical gymnastics to handle. In the end, there is massive
unexpected cancellation between the non-transitive factors and the messier terms of the
sum for all factorizations, leaving the claimed formula.

The case of k = 2 factors follows immediately as a corollary.

Proof of Theorem 1.4. Take k = 2 in Theorem 4.3 and use the fact that Mn
p,q = ( n

p,q,n−p−q).

5 Rank 2 complex reflection groups

In this section, we record some tantalizing data that suggests that Theorems 3.2 and 4.3
could be particular cases of a more general, uniform statement, along the lines of the
Chapuy–Stump result. There are two infinite families of irreducible rank-2 well gener-
ated complex reflection groups, the wreath products (Z/rZ) oS2 (of type G(r, 1, 2)) and
the dihedral groups (of type G(r, 2, 2)), as well as twelve exceptional groups (Shephard–
Todd classes G4, G5, G6, G8, G9, G10, G14, G16, G17, G18, G20, and G21). For any such group
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G, one may define ar,s to be the number of factorizations of a given Coxeter element c as
a product c = u · v where u has fixed space dimension r and v has fixed space dimension
s, and so also one may define the generating function

FG(x, y) = ∑
r,s

ar,sxrys.

Since the matrices act on a space of dimension 2 and the Coxeter elements have fixed
space dimension 0, every such generating function has the form

FG(x, y) = ∑
0≤r,s≤2

ar,sxrys = x2 + y2 + axy + lower order terms.

Easy arguments in the two infinite families combined with exhaustive computation (per-
formed in Sage [14]) for the exceptional groups reveal the following formula.

Theorem 5.1. Let G be an irreducible well generated complex reflection group of rank 2. Let e∗1 =
1 and e∗2 be the coexponents of G, and let h be the Coxeter number of G (i.e., the multiplicative
order of the Coxeter element; equivalently, the largest degree of G). Then one has

FG(x, y) = (x− 1)(x− e∗2)+ k(x− 1)(y− 1)+ (y− 1)(y− e∗2)+ 2h(x− 1)+ 2h(y− 1)+ |G|,

where k is the nontrivial G-Narayana number (i.e., the number of reflections that lie below each
Coxeter element of G in the absolute order).

So far, we have been unable to find a correspondingly attractive formula for the rank-
3 complex reflection groups, where the correct choice of basis is less clear. In particular,
we have not found a natural basis in which the generating function for the group G25 (a
Shephard group, with abstract presentation 〈a, b, c | a3 = b3 = c3 = 1, aba = bab, bcb =
cbc〉) has coefficients that we understand. This seems ripe for further investigation.

6 Rederiving Chapuy–Stump formulas for G(d, 1, n) and
G(d, d, n)

One can rederive the Chapuy–Stump formula (Theorem 1.1) for the groups G(d, 1, n)
and G(d, d, n) from Theorems 3.2 and 4.3, respectively. In G(d, d, n), we make use of the
fact that every reflection factorization of a Coxeter element is transitive in our sense. In
both cases, this amounts to extracting the coefficient xn−1

1 · · · xn−1
` from the generating

function for all factorizations. This involves contributions only from terms where the
coefficient is Mn

n,...,n,n−1,...,n−1 = k! · S(n, k) where S(n, k) is a Stirling number of the
second kind. In the case of G(d, 1, n), this gives an elementary proof of the Chapuy–
Stump formula; it would be nice also to have an elementary proof (without characters)
for G(d, d, n).
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