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Abstract. Set-partition tableaux are Young tableaux whose boxes are filled with the
blocks of a set partition. We use them to compute multiplicities of symmetric group
modules in tensor product representations and to index bases of irreducible modules of
the partition algebra. We give an action of the partition algebra on this basis analogous
to Young’s natural representation of the symmetric group. This action restricts to give
natural representations for subalgebras of the partition algebra including the Brauer,
Temperley–Lieb, rook-monoid, and Motzkin algebras.
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1 Introduction

We survey recent work on applications [1, 2, 3, 7] of set-partition tableaux in represen-
tation theory. These tableaux appeared first in the work of Benkart, Halverson, and
Harmon [3] to describe tensor power multiplicities in the symmetric group and the di-
mensions of simple modules of partition algebras. At nearly the same time, Orellana
and Zabrocki [12] used them to analyze reduced Kronecker coefficients for the symmet-
ric group. Via Schur–Weyl duality these symmetric group representations are reflected
in the representation theory of the partition algebra, and Halverson and Jacobson [7]
describe the irreducible modules of the partition algebra on set-partition tableaux in the
same way that Young described the natural representation of the symmetric group on
standard Young tableaux.

In Section 2, we study the k-fold tensor power of the permutation module of the
symmetric group, and give the multiplicities of irreducible symmetric group modules
in this tensor power in terms of paths in a restriction-induction Bratteli diagram or,
equivalently, in terms of up-down tableaux. This is "classical" result that can be found
for example in [8, 9]. We examine this same decomposition from the point of view of
modules on ordered set partitions, give a closed formula for this multiplicity, and show
that it equals the number of standard set-partition tableaux. We then give a bijection
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between up-down tableaux and set-partition tableaux. These are new results found in
[3].

In Section 3 we use Schur–Weyl duality on tensor space between the symmetric group
Sn and the partition algebra Pk(n) to show that the partition algebra has irreducible
modules Pλ

k . These are labeled by integer partitions λ have bases indexed by set-partition
tableaux. We give an action of the basis diagrams of Pk(n) on set-partition tableaux. This
action is analogous to Young’s action of permutations on standard Young tableaux, and
our representation is the partition-algebra version of Young’s natural representation.
The partition algebra contains a collection of diagram subalgebras that are important in
representation theory; these include the Brauer, Temperley–Lieb, Motzkin, rook-monoid,
rook-Brauer, and planar rook-monoid algebras. Our representations restrict naturally to
each of these subalgebras, and we thereby obtain a uniform construction of Young’s
natural representation on set-partition tableaux for each of these algebras.

2 Tensor power representations of the symmetric group

We let Sn denote the symmetric group of permutations on [n] = {1, . . . , n}. The ir-
reducible Sn-modules over C (or any field of characteristic 0) are indexed by integer
partitions λ ` n, and we let Sλ

n denote the irreducible module associated with λ.
The n-dimensional permutation module Mn of Sn has a basis {v1, . . . , vn} such that

σ.vi = vσ(i) for all σ ∈ Sn, and it decomposes into a direct sum Mn ∼= S[n]
n ⊕ S[n−1,1]

n of a

trivial module S[n]
n and a "reflection" module S[n−1,1]

n . The k-fold tensor product M⊗k
n has

a basis of simple tensors {vi1 ⊗ · · · vik | ij ∈ [n]} on which permutations act diagonally

σ(vi1 ⊗ · · · ⊗ vik) = vσ(i1) ⊗ · · · ⊗ vσ(ik), σ ∈ Sn.

A fundamental question in the representation theory of Sn is to decompose M⊗k
n into

irreducible constituents; that is, to find the multiplicities mλ
k,n in

M⊗k
n
∼=
⊕
λ`n

mλ
k,nSλ

n . (2.1)

2.1 Computing mλ
k,n via restriction-induction

The "tensor identity" tells us that tensoring with the permutation module is isomorphic
to first restricting to Sn−1 and then inducing back to Sn. That is,

Sλ
n ⊗Mn ∼= IndSn

Sn−1
ResSn

Sn−1
(Mn). (2.2)
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Furthermore, restriction to Sn−1 removes a box from the partition λ and induction adds
a box back, so we have

Sλ
n ⊗Mn ∼= IndSn

Sn−1
ResSn

Sn−1
(Mn) ∼= IndSn

Sn−1

⊕
ν=λ−�

Sν
n−1
∼=

⊕
µ=ν+�

⊕
ν=λ−�

Sµ
n. (2.3)

If we define M⊗0
n := S[n]

n , the trivial module, and recursive apply (2.3), we obtain the
restriction-induction Bratteli diagram B(Sn, Sn−1), which is shown for n = 6 in Figure 1.
The Bratteli diagram B(Sn, Sn−1) is an infinite, rooted lattice whose vertices on rows k
and k + 1

2 are labeled by

Λk,n =
{

λ ` n | |λ| ≤ k
}

and Λk+ 1
2 ,n = {ν ` (n− 1) | |ν| ≤ k} , (2.4)

respectively, where if λ = [λ1, λ2, . . . , λ`] is an integer partition of n then λ = [λ2, . . . , λ`]
is the partition λ with its first part removed. There is an edge from λ ∈ Λk,n to ν ∈ Λk+ 1

2 ,n
if ν can be obtained from λ by removing a box, and there is an edge from ν ∈ Λk+ 1

2 ,n to
λ ∈ Λk+1,n if λ can be obtained from ν by adding a box. By induction on (2.3),

• the partitions in Λk,n index the irreducible Sn modules which appear in M⊗k
n , and

• the multiplicity mλ
k,n of Sλ

n in M⊗k
n equals the number of length-2k paths from [n]

on row 0 to λ on row k in B(Sn, Sn−1).

Motivated by the previous paragraph, we define an (n, k)-up-down tableau of shape λ

to be a sequence

([n] = λ(0), λ( 1
2 ), λ(1), λ(1 1

2 ), . . . , λ(k− 1
2 ), λ(k) = λ)

such that for each integer 0 ≤ i ≤ k we have: (i) λ(i) ∈ Λi,n; (ii) λ(i+ 1
2 ) ∈ Λi+ 1

2 ,n; (iii)

λ(i+ 1
2 ) = λ(i) −�; and (iv) λ(i) = λ(i− 1

2 ) +�. It follows that ([8, 9])

mλ
k,n = #((k, n)-up-down tableaux of shape λ). (2.5)

These tableaux also appear in the study [5] of crossing and nesting set partitions.

2.2 Computing mλ
k,n via permutation modules

If π is a set partition of {1, . . . , k} into t blocks, where 1 ≤ t ≤ n, then the vector space

M(π) := spanC

{
vj1 ⊗ · · · ⊗ vjk | ja = jb ⇐⇒ a, b are in the same block of π

}
(2.6)

is an Sn-submodule of M⊗k
n . To see this, recall that σ ∈ Sn acts diagonally on simple ten-

sors, σ(vj1 ⊗ vj2 ⊗ · · · ⊗ vjk) = vσ(j1)⊗ vσ(j2)⊗ · · · ⊗ vσ(jk), and so it preserves the condition
in (2.6). As an example, if n = 8 and k = 12, then

v = v3 ⊗ v1 ⊗ v3 ⊗ v3 ⊗ v4 ⊗ v5 ⊗ v4 ⊗ v1 ⊗ v1 ⊗ v3 ⊗ v4 ⊗ v5 ∈ M⊗12
8 (2.7)
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Figure 1: Rows 0 to 4 of the restriction-induction Bratteli diagram B(S6, S5). The label
associated to the partition λ on row k is the multiplicity mλ

k,6 in (2.1).

belongs to M(π) for π = {1, 3, 4, 10 | 2, 8, 9 | 5, 7, 11 | 6, 12}. The diagonal action of
Sn on the simple tensors in M(π) corresponds exactly to the permutation action of Sn

on the ordered set partitions of {1, 2, . . . , n}, which is the permutation module M[n−t,1t]

obtained by inducing the trivial module for the subgroup Sn−t × S1 × · · · × S1 (with t
copies of S1) to Sn. Thus, M(π) ∼= M[n−t,1t] when π has t blocks.

The number of set partitions π of {1, . . . , k} into 1 ≤ t ≤ n parts is the Stirling
number {k

t} of the second kind, so this partitioning of simple tensors gives the following
decomposition of M⊗k

n :

M⊗k
n
∼=

n⊕
t=1

{
k
t

}
M[n−t,1t]. (2.8)

Young’s rule says that for γ = [γ1, γ2, . . . , γn] ` n, the multiplicity of Sλ
n in Mγ equals

the Kostka number Kλ,γ, which counts the number of semistandard tableaux T of shape λ

and type γ. It follows that

M⊗k
n
∼=

n⊕
t=1

{
k
t

}
M[n−t,1t] ∼=

n⊕
t=1

{
k
t

}(
∑
λ`n

Kλ,[n−t,1t]S
λ
n

)
∼=
⊕
λ`n

(
n

∑
t=1

{
k
t

}
Kλ,[n−t,1t]

)
Sλ

n .

In this particular case, the Kostka number Kλ,[n−t,1t] counts the number of semistandard
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tableaux of shape λ filled with the entries {0n−t, 1, 2, . . . , t}. Such a tableau must have
n− t zeros in the first row and a standard filling of the skew shape λ/[n− t] with the
numbers 1, 2, . . . , t. For example, if λ = [7, 5, 3] and t = 3 then one such semistandard
tableau is

0 0 0 3 6 8 12
1 4 5 7 11
2 9 10

.

The number f λ/[n−t] of such fillings is given by the hook formula for skew shapes (see
for example, [14, Cor. 7.16.3]). It follows that

mλ
k,n =

n

∑
t=1

{
k
t

}
f λ/[n−t]. (2.9)

2.3 Set-partition tableaux

Formula (2.9) relates mλ
k,n to the number pairs (π, T) consisting of a set partition π of

{1, . . . , k} into t parts and a standard tableau of skew shape λ/[n− t]. Since, the skew
shape λ/[n − t] has t boxes, we fill the boxes with the blocks of π in a standard way.
This motivates the following definition.

Definition 2.1. Let λ ∈ Λk,n so that λ is an integer partition of n with 0 ≤ |λ∗| ≤ k. A
set-partition tableau T of shape λ is a filling of the boxes of λ with subsets of {1, . . . , k},
including the empty set, such that:

(a) the empty subsets are only in the first row of λ and are left-justified;

(b) the non-empty subsets form a set partition π of {1, . . . , k}, called the content of T.

The set-partition tableau is standard if

(c) the non-empty entries of T increase across the rows and down the columns using
maximum-entry order on the blocks of π.

By construction, the non-empty boxes of T form a skew shape λ/[n− t] with |λ| ≤ t ≤ n.

Below is a standard set-partition tableau T of shape λ = [8, 4, 3, 1] ` 16 and content

π = {3 | 5 | 6 | 8 | 2, 9 | 12 | 4, 7, 10, 14 | 13, 15 | 1, 16 | 11, 17}.
We have emphasized maximum-entry order by underlining the maximum elements in
each block of π (box of T).

T =

12 1, 16
3 6 8 11, 17
5 4, 7, 10, 14 13, 15

2, 9
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Figure 2: The delete-insert bijection between a (7, 5)-up-down tableaux of shape
[2, 2, 1] (the underlying sequence of shapes) and a set-partition tableaux of shape
[2, 2, 1] and content π = {1, 3, 5 | 2 | 4, 7 | 6} (the set-partition tableaux when j = 7).

It follows from this definition and (2.9) that

mλ
k,n = #

(
standard set-partition tableaux of shape λ and
content equal to a set partition of {1, . . . , k}

)
. (2.10)

2.4 Bijection between up-down and set-partition tableaux

Given a set-partition tableau T of shape λ ` n and content π, a set partition of {1, . . . , k},
the following algorithm recursively produces a (k, n)-up-down tableau ([n] = λ(0), λ( 1

2 ),
λ(1), . . . , λ(k) = λ) of shape λ. An example is given in Figure 2.

(1) Let λ(k) = λ, and set T(k) = T.

(2) For j = k, k− 1, . . . , 1 (in descending order), do the following:

(a) Let T(j− 1
2 ) be the tableau obtained from T(j) by removing the box b that con-

tains j. At this stage, j will be the largest entry of T so this box will be
removable. Let λ(j− 1

2 ) be the shape of T(j− 1
2 ).

(b) Delete the entry j from b. If b is then empty, add 0 to it.
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(c) Let T(j−1) = T(j− 1
2 ) ← b be the Schensted row insertion of b into T(j− 1

2 ), and
let λ(j−1) be the shape of T(j−1).

In [3] we prove that this algorithm is a bijection.

3 Irreducible modules for the partition algebra

3.1 Schur–Weyl duality

We now examine the centralizer algebra,

Zk,n := EndSn(M
⊗k
n ) = {ϕ ∈ End(M⊗k

n ) | ϕσ(x) = σϕ(x), σ ∈ Sn, x ∈ M⊗k
n }, (3.1)

of the symmetric group action on M⊗k
n . Schur–Weyl duality tells us that the irreducible

modules Zλ
k,n for the semisimple associative algebra Zk,n are indexed by the same subset

Λk,n that indexes the irreducible Sn-modules in M⊗k
n . When we compare the decomposi-

tions
M⊗k

n
∼=

⊕
λ∈Λk,Sn

mλ
k,nSλ

n︸ ︷︷ ︸
as an Sn-module

∼=
⊕

λ∈Λk,n

f λZλ
k,n︸ ︷︷ ︸

as a Zk,n-module

; (3.2)

of M⊗k
n as an Sn and a Zk(n)-module, respectively, the dimensions and the multiplicities

are reversed:

• dim(Zλ
k,n) = mλ

k,n (the multiplicity of Sλ
n in M⊗k

n ); (3.3)

• mult(Zλ
k,n) = dim(Sλ

n) = f λ (the number of standard tableaux of shape λ). (3.4)

Furthermore, by general Artin-Wedderburn theory, dim(Zk,n) is the sum of the squares
of the dimensions of its irreducible modules Zλ

k,n, and thus

dim(Zk,n) = ∑
λ∈Λk,Sn

(mλ
k,n)

2 = m
[n]
2k,n = dim

(
Z
[n]
2k,n

)
. (3.5)

The second equality in (3.5) comes from observing that pairs of paths from the top of
B(Sn, Sn−1) to λ on level k are in bijection, by reversing the second path, to paths from
the top of the diagram to [n] on level 2k. Alternatively, Zk,n = EndSn(M

⊗k
n ) ∼= (M⊗2k

n )Sn ,
since the Sn-invariants in M⊗2k

n correspond to copies of the trivial module S[n]
n , and

m
[n]
2k,n = dim

(
Z
[n]
2k,n

)
is the number of trivial summands of M⊗2k

n .
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3.2 The partition algebra

For k ≥ 0 and n ∈ C, the partition algebra Pk(n) is a unital associative algebra with a
basis of set partition diagrams. It is semisimple for n 6∈ {0, 1, . . . , 2k− 2} ([11], [9]). For
a set partition π of {1, . . . , k, 1′, . . . , k′}, the associated set partition diagram dπ has two
rows of vertices labeled by 1′, . . . , k′ on bottom and 1, . . . , k on top, such that two vertices
are in the same connected component of the diagram if and only if they are in the same
block of the set partition. For example,

π =

{
1′, 2 | 2′, 3′ | 4′, 1, 3 | 5′, 7′

| 6′, 4, 7, 8 | 8′, 6 | 5

}
←→ dπ =

1′

1

2′

2

3′

3

4′

4

5′

5

6′

6

7′

7

8′

8

. (3.6)

The number of set partitions of {1, . . . , k, 1′, . . . , k′} with t blocks is given by the Stirling
number of the 2nd kind {2k

t }, and dim(Pk(n)) = B(2k) = ∑t {2k
t }, the 2kth Bell number.

Multiplication of two diagrams d1, d2 is accomplished by placing d1 above d2, identi-
fying the vertices in the bottom row of d1 with those in the top row of d2, concatenating
the edges, deleting all connected components that lie entirely in the middle row of the
joined diagrams, and scaling the resulting diagram by xc(d1,d2), where c(d1, d2) is the
number of components removed from the middle row. For example,

= x2 (3.7)

For k ∈ Z≥1, the partition algebra Pk(n) has a presentation by the generators

si =
· · ·

· · ·

· · ·

· · ·

i i+1

, pi =
· · ·

· · ·

· · ·

· · ·

i

, bi =
· · ·

· · ·

· · ·

· · ·

i i+1

1 ≤ i ≤ k− 1 1 ≤ i ≤ k 1 ≤ i ≤ k− 1

(3.8)

and the relations found in [9, Thm. 1.11].
In [10], V. Jones constructed a surjective algebra homomorphism

Φk,n : Pk(n)→ Zk,n = EndSn(M
⊗k
n ) (3.9)

from the partition algebra onto the centralizer algebra EndSn(M
⊗k
n ) defined in (3.1). When

n ≥ 2k, this surjection is an isomorphism. The kernel of Φk,n is described in [9], and in [2]
it is shown to be a two-sided ideal ker(Φk,n) = 〈ek,n〉 generated by a single idempotent.
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3.3 Subalgebras

The partition algebra is a central object in algebraic combinatorics. The group algebra
of the symmetric group CSk = 〈si〉1≤i<k is the subalgebra of Pk(n) generated by the
simple transpositions si. If we define ei = bipipi+1bi, then Brauer’s centralizer algebra
Bk(n) = 〈si, ei〉1≤i<k and the Temperley–Lieb algebra TLk(n) = 〈ei〉1≤i<k are subalgebras.
The rook-monoid, rook-Brauer, Motzkin, and planar rook-monoid algebras are similarly
generated as diagram subalgebras. Moreover, it can be shown that if G is any group
and V is any finite dimensional CG-module, then EndG(V

⊗k) contains a quotient of the
partition algebra as a subalgebra.

3.4 Representation on set-partition tableaux

When n ≥ 2k, we have an isomorphism Φk,n : Pk(n) → EndSn(M
⊗k
n ), and so by Schur–

Weyl duality (3.2), the irreducible modules of the partition algebra are indexed by the
partitions in Λk,n. For each λ ∈ Λk,n, we let Pλ

k denote this module. It follows from (3.3)
that the dimension of Pλ

k equals the number of standard set partition tableaux of shape
λ and content equal to a set partition of {1, . . . , k}. The main result of [7] is to give a
basis of Pλ

k that is indexed by these set partition tableaux, and to give an action of Pk(n)
on this basis that is analogous to Young’s natural representation of Sk. Upon restriction,
this method gives analogs of Young’s natural representations on set partition tableaux
for each of the diagram subalgebras listed in Section 3.3.

For λ ∈ Λk,n let SPT(λ, k) denote the set of standard set partition tableaux of shape
λ and content equal to a set partition of {1, . . . , k}. We let {NT | T ∈ SPT(λ, k)} be a set
of vectors indexed by SPT(λ, k) and define a vector space with these vectors as a basis,

Pλ
k = C-span{NT | T ∈ SPT(λ, k)}. (3.10)

For a set partition diagram d ∈ Pk(n) let top(d) be the partition of {1, . . . , k} induced on
the top row of d.

Definition 3.1. For a diagram d ∈ Pk and a set partition π of {1, . . . , k}, let d ◦ π denote
the diagram concatenation of d with π, where π is viewed as a one-line set-partition
diagram. Given a set-partition tableau T of shape λ ` n and content π, define the action
of d on T, denoted d(T), to be the set-partition tableau of shape λ, where:

(a) the propagating blocks in d(T) are obtained by replacing each propagating block
of T with the block it is connected to in top(d ◦ π),

(b) the non-propagating blocks in d(T) are the non-propagating blocks of top(d ◦ π)
and blocks of top(d ◦ π) that are connected only to non-propagating blocks of T,

(c) the non-propagating blocks increase from left to right in the first row of d(T),



10 Tom Halverson

(d) if the results of this process do not produce a set-partition tableau, then d(T) = 0.

The action of a diagram d on a tableau T is easily obtained by placing d above T, drawing
edges from the blocks of T to the corresponding blocks on the bottom row of d, and
performing diagram multiplication as seem in Example 3.1.

Example 3.1. Here is a set-partition diagram d acting on two set partition tableaux.

d =

T =

· · · 3, 5, 6 11
1, 2 4 12

8, 9, 10 7, 13

1 2 3 4 5 6 7 8 9 10 11 12 13

=

· · · 4 10, 11
1, 2, 3 8, 12 9
5, 6, 7 13

= d(T).

The following diagram acts as zero on T, since the result is not a set-partition tableau.

d =

T =

· · · 3, 5, 6 11
1, 2 4 12

8, 9, 10 7, 13

1 2 3 4 5 6 7 8 9 10 11 12 13

=

· · · 5 8, 9 10, 12, 13
1, 2, 4 3, 6
1, 2, 4 7, 11

= 0.

For a diagram d ∈ Pk(n) and T ∈ SPT(λ, k) define

d · NT =

{
n`(d,T)Nd(T) if d(T) is a set-partition tableau,
0 if d(T) is not a set-partition tableau,

(3.11)

where d(T) is defined in Definition 3.1 and `(d,T) is the number of connected compo-
nents removed in the construction of d(T). If d(T) is not standard, then Nd(T) can be
expressed as an integer linear combination of basis elements using Garnir relations (see,
for example, [13] or [4]). One can also apply the method of tableaux intersection [6].

Example 3.2. Let d and T be defined as in the first example from Example 3.1. In the
construction of d(T) there is one connected component removed, so that

d · NT = nNd(T), where d(T) =
· · · 4 10, 11

1, 2, 3 8, 12 9
5, 6, 7 13

.
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The result is nonstandard, and the Garnir relation for straightening Nd(T) is:

· · · 4 10, 11
1, 2, 3 8, 11 9
5, 6, 7 12

=

· · · 4 10, 11
1, 2, 3 9 8, 11
5, 6, 7 12

−
· · · 4 10, 11

1, 2, 3 9 12
5, 6, 7 8, 11

,

and hence d · NT = nNT1 − nNT2 , where T1 and T2 are the two standard set-partition
tableaux appearing above.

Theorem 3.1 ([7]). The action defined in (3.11) makes {Pλ
k | λ ∈ SPT(λ)} into a complete set

of pairwise-nonisomorphic Pk(n)-modules.

When the action is specialized to the partition algebra generators found in (3.8), then
the action on set-partition tableaux is especially nice.

Theorem 3.2 ([7]). Let λ ∈ Λk,n and let T be a standard set partition tableau. Then

(a) si · NT = Nsi(T)
, where si(T) is the set-partition tableau obtained from T by swapping i

and i + 1, and standardizing the first row.

(b) pi · NT =


nNT if {i} is a non-propagating singleton block in T,
0 if {i} is a propagating singleton block in T,
Npi(T)

otherwise,

where pi(T) is the set-partition tableau obtained from T by removing i from its block,
placing the singleton block {i} into the first row, and standardizing the first row.

(c) bi · NT =


NT if i and i + 1 are in the same block in T,
0 if i and i + 1 are in different propagating blocks in T,
Nbi(T)

otherwise,

where bi(T) is obtained from T by joining the block containing i with the block containing
i + 1, and standardizing the first row. The resulting block becomes propagating if one of
the original blocks was propagating, and otherwise stays non-propagating.

If si(T), pi(T), bi(T) is a nonstandard set-partition tableau then Nsi(T)
, Npi(T)

, Nbi(T)
can be

expressed as an integer linear combination of basis elements using Garnir relations.
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