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Abstract. We present a unifying framework for deriving permutation enumeration
formulas involving restrictions on descent compositions or permutation statistics
describable in terms of descent compositions: these formulas can be proven by first
lifting them to the algebra of noncommutative symmetric functions and then applying
an appropriate homomorphism. We give several applications of this method including
rederivations and extensions of classical results in the literature as well as new results.
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1 Introduction

Let π = π1π2 · · ·πn be a permutation in Sn, the set of permutations of [n] = {1, 2, . . . , n}.
Let |π| be the length of π, so that |π| = n whenever π ∈ Sn. We say that i ∈ [n− 1] is a
descent of π ∈ Sn if πi > πi+1.

Every permutation can be uniquely decomposed into a sequence of maximal increasing
consecutive subsequences—or equivalently, maximal consecutive subsequences containing
no descents—which we call increasing runs. For example, the descents of π = 85712643 are
1, 3, 6, and 7, and the increasing runs of π are 8, 57, 126, 4, and 3. The composition of n
whose parts correspond to the increasing run lengths of π is called the descent composition
of π and is denoted Comp(π). Thus, Comp(π) = (1, 2, 3, 1, 1) for π = 85712643.

There are many classical results in the literature that count permutations with various
restrictions on descent compositions. For example, David and Barton [4] showed that[

∞

∑
n=0

( xmn

(mn)!
− xmn+1

(mn + 1)!

)]−1

(1.1)

is the exponential generating function for permutations in which every increasing run
has length less than m. Many classical permutation statistics can also be characterized in
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terms of their descent composition. For example, the number of descents of a permutation
is exactly one less than its number of increasing runs.

In a series of recent papers [11, 21, 22, 10], the present authors show that permutation
enumeration formulas involving restrictions on descent compositions (or involving
permutation statistics that can be described in terms of the descent composition) can
be proven under a unifying framework by deriving a lifting of the formula in the
algebra Sym of noncommutative symmetric functions and then applying an appropriate
homomorphism. We use this very general method to prove a myriad of new formulas
as well as to provide a new derivation of David and Barton’s formula (1.1) and of other
formulas previously obtained by Carlitz [1], Chebikin [3], Elizalde [5], Elizalde–Noy [6],
Petersen [14, 15], Remmel [17], Stanley [18, 19], and Stembridge [20].

The purpose of this extended abstract is to outline this method of permutation
enumeration, summarize some of the work done in the papers [11, 21, 22, 10], and to
describe new developments in this domain which utilize the theory of shuffle-compatible
permutation statistics. We begin in Section 2 by introducing preliminary definitions and
ideas from permutation enumeration and the basic theory of noncommutative symmetric
functions, including a key reciprocity formula from the first author’s Ph.D. dissertation
[8] which is used to obtain many noncommutative symmetric function formulas necessary
for our applications. In Section 3, we define three homomorphisms on noncommutative
symmetric functions and demonstrate several applications of our method using these
homomorphisms, including a rederivation of (1.1). Finally, in Section 4, we explain how
each “shuffle-compatible descent statistic” induces a new homomorphism that can be
used to count permutations by the corresponding “inverse statistic”, and present a few
applications of these homomorphisms for the descent and peak number statistics.

2 Preliminaries

2.1 Permutation enumeration

We let des(π) denote the number of descents of π. The distribution of the descent number
statistic is given by the nth Eulerian polynomial An(t) defined by

An(t) := ∑
π∈Sn

tdes(π)+1

for n ≥ 1 and by A0(t) := 1.1 A related permutation statistic is the number of inversions;
an inversion of a permutation π ∈ Sn is a pair of indices (i, j) with 1 ≤ i < j ≤ n such
that πi > πj. Then the number of inversions of π is denoted inv(π). For example, the

1For all families of statistic-encoding polynomials defined in this extended abstract, we take the
convention that the 0th polynomial is always defined to be 1.
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inversions of π = 1432 are (2, 3), (2, 4), and (3, 4), so inv(π) = 3. The joint distribution
of the inversion number and descent number is given by the nth q-Eulerian polynomial
An(q, t) defined by

An(q, t) := ∑
π∈Sn

qinv(π)tdes(π)+1.

We say that π is an alternating permutation if π1 > π2 < π3 > π4 < · · · . It is well
known that the number of alternating permutations in Sn is the nth Euler number En
defined by ∑∞

n=0 Enxn/n! = sec x + tan x. In [3], Chebikin introduced a variant of the
notion of descents which is closely related to alternating permutations and the Euler
numbers: i ∈ [n− 1] is called an alternating descent of π if i is odd and πi > πi+1 or if i
is even and πi < πi+1. We define an alternating run of π to be a maximal consecutive
subsequence of π containing no alternating descents. For example, the alternating runs
of the permutation 3421675 are 342, 1, and 675.

The notions of alternating descents and alternating runs give rise to an “alternating
analogue” for nearly every concept defined in terms of descents. For example, the
alternating descent composition and the alternating descent number altdes are defined in
the obvious way. The distribution of the alternating descent number over Sn is given by
the nth alternating Eulerian polynomial defined by

Ân(t) := ∑
π∈Sn

taltdes(π)+1.

2.2 Noncommutative symmetric functions

Let Q〈〈X1, X2, . . . 〉〉 be the Q-algebra of formal power series in countably many
noncommuting variables X1, X2, . . . . Consider the ribbon functions rL ∈ Q〈〈X1, X2, . . . 〉〉
defined as follows. For a composition L = (L1, . . . , Lk), let

rL := ∑
i1,...in

Xi1 Xi2 · · ·Xin

where the sum is over all i1, . . . , in satisfying

i1 ≤ · · · ≤ iL1︸ ︷︷ ︸
L1

> iL1+1 ≤ · · · ≤ iL1+L2︸ ︷︷ ︸
L2

> · · · > iL1+···+Lk−1+1 ≤ · · · ≤ in︸ ︷︷ ︸
Lk

.

Let Sym denote the vector space with basis {rL}; then Sym is a graded Q-subalgebra of
Q〈〈X1, X2, . . . 〉〉. The elements of Sym are called noncommutative symmetric functions and
were introduced in the seminal paper [7] of Gelfand et al.

In particular, define the noncommutative symmetric function hn by
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hn := r(n) = ∑
i1≤···≤in

Xi1 Xi2 · · ·Xin

for n ≥ 1 and let h0 := 1. These are noncommutative versions of the complete symmetric
functions hn. The hn are algebraically independent and generate Sym, so to define a
Q-algebra homomorphism on Sym, it suffices to define the map on the hn.

In what follows, we will make use of a reciprocity theorem relating the hn and rL.
This theorem was first proved in an equivalent form by the first author [8, Theorem 5.2],
and we call this the “run theorem” because it can be used, as we do here, to prove many
formulas counting permutations with restrictions on increasing runs.

Theorem 1 (Run theorem). Suppose that the sequences {vn}n≥0 and {wn}n≥0 are related by

∞

∑
n=0

vnxn =

( ∞

∑
n=0

wnxn
)−1

where v0 = w0 = 1. Then

∑
L

wLrL =

( ∞

∑
n=0

vnhn

)−1

where the sum on the left is over all compositions L, and wL is defined by wL := wL1wL2 · · ·wLk

where L = (L1, L2, . . . , Lk).

3 Our method

3.1 Set-up: three homomorphisms

Many results in the next two sections are obtained by applying certain homomorphisms
to various identities involving noncommutative symmetric functions. The simplest of
these homomorphisms is the map Φ : Sym → Q[[x]] defined by Φ(hn) = xn/n!. We
now give an alternating analogue and a q-analogue of Φ. Define the homomorphism
Φ̂ : Sym → Q[[x]] by Φ̂(hn) = Enxn/n! and define the homomorphism Φq : Sym →
Q[[q, x]] by Φq(hn) = xn/[n]q!.

For our applications, we need to determine the effect of these homomorphisms on the
ribbon functions. Let β(L) be the number of permutations with descent composition L,
let β̂(L) be the number of permutations with alternating descent composition L, and let

βq(L) := ∑
Comp(π)=L

qinv(π)

be the polynomial counting permutations with descent composition L by inversion
number.
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Lemma 2. Let L be a composition of n. We have

Φ(rL) = β(L)
xn

n!
, Φ̂(rL) = β̂(L)

xn

n!
, and Φq(rL) = βq(L)

xn

[n]q!
.

See [11, 22] for a proof of Lemma 2.

3.2 Example: David and Barton’s formula

The homomorphisms Φ, Φ̂, and Φq give us a general principle that whenever we have an
exponential generating function that counts permutations with a restriction on increasing
run lengths, there is an analogous exponential generating function—obtained by replacing
xn/n! by Enxn/n!—for counting permutations with the same restriction on alternating
run lengths, as well as an analogous q-exponential generating function—obtained by
replacing xn/n! by xn/[n]q!—for counting permutations with the same restriction on
increasing run lengths but also keeping track of the inversion number.

As a first example, let us show how we can derive David and Barton’s formula
(1.1) as well as an alternating analogue and a q-analogue of (1.1) using these three
homomorphisms. First we need the following lemma, which is easily proven using the
run theorem by taking wn = 1 for all n < m and wn = 0 for all n ≥ m.

Lemma 3. Let m be a positive integer. Then

∑
L

rL =
( ∞

∑
n=0

(hmn − hmn+1)
)−1

(3.1)

where the sum on the left is over all compositions L with all parts less than m.

Observe that applying the homomorphism Φ to (3.1) recovers David and Barton’s
formula (1.1). Applying Φ̂ to (3.1) instead, we obtain an alternating analogue of (1.1).

Theorem 4. Let m be a positive integer, and let am,n denote the number of permutations in Sn
with all alternating runs having length less than m. Then

∞

∑
n=0

am,n
xn

n!
=

[
∞

∑
n=0

(
Emn

xmn

(mn)!
− Emn+1

xmn+1

(mn + 1)!

)]−1

.

And, applying Φq to (3.1) yields a q-analogue of (1.1). Let Avn(12 · · ·m) denote the
set of n-permutations with all increasing runs having length less than m.2

2This notation comes from the literature on permutation pattern avoidance; permutations with all
increasing runs having length less than m are precisely the permutations avoiding the monotone consecutive
pattern 12 · · ·m.
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Theorem 5. Let m be a positive integer. Then

∞

∑
n=0

∑
π∈Avn(12···m)

qinv(π) xn

[n]q!
=

[
∞

∑
n=0

( xmn

[mn]q!
− xmn+1

[mn + 1]q!

)]−1

.

Theorem 4 is new to our approach, whereas Theorem 5 was also recently proven by
Elizalde [5] using a q-analogue of the Goulden–Jackson cluster method in the context of
consecutive pattern avoidance.

3.3 Example: A generalization of David and Barton’s formula

The next main result is motivated by the following question: Since[
∞

∑
n=0

(−1)n xn

n!

]−1

=
∞

∑
n=0

xn

n!
,

do the coefficients of reciprocals of the partial sums of ∑∞
n=0(−1)nxn/n! have a

combinatorial interpretation? There are negative coefficients for partial sums with an
odd number of terms, but for those with an even number of terms the reciprocals have
all non-negative coefficients, and here we give a combinatorial interpretation for these
coefficients. Related results can be found in [10].

Theorem 6. Let k be a positive integer, and let bk,n be the number of permutations in Sn in which
every increasing run has length congruent to 0 or 1 modulo 2k. Then

∞

∑
n=0

bk,n
xn

n!
=

[
2k−1

∑
n=0

(−1)n xn

n!

]−1

.

We first state a lemma, which can be obtained via the run theorem by taking wn = 1
whenever n is congruent to 0, 1, . . . , or m− 1 modulo km and taking wn = 0 otherwise.

Lemma 7. Let m and k be positive integers. Then

∑
L

rL =
( k−1

∑
n=0

(hmn − hmn+1)
)−1

(3.2)

where the sum on the right is over all compositions L where every part is congruent to 0, 1, . . . , or
m− 1 modulo km.

Applying the homomorphism Φ to (3.2), we obtain the following.
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Theorem 8. Let m and k be positive integers, and let ck,m,n be the number of permutations in Sn
in which every increasing run has length congruent to 0, 1, . . . , or m− 1 modulo km. Then

∞

∑
n=0

ck,m,n
xn

n!
=

[
k−1

∑
n=0

( xmn

(mn)!
− xmn+1

(mn + 1)!

)]−1

. (3.3)

Note that Theorem 6 follows by setting m = 2 in (3.3) and we can recover David and
Barton’s formula by taking the limit as k→ ∞ in (3.3). We can also obtain an alternating
analogue and a q-analogue of this formula, but we omit these results here.

3.4 Example: Eulerian polynomials

Lastly, we demonstrate how the homomorphisms Φ, Φ̂, and Φq can be used to recover
several results relating to the polynomials An(t), Ân(t), and An(q, t) defined in Section 2.1.
As before, we begin with a noncommutative symmetric function formula; this one can be
obtained from the run theorem by setting wn = t for all n ≥ 1.

Lemma 9. Let m be a positive integer. Then

∑
L

tl(L)rL = (1− t)
(

1− t
∞

∑
n=0

(1− t)nhn

)−1
(3.4)

where the sum on the left is over all compositions L, and l(L) denotes the number of parts of L.

Applying Φ to (3.4) yields the classical exponential generating function

∞

∑
n=0

An(t)
xn

n!
=

1− t
1− te(1−t)x

for Eulerian polynomials. Applying Φ̂ instead yields the exponential generating function

∞

∑
n=0

Ân(t)
xn

n!
=

1− t
1− t(sec((1− t)x) + tan((1− t)x))

for alternating Eulerian polynomials, proved earlier in an equivalent form by Chebikin [3].
Finally, applying Φq yields Stanley’s [18] well-known q-exponential generating function

∞

∑
n=0

An(q, t)
xn

[n]q!
=

1− t
1− t expq((1− t)x)

for q-Eulerian polynomials, where expq(x) := ∑∞
n=0 xn/[n]q!.
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4 Homomorphisms arising from shuffle-compatibility

4.1 Quasisymmetric functions and shuffle-compatibility

Let x1, x2, . . . be commuting variables. Then QSym is the Q-subalgebra of Q[[x1, x2, . . . ]]
with basis given by the fundamental quasisymmetric functions {FL}L�n, where

FL := ∑
i1≤i2≤···≤in

ij<ij+1 if j∈Des(L)

xi1 xi2 · · · xin

and Des(L) is the descent set of any permutation with descent composition L. The
elements of QSym are called quasisymmetric functions and were introduced by the first
author [9]. The algebra QSym of quasisymmetric functions is closely related to the
algebra Sym of noncommutative symmetric functions; for instance, they are dual as Hopf
algebras. We will make use of a natural homomorphism τ : Sym→ QSym given by

τ(rL) = ∑
Comp(π)=L

FComp(π−1).

This homomorphism is obtained by composing the canonical inclusion from Sym to
the Malvenuto–Reutenauer algebra with the canonical projection from the Malvenuto-
Reutenauer algebra to QSym; see [13, Section 8] for details.

Recently, the present authors initiated the study of shuffle-compatible permutation
statistics [12]. Roughly speaking, a permutation statistic st is said to be shuffle-compatible
if the distribution of st over the “shuffles” of two permutations π and σ depend only
on st(π), st(σ), and the lengths of π and σ. We will not need the precise definition of
a shuffle-compatible permutation statistic here, but we note that the descent number is
shuffle-compatible whereas the alternating descent number and inversion number are
not. Other classical permutation statistics known to be shuffle-compatible include the
major index, comajor index, and peak number.

A permutation statistic is called a descent statistic if it depends only on the descent
composition. For example, the descent number, alternating descent number, major index,
comajor index, and peak number are all descent statistics, but the inversion number inv is
not. Given a descent statistic st, we write st(L) to mean the value of st on any permutation
with descent composition L. Thus every descent statistic st induces an equivalence relation
on the set of compositions in the following way: we say that compositions J and K are
st-equivalent if |J| = |K| and st(J) = st(K). For example, the compositions J = (3, 1, 4)
and K = (2, 4, 2) are des-equivalent.

The following is one of our main theorems in [12], relating the study of shuffle-
compatible descent statistics to the theory of quasisymmetric functions.



9

Theorem 10. A descent statistic st is shuffle-compatible if and only if there exists a Q-algebra
homomorphism φst : QSym → Ast, where Ast is a Q-algebra with basis {aα} indexed by
st-equivalence classes α of compositions, such that φst(FL) = aα whenever L ∈ α.

Here, we note that Ast is called the shuffle algebra of st and the multiplication of its
basis elements aα encode the distribution of st over shuffles of permutations.

Given a shuffle-compatible descent statistic st, let us define the homomorphism Φst by
Φst := φst ◦ τ. As with Φ, Φ̂, and Φq, we can use the homomorphisms Φst under the same
framework to produce analogous permutation enumeration formulas for the “inverse
statistic” corresponding to st. We shall illustrate this with Φdes, the homomorphism
arising from the shuffle-compatibility of the descent number.

4.2 Counting permutations by inverse descents

The Hadamard product ∗ on formal power series in t is given by( ∞

∑
n=0

antn
)
∗
( ∞

∑
n=0

bntn
)
=

∞

∑
n=0

anbntn.

Let Q[[t∗, x]] denote the Q-algebra of formal power series in t and x, where the
multiplication is Hadamard product in t. The shuffle algebra of the descent number is a
subalgebra of Q[[t∗, x]], and we can describe Φdes : Sym→ Q[[t∗, x]] by

Φdes(rL) = ∑
Comp(π)=L

tides(π)+1

(1− t)n+1 xn,

where ides is the inverse descent number statistic defined by ides(π) := des(π−1). In
particular, Φdes(hn) = Φdes(r(n)) = txn/(1− t)n+1.

Let
Mides

m,n (t) := ∑
π∈Avn(12···m)

tides(π)+1.

By applying Φdes to (3.1), we obtain

∞

∑
n=0

Mides
m,n (t)

(1− t)n+1 xn =

[
t

(1− t)2 x−
∞

∑
k=1

( t
(1− t)mk+1 xmk − t

(1− t)mk+2 xmk+1
)]−1

,

where the reciprocal is with respect to the Hadamard product in t. After some additional
algebraic manipulations, we arrive at the following “Hadamard product-free” formula:
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Theorem 11. Let m be a positive integer and let ω := e2πi/m. Then

∞

∑
n=0

Mides
m,n (t)

(1− t)n+1 xn = m
∞

∑
k=0

[
m−1

∑
j=1

1−ω−j

(1−ω jx)k

]−1

tk

=
∞

∑
k=0

[
∞

∑
j=0

((
k + jm− 1

k− 1

)
xjm −

(
k + jm
k− 1

)
xjm+1

)]−1

tk.

This is a new result which refines David and Barton’s formula by inverse descents.
Note that taking the limit as m→ ∞ and extracting coefficients of xn recovers the classical
identity An(t)/(1− t)n+1 = ∑∞

k=0 kntk for Eulerian polynomials.
Let us discuss one more application of the homomorphism Φdes. The nth two-sided

Eulerian polynomial An(s, t) is defined by

An(s, t) := ∑
π∈Sn

sdes(π)tides(π).

The formula
An(s, t)

(1− s)n+1(1− t)n+1 =
∞

∑
j,k=0

(
jk + n− 1

n

)
sjtk (4.1)

was proven by Carlitz–Roselle–Scoville [2] and by Petersen [16]; applying Φdes to (3.4)
leads to a rederivation of this formula.

4.3 Counting permutations by peaks and inverse peaks

Given π ∈ Sn, we say that i is a peak of π if 2 ≤ i ≤ n − 1 and πi−1 < πi > πi+1;
let pk(π) be the number of peaks of π. The peak number pk is a shuffle-compatible
permutation statistic, so it induces a homomorphism Φpk which can be used to produce
new formulas counting permutations by “inverse peaks”. Like the descent number shuffle
algebra, the peak number shuffle algebra is a subalgebra of Q[[t∗, x]]. We can describe
Φpk : Sym→ Q[[t∗, x]] by

Φpk(rL) = ∑
Comp(π)=L

22 ipk(π)+1tipk(π)+1(1 + t)n−2 ipk(π)−1

(1− t)n+1 xn,

where ipk(π) := pk(π−1) is the number of inverse peaks of π.
We end this paper with an example of a new formula which can be obtained via the

homomorphism Φpk. Define the nth two-sided peak polynomial Pn(s, t) by

Pn(s, t) := ∑
π∈Sn

spk(π)tipk(π).
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Theorem 12. Let n be a positive integer. Then

1
4

(
(1 + s)(1 + t)
(1− s)(1− t)

)n+1

Pn

(
4s

(1 + s)2 ,
4t

(1 + t)2

)
=

∞

∑
i,j=0

n

∑
k=0

(
2ij
k

)(
2ij + n− k− 1

n− k

)
sitj.
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