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The Noncrossing Bond Poset of a Graph
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Abstract. Given a graph G with vertices labeled by {1, 2 . . . , n}, the bonds of G are
in natural bijection with the set partitions of n. We say a bond is noncrossing if its
associated partition is noncrossing. Ordering the noncrossing bonds of G by inclusion,
one gets a noncrossing analogue of the bond lattice of G called the noncrossing bond
poset. In this extended abstract we study this poset showing that several properties of
the bond lattice have analogues in the noncrossing bond poset.
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1 Introduction

The partition lattice, Πn, consists of set partitions of [n] := {1, 2, . . . , n} ordered by re-
finement. It has several nice combinatorial properties including being supersolvable and
shellable. By removing the crossing partitions from the partition lattice, one gets an-
other lattice called the noncrossing partition lattice. It too has many nice combinatorial
properties. For example, it is supersolvable, rank symmetric, has a Catalan number of
elements, and its Möbius value is a Catalan number. See Simion’s survey article [6] for
more information about the noncrossing partition lattice.

Now suppose that G is a graph on [n]. We can think of the bond lattice of G as a
subposet of Πn. We do this by restricting to the set of partitions in Πn such that for each
block B in the partition, the induced subgraph of G with vertex set B is connected. For
example, if G is the path 1− 2− 3, the partition 12/3 is in the bond lattice, but 13/2 is
not since there is no edge between 1 and 3. Using this idea, one can see that Πn is the
bond lattice for the complete graph. In general, the bond lattice of G carries important
combinatorial information about the graph. For example, it encodes exactly the same
information as the cycle matroid associated to the graph. Moreover, its characteristic
polynomial is (essentially) the chromatic polynomial of the graph. See [7, §2] for back-
ground on bond lattices. Since the partition lattice is the bond lattice of the complete
graph, one can consider the noncrossing partition lattice as a noncrossing version of a
bond lattice. It is this idea that is the starting point for our work.
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Figure 1: A graph and several subgraphs

In the next section, we explicitly define the noncrossing bond poset of a graph and
describe some of its structural properties including necessary and sufficient conditions
on the graph which guarantee that its noncrossing bond poset is a lattice. Section 3
is focused on the family of perfectly labeled graphs. We show that in this setting, the
noncrossing bond poset is shellable and when it is a lattice, it is supersolvable. This
is done using edge labelings. In Section 4, we use Blass and Sagan’s work [3] on NBB
sets to give a combinatorial interpretation for the Möbius function and the characteristic
polynomial of the noncrossing bond poset of a family of graphs. We finish with a brief
discussion of an action of the dihedral group.

2 The Structure of the Noncrossing Bond Poset

We assume the reader is familiar with some basic graph theory concepts (see [8, Graph
Theory Appendix] for any undefined terms) as well as basic concepts related to posets
(see [8, §3] for background and notation). Let G be a graph. For the remainder of this
paper, unless otherwise noted, we will assume that the vertex set of G is [n]. We will
use the notation V(G) for the vertex set of G and E(G) for the edge set of G. When
we write out edges, we will write them in the form ij where i < j. Moreover, we will
always draw our graphs so that the vertices lie on a circle with vertex 1 at the top and the
remaining vertices appearing in clockwise order around the circle. Edges will always be
drawn so that they are the line segments between their endpoints. We will refer to this
as the graphical representation of G. We say that two edges of G cross if their respective line
segments intersect in the graphical representation. See Figure 1 for several examples of
graphical representations.

A subgraph of a graph G is called spanning if it contains all the vertices of G. Note that
when considering spanning subgraphs of G, it is enough to just know the edges which
appear in the subgraph. Because of this, we will often make no distinction between
subsets of E(G) and spanning subgraphs of G. A subgraph H of a graph G is called
induced if whenever u and v are vertices in H and uv is an edge of G, uv is an edge
of H. We say a spanning subgraph of G is a bond if every connected component of the
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subgraph is induced. As an example, consider the graph G in Figure 1. The subgraphs
H and H′ are bonds, but H′′ is not since it is missing the edge 16. To each bond H,
one can associate a set partition, π(H), so that i and j are in the same block of π(H)
if and only if i and j are in the same connected component of H. For example, for the
bond H in Figure 1, we have that π(H) = 12345/6. A partition π = B1/B2/ · · · /Bk
is called crossing if there exists a, c ∈ Bi and b, d ∈ Bj with i 6= j and a < b < c < d.
For example, the partition 1248/56/37 is crossing since we can pick 2, 4 ∈ 1248 and
3, 7 ∈ 37. A partition is noncrossing if it is not crossing. We say the bond H is crossing
(resp. noncrossing) if π(H) is crossing (resp. noncrossing). It is not hard to verify the
following lemma.

Lemma 1. A bond H is crossing if and only if there exists edges in H in different connected
components which cross in the graphical representation of H.

Note that this lemma implies that it is possible for edges to cross in the graphical
representation of a noncrossing bond as long as these edges are in the same connected
component. For example, the bond H in Figure 1 is noncrossing since it corresponds to
12345/6, but it has crossing edges, namely 14 and 35.

The bond lattice of G, denoted by LG, is the collection of bonds of G ordered by
inclusion. Removing all the bonds in LG which are crossing gives us our main object of
study.

Definition 2. Let G be a graph. The noncrossing bond poset, denoted by NCG, is the collec-
tion of noncrossing bonds of G ordered by inclusion.

See Figure 3 for an example of a graph and its noncrossing bond poset. We wish to
emphasize that NCG need not be a lattice. For example, let G be the graph with vertex
set [4] and edges 13 and 24. It is easy to see that NCG has no maximum element. The
issue is that the graph itself is a crossing bond and so does not appear in NCG. From
this example, one might conjecture that we always get a meet semi-lattice. Unfortunately,
this is not the case. For example, consider the graph G in Figure 1. The bonds H and H′

are noncrossing and so appear in NCG. Since the bonds are ordered by containment, if
X ≤ H, H′ then X ⊆ H ∩ H′. However, H ∩ H′ = {14, 35}, which is crossing and thus
not in NCG. Since {14} and {35} are noncrossing bonds, H and H′ do not have a meet
in NCG.

Definition 3. Let G be a graph. We say G is crossing closed if whenever a, b, c, d ∈ V(G) with
a < b < c < d and ac, bd ∈ E(G), there exists a unique minimum (with respect to inclusion)
induced connected component containing a, b, c, d.

Note that the graph G in Figure 1 is not crossing closed since 14 and 35 are both
contained in the minimal induced connected components with vertices 1, 2, 3, 4, 5 and
with vertices 1, 3, 4, 5, 6. On the other hand, any tree is crossing closed. It turns out that
not being crossing closed is the only obstruction to NCG being a lattice.
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Figure 2: A graph whose noncrossing bond poset is not graded.

Theorem 4. Let G be a graph. Then NCG is a lattice if and only if G is crossing closed.
Moreover, if G is crossing closed and H, H′ ∈ NCG, then H ∧ H′ = H ∩ H′.

In addition to NCG not necessarily being a lattice, NCG need not be graded. Con-
sider the graph in Figure 2. The bond corresponding to the partition 1/26/35/4 is
noncrossing, but the only element of NCG which covers 1/26/35/4 is 123456. It follows
that 1/2/3/4/5/6 l 1/26/3/4/5 l 1/26/35/4 l 123456 is a maximal chain in NCG.
However, there is another maximal chain 1/2/3/4/5/6 l 14/2/3/5/6 l 124/3/5/6 l
1246/3/5 l 12456/3 l 123456 and so NCG is not graded.

3 Perfectly Labeled Graphs

Definition 5. Let G be a graph. We say G is perfectly labeled if whenever ik, jk ∈ E(G) with
i < j < k, ij ∈ E(G).

It is well-known that a graph can be perfectly labeled if and only if it is chordal (see,
for example, [7, Corollary 4.10]). However, not every labeling of a chordal graph gives
rise to a perfectly labeled graph. The distinction between perfectly labeled and chordal
is immaterial to the structure of the bond lattice since the lattice does not depend on
the labeling of the vertex set. However, in the case for the noncrossing bond poset, the
structure of the poset does depend on the labeling of the graph. Because of this, we
focus on perfectly labeled graphs as opposed to just chordal graphs. The next lemma
will be useful in this section.

Lemma 6. Let G be a perfectly labeled graph. Suppose that H ≤ H′ inNCG. Moreover, suppose
that B1, B2, . . . , Bk where min B1 < min B2 < · · · < min Bk are the connected components of H
that are merged together to get H′. Then merging B1 and B2 in H creates a noncrossing bond of
G.

Proof. Let 3 ≤ i ≤ k. If merging B1 and B2 crossed with some Bi, then there exists
a, c ∈ B1 ∪ B2 and b, d ∈ Bi or a, c ∈ Bi and b, d ∈ B1 ∪ B2 with a < b < c < d. If



Noncrossing Bond Poset 5

a, c ∈ B1 ∪ B2 and b, d ∈ Bi, then min B1 < min B2 < b < c < d which implies either B1
and Bi cross or B2 and Bi cross. Neither is possible since H is noncrossing. A similar
argument shows that it is not possible that there exists a, c ∈ Bi and b, d ∈ B1 ∪ B2
with a < b < c < d. Moreover, merging B1 and B2 cannot cross any other connected
components of G since that would mean that H′ was crossing. Thus, it suffices to show
that merging B1 and B2 in H forms a bond of G. In [4], Hallam, Martin, and Sagan
showed that every connected graph which is perfectly labeled contains an increasing
spanning tree (i.e. a spanning tree where the labels of the vertices along any path from
the smallest vertex to any other vertex are increasing). It follows that in H′ there is an
increasing path from min B1 to min B2. Except for min B2, this path must only contain
vertices from B1 and so there is an edge between B1 and B2. It follows that merging B1
and B2 gives a bond of G.

As we saw earlier, the noncrossing bond poset may not be graded. However, if G is
perfectly labeled and G is a noncrossing bond of itself (for example if G is connected),
then one can use the previous lemma to show that NCG is graded. Throughout the rest
of the abstract, we will use cc(G) to denote the number of connected components of G.

Proposition 7. Let G be a perfectly labeled graph. If H, H′ ∈ NCG and H l H′ then exactly
two connected components of H merge together to get H′ and thus cc(H) = cc(H′) + 1. Addi-
tionally, if G is a noncrossing bond of itself, then NCG is graded and for H ∈ NCG, the rank of
H is given by ρ(H) = n− cc(H).

It is well-known that a graph G is chordal if and only if the bond lattice of G is
supersolvable (see [7, §4] for details). We will now show an analogue of this result for
the noncrossing bond poset. To do this, we give an Sn EL-labeling of the noncrossing
bond poset of perfectly labeled graphs. We briefly review some material about edge
labelings of posets. For more information about edge labelings and their implications
see [8] and [9].

Let P be a graded poset. An edge labeling of P is a function λ : E(P)→ Λ where E(P)
is the set of edges of the Hasse diagram of P and Λ is a set of labels which is partially
ordered. We note here that although the labels are allowed to be partially ordered, in this
extended abstract they will always be totally ordered. Now suppose that P is a graded
poset with edge labeling λ. Let c : x0 l x1 l · · ·l xk be a saturated chain in P. We say c
is increasing if

λ(x0 l x1) < λ(x1 l x2) < · · · < λ(xk−1 l xk).

Moreover, we say c is decreasing if

λ(x0 l x1) ≥ λ(x1 l x2) ≥ · · · ≥ λ(xk−1 l xk).

Let λ be an edge labeling of P. We say λ is an EL-labeling if every interval has a
unique increasing maximal chain and this chain precedes every other maximal chain in
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Figure 3: A graph and its noncrossing bond poset with its edges labeled in blue.

the interval in lexicographic order. The edge labeling in Figure 3 is an EL-labeling. It
also has the property that every maximal chain is labeled by a permutation of [3]. Such
labelings have a special name. We say an EL-labeling of P is an Sn EL-labeling if every
maximal chain of P is labeled by a permutation of [n] where n is the rank of P. We note
that the condition that the unique maximal chain in each interval is lexicographically
first is automatically implied if the maximal chains are labeled by permutations and
thus, we only need to check that each interval has a unique increasing maximal chain.

Björner [1] and Björner and Wachs [2] showed that there are several nice topological
consequences of a poset having an EL-labeling. For example, they showed that given
a poset with an EL-labeling, the order complex of P is shellable and has the homotopy
type of a wedge of spheres. In addition to these properties, there are special properties
that a lattice with an Sn EL-labeling possesses. In particular, McNamara [5] showed that
if L is a graded lattice then L is supersolvable if and only if it has an Sn EL-labeling. We
will show that if G is perfectly labeled and connected, then it has an Sn EL-labeling.

By Proposition 7 if H l H′ in NCG, then two connected components of H merge
together in H′. Suppose that B and B′ are the connected components which merge while
going from H to H′. We define an edge labeling λ on NCG by

λ(H l H′) = max{min B, min B′} − 1.

See the poset in Figure 3 for an example of this labeling. Björner and Edelman [1]
showed that λ gives an EL-labeling of the noncrossing partition lattice (which is also the
noncrossing bond poset of the complete graph). As McNamara points out in [5], this
labeling is in fact an Sn EL-labeling. It turns out that if G is perfectly labeled, then λ is
also an Sn EL-labeling of NCG. Note that in the hypothesis of the following theorem, we
assume G has n + 1 vertices and is connected. This guarantees that NCG has rank n and
a 1̂.
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Theorem 8. Let G be a perfectly labeled graph on [n + 1] which is connected. Then NCG has
an Sn EL-labeling.

(Proof Sketch). First, it is clear that the maximal chains are labeled by permutations of
[n]. Thus it suffices to show that each interval in NCG has a unique increasing maximal
chain. Since G has n + 1 vertices, it is a subgraph of the complete graph Kn+1. It follows
that NCG is a subposet of NCKn+1 which is isomorphic to the noncrossing partition
lattice. Since it is known that λ is an EL-labeling of the noncrossing partition lattice, it is
enough to show that each interval in NCG has an increasing maximal chain.

Suppose that [X, Y] is an interval in NCG and suppose that B1, B2, . . . , Bk are the
connected components of X that will merge together to get Y. Moreover, assume that
min B1 < min B2 < · · · < min Bk. It is not hard to see that if there is an increasing
maximal chain in [X, Y], the first step must be to merge B1 and B2. Let Z be obtained
by merging B1 and B2 in X. We can apply Lemma 6 to see that Z ∈ NCG. Now
we can use induction to prove that [Z, Y] has an increasing maximal chain which can
be concatenated with the label from X to Z to give an increasing maximal chain in
[X, Y].

Corollary 9. Let G be a connected graph which is perfectly labeled. Then we have the following.

(a) NCG is shellable.

(b) If G is crossing closed, then NCG is supersolvable.

We mention here that not every connected perfectly labeled graph is crossing closed
(hence the necessity of the hypothesis in part (b) of Corollary 9). The graph in Figure 4
is perfectly labeled, but not crossing closed. This is because there are two minimal
induced connected components containing 16 and 57, namely the one containing the
vertices 1, 3, 5, 6, 7 and the one containing 1, 2, 4, 5, 6, 7.

The reader may be wondering if NCG being supersolvable implies that G is chordal
since this is the case for the bond lattice of a graph. The graph in Figure 5 shows this
is not true. It is a 4-cycle and thus is not chordal. Nevertheless, the noncrossing bond
poset is a supersolvable lattice with modular chain 1/2/3/4 l 12/3/4 l 12/34 l 1234.



8 C. Matthew Farmer and Joshua Hallam

1

3

24

G

1/2/3/4

12/3/4 13/2/4 1/24/3 1/2/34

123/4 124/3 12/34 134/2 1/234

1234

NCG

+1

−1 −1 −1 −1

+1 +1 +1 +1 +1

−2

Figure 5: Twisted 4-cycle and its noncrossing bond poset. Möbius values are in red.

4 The Möbius Function and the Characteristic Polynomial

In this section we provide a combinatorial interpretation for the Möbius function and
characteristic polynomial of the noncrossing bond poset for a family of graphs. Given a
poset P, the (one-variable) Möbius function is recursively defined by

µ(x) =

1 if x = 0̂,
− ∑

y<x
µ(y) otherwise.

Moreover, if P is graded, then the characteristic polynomial of P is given by

χ(P, t) = ∑
x∈P

µ(x)tρ(P)−ρ(x).

See [8] for background on the Möbius function and characteristic polynomial. It is well-
known that for a graph G, χ(LG, t) is (up to a factor of t) the chromatic polynomial of G
(see [7]). In [10], Whitney gave a combinatorial interpretation for the coefficients of the
chromatic polynomial in terms of NBC sets. We briefly recall some facts about NBC sets.

Let G be a graph. Put a total order on the edges of G. A broken circuit of G is a
collection of edges of G obtained by removing the smallest edge of a cycle of G. We say
a subset S of E(G) is an NBC (non-broken circuit) set if S contains no subsets which are
broken circuits. Whitney [10] showed that if

χ(LG, t) = ∑
k≥0

(−1)kcktρ(LG)−k
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then ck is the number of NBC sets of G with k edges.
As an example, let G be the 4-cycle given in Figure 5. Order the edges lexicograph-

ically. Since the graph is a cycle, every subset of the edge set is an NBC set except
for {13, 24, 34} and {12, 13, 24, 34}. It follows that the characteristic polynomial of LG is
given by

χ(LG, t) = t3 − 4t2 + 6t− 3.

Now lets compare this with the characteristic polynomial of NCG. From the Möbius
values shown in Figure 5, we see that

χ(NCG, t) = t3 − 4t2 + 5t− 2.

Since the absolute value of the coefficients of χ(NCG, t) are less than the corresponding
values in χ(LG, t), it is at least plausible that the coefficients of χ(NCG, t) count a subset
of the NBC sets of G. It turns out this is the case as we see next.

Let S be an NBC set of G. We say that S is a noncrossing NBC set if S contains no
edges which cross. Returning to our example of the 4-cycle given in Figure 5, we can
see that the only NBC sets which have crossing edges are {13, 24} and {12, 13, 24}. Note
that this means that for this particular graph the coefficients of χ(NCG, t) are counted
by noncrossing NBC sets of G. While this combinatorial interpretation need not hold for
all graphs, it does hold for a family of graphs.

Definition 10. Let G be a graph with a total ordering, E, on the edge set of G. We say that a
graph G is upper crossing closed with respect to E if it is crossing closed and whenever ac, bd
are crossing edges, then the unique minimum induced connected component containing a, b, c, d
contains an edge e such that e C ac, bd.

The 4-cycle in Figure 5 with edges ordered lexicographically is upper crossing closed.
To see why, note that the unique minimum induced connected component containing
the crossing edges 13, 24 is the entire graph which contains the edge 12 and 12 is lexi-
cographically smaller than 13. For an example of a graph which is not upper crossing
closed, consider the graph obtained by removing the edge 12 from the 4-cycle in Figure 5
while keeping the lexicographic ordering on the edge set.

Theorem 11. Let G be a graph on [n] with total ordering E on E(G). Suppose G is upper
crossing closed with respect to E. Then for H ∈ NCG,

µ(H) = (−1)n−cc(H)(# of noncrossing NBC sets of G whose join is H).

Moreover, if NCG is graded with rank function ρ(H) = n− cc(H) and

χ(NCG, t) = ∑
k≥0

(−1)kcktn−k,

then ck is the number of noncrossing NBC sets of G with k edges, where the NBC sets are with
respect to E.
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In order to prove this theorem, we make use of NBB sets introduced by Blass and
Sagan [3]. We briefly discuss their results.

Definition 12 ([3]). Let L be a lattice and let E be a partial order on the atoms of L. A subset S
of the atoms of L is bounded below if there exists an atom a such that

(a) a C s for all s ∈ S

(b) a <
∨

S

We say subset, S, of the atoms of L is an NBB set for x if S contains no bounded below sets and∨
S = x.

Theorem 13 ([3]). Let L be a lattice and let E be a partial order on the atoms of L. Then for all
x ∈ L,

µ(x) = ∑
B
(−1)|B|

where the sum is over NBB sets for x.

We are now in a position to sketch a proof of Theorem 11.

(Proof Sketch of Theorem 11). First note that the atoms of NCG are the edges of G. Order
the atoms of L by E. Using the fact that G is upper crossing closed, we can show that
a subset of atoms of NCG is NBB if and only if it is a noncrossing NBC set of G. Then
using Blass and Sagan’s result, we have that for each H ∈ NCG,

µ(H) = ∑
B
(−1)|B|

where the sum is over all the noncrossing NBC sets B such that
∨

B = H. Since B is
noncrossing,

∨
B is the same in LG and NCG. For a fixed H, all the NBC sets whose join

is H in LG have the same size, namely n− cc(H). It follows that

µ(H) = ∑
B
(−1)|B|

= ∑
B
(−1)n−cc(H)

= (−1)n−cc(H)(# of noncrossing NBC sets of G whose join is H)

The result now follows.

In [4], the authors showed that if G is perfectly labeled, then the NBC sets corre-
sponding to the lexicographic order on the edges are exactly the increasing spanning
forests of G. Moreover, if G is perfectly labeled and crossing closed, then it is upper
crossing closed with respect to the lexicographic order. Finally, by Proposition 7, if G is
perfectly labeled NCG is graded. Thus, we get the following.
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Theorem 14. Let G be a graph which is perfectly labeled. Suppose G is crossing closed and that

χ(NCG, t) = ∑
k≥0

(−1)kcktρ(NCG)−k.

Then ck is the number of noncrossing increasing spanning forests of G with k edges.

We note that in [3], Blass and Sagan used NBB sets to show that the Möbius function
of the noncrossing partition lattice counts noncrossing increasing trees and hence is a
Catalan number. The previous theorem generalizes this result since the noncrossing
partition lattice is the noncrossing bond poset of the complete graph.

5 An Action of the Dihedral Group

We finish this extended abstract with a brief discussion of an action by the dihedral
group. Recall that the bond lattice does not depend on the labeling of the vertices. Thus
if G is a graph on [n] and σ is an element of Sn, the symmetric group, then LG

∼= Lσ(G)

where σ(G) is the graph obtained by permuting the vertices by σ. However, this is not the
case for the noncrossing bond poset. For example, if we apply the permutation (123)(4)
to the twisted 4-cycle in Figure 5, we get an untwisted 4-cycle with edges 12, 23, 34, 14
and the noncrossing bond posets of the two graphs are not isomorphic. Nevertheless,
we can apply certain permutations to the graph without changing the structure of the
noncrossing bond poset.

Since the graphs we are interested in appear on a circle, we can assume that the
vertices all lie on a regular polygon. Thus, if G has n vertices, the dihedral group, D2n
acts on the graph. To define this action, we apply the standard geometric action keeping
the labels 1, 2, . . . , n in the same position. This action preserves the structure of the
noncrossing bond poset.

Proposition 15. Let G be a graph on [n]. If σ ∈ D2n, then

NCG
∼= NCσ(G).
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