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Abstract. We state the so called generalized Delta conjecture of Haglund, Remmel and
Wilson, and we survey the state of the art about this problem. We do the same with our
related generalized Delta square conjecture. Both surveys include some of our recent
results.
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1 Introduction

In [13], Haglund, Remmel and Wilson conjectured a combinatorial formula for ∆′en−k−1
en

in terms of decorated labelled Dyck paths, which they called Delta conjecture, after the
so called delta operators ∆′f introduced by Bergeron, Garsia, Haiman and Tesler [1] for
any symmetric function f . In fact in the same article [13] the authors conjectured a
combinatorial formula for the more general ∆hm ∆′en−k−1

en in terms of decorated partially
labelled Dyck paths, which we call generalized Delta conjecture.

The special case m = k = 0 gives precisely the Shuffle conjecture in [12], now a theorem
of Carlsson and Mellit [3]. The latter turns out to be a combinatorial formula for the
Frobenius characteristic of the Sn-module of diagonal harmonics studied by Garsia and
Haiman in relation to the famous n! conjecture, now n! theorem of Haiman [16].

In [17] Loehr and Warrington conjectured a combinatorial formula for ∆en ω(pn) =
∇ω(pn) in terms of labelled square paths (ending east), called square conjecture. The
special case 〈·, en〉 of this conjecture, known as q, t-square, has been proved earlier by Can
and Loehr in [2]. Recently the full square conjecture has been proved by Sergel in [22]
after the breakthrough of Carlsson and Mellit in [3].

In [5], we conjectured a combinatorial formula for [n−k]t
[n]t

∆hm ∆en−k ω(pn) in terms of
decorated partially labelled square paths that we call generalized Delta square conjecture. In
analogy with the Delta conjecture in [13], we call simply Delta square conjecture the special
case m = 0. Our conjecture extends the square conjecture of Loehr and Warrington [17]
(now a theorem [22]), i.e. it reduces to that one for m = k = 0. Moreover, it extends the
∗mdadderi@ulb.ac.be
†airaci@ulb.ac.be
‡anvdwyng@ulb.ac.be

mailto:mdadderi@ulb.ac.be
mailto: airaci@ulb.ac.be
mailto:anvdwyng@ulb.ac.be


2 Michele D’Adderio, Alessandro Iraci, and Anna Vanden Wyngaerd

generalized Delta conjecture in the sense that on decorated partially labelled Dyck paths
gives the same combinatorial statistics. Our conjecture answers a question in [13].

In the present article we sketch the state of the art about the generalized Delta con-
jecture and the generalized Delta square conjecture. In this survey we highlights some
results from our more recent works [5, 7, 6].

2 Combinatorial definitions

In order to state the generalized Delta conjecture and the generalized Delta square con-
jecture, we need to introduce some combinatorial objects.

Definition 1. A square path ending east of size n is a lattice paths going from (0, 0) to (n, n)
consisting of east or north unit steps, always ending with an east step. The set of such
paths is denoted by SQE(n). We call base diagonal of a square path the diagonal y = x + k
with the smallest value of k that is touched by the path (so that k ≤ 0). The shift of the
square path is the non-negative value −k. The breaking point of the square path is the
lowest point in which the path touches the base diagonal. A Dyck path is a square path
whose breaking point is (0, 0).

For example, the path in Figure 1 has shift 3.
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Figure 1: Example of an element in PLSQE(2, 6)∗1 with reading word 241231.

Definition 2. A partially labelled square path ending east is a square path ending east whose
vertical steps are labelled with (not necessarily distinct) non-negative integers such that
the labels appearing in each column are strictly increasing bottom to top, there is at
least one nonzero label labelling a vertical step starting from the base diagonal, and if
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the path starts with a vertical step, this first step’s label is nonzero. The set of partially
labelled square paths ending east with m zero labels and n nonzero labels is denoted by
PLSQE(m, n). The subset of the Dyck paths, called partially labelled Dyck paths, is denoted
by PLD(m, n).

Definition 3. Let P be a (partially labelled) square path ending east of size n + m. We
define its area word to be the sequence of integers a(P) = (a1(P), a2(P), · · · , an+m(P))
where the i-th vertical step of the path starts from the diagonal y = x + ai(P). For
example the path in Figure 1 has area word (0, −3, −3, −2, −2, −1, 0, 0).

Definition 4. We define for each P ∈ PLSQE(m, n) a monomial in the variables x1, x2, . . . :
we set

xP :=
n+m

∏
i=1

xli(P)

where li(P) is the label of the i-th vertical step of P (the first being at the bottom), where
we conventionally set x0 = 1. The fact that x0 does not appear in the monomial explains
the word partially.

Definition 5. The rises of a square path ending east P are the indices

Rise(P) := {2 ≤ i ≤ n + m | ai(P) > ai−1(P)},

or the vertical steps that are directly preceded by another vertical step. Taking a subset
DRise(P) ⊆ Rise(P) and decorating the corresponding vertical steps with a ∗, we obtain
a decorated square path, and we will refer to these vertical steps as decorated rises.

Definition 6. Given a partially labelled square path, we call zero valleys its vertical steps
with label 0 (which are necessarily preceded by a horizontal step, hence the name val-
leys).

Definition 7. Given a partially labelled square path D, we define its reading word σ(D)
as the sequence of nonzero labels, read starting from the base diagonal going bottom left
to top right, then moving to the next diagonal again going bottom left to top right, and
so on.

The set of partially labelled decorated square paths ending east with m zero labels,
n nonzero labels and k decorated rises is denoted by PLSQE(m, n)∗k. The subset of the
Dyck paths is denoted by PLD(m, n)∗k. See Figure 1 and Figure 2 for an example.

We define two statistics on this set that reduce to the same statistics as defined in [17]
when m = k = 0.

Definition 8. Let P ∈ PLSQE(m, n)∗k and s be its shift. Define

area(P) := ∑
i 6∈DRise(P)

(ai(P) + s).
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Figure 2: Example of an element in PLD(2, 6)∗2 with reading word 134626.

More visually, the area is the number of whole squares between the path and the base
diagonal and not contained in rows containing a decorated rise.

For example, the path in Figure 1 has area 11.

Definition 9. Let P ∈ PLSQE(m, n). For 1 ≤ i < j ≤ n + m, we say that the pair (i, j) is
an inversion if

• either ai(P) = aj(P) and li(P) < lj(P) (primary inversion),

• or ai(P) = aj(P) + 1 and li(P) > lj(P) (secondary inversion),

where li(P) denotes the label of the vertical step in the i-th row.
Then we define

dinv(P) := #{0 ≤ i < j ≤ n + m | (i, j) is an inversion}
+ #{0 ≤ i ≤ m + n | ai(P) < 0 and li(P) 6= 0}.

This second term is referred to as bonus dinv.

For example, the path in Figure 1 has dinv 6: 2 primary inversions, i.e. (1, 7) and
(2, 3), 1 secondary inversion, i.e. (1, 6), and 3 bonus dinv, coming from the rows 3, 4 and
6. Notice that Dyck paths coincide with the square paths with no bonus dinv.

3 Symmetric functions

In this short section we limit ourself to recall the definitions needed to state the Delta
conjectures, in particular the definition of the Delta operators. For the missing notation
we refer to [8, Section 1] or [10].
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We denote by Λ the algebra over the field Q(q, t) of symmetric functions in the vari-
ables x1, x2, . . . . We denote by en, hn and pn the elementary, complete homogeneous and
power symmetric function of degree n, respectively. We denote by ω the involution of Λ
defined by ω(en) := hn for all n.

Also, for any partition µ, we denote by sµ ∈ Λ the corresponding Schur function. It is
well-known that the symmetric functions {sµ}µ form a basis of Λ. The Hall scalar product
on Λ, denoted 〈 , 〉, can be defined by stating that the Schur functions are an orthonormal
basis.

Let H̃µ ∈ Λ denote the (modified) Macdonald polynomial indexed by the partition µ. As
the polynomials {H̃µ}µ form a basis of Λ, given a symmetric function f ∈ Λ, we can
define the Delta operators ∆ f and ∆′f on Λ by setting

∆ f H̃µ := f [Bµ(q, t)]H̃µ and ∆′f H̃µ := f [Bµ(q, t)− 1]H̃µ, for all µ, (3.1)

where Bµ(q, t) = ∑c∈µ qa′µ(c)tl′µ(c) (a′µ(c) and l′µ(c) are the coarm and coleg of c in µ,
respectively) and the square brackets denote the plethystic substitution: if X = x1 + x2 +
. . . is a sum of monomials, then f [X] := f (x1, x2, . . . ).

For example, if µ = (3, 2) and f = e4, then B(3,2)(q, t) = 1 + q + q2 + t + qt, so
that f [Bµ(q, t)] = e4(1, q, q2, t, qt) = q4t2 + q4t + q3t2 + q3t + q2t2 and f [Bµ(q, t) − 1] =
e4(q, q2, t, qt) = q4t2.

Finally, we recall here the notation for the t-analogue of n ∈N:

[n]t := 1 + t + t2 + · · ·+ tn−1.

4 The generalized Delta conjecture

4.1 Statement

Definition 10. We define a formal series in the variables x = (x1, x2, . . . ) and coefficients
in N[q, t]

PLDx,q,t(m, n)∗k := ∑
D∈PLD(m,n)∗k

qdinv(D)tarea(D)xD.

The following conjecture is stated by Haglund, Remmel and Wilson in [13].

Conjecture 11 (Generalized Delta). For m, n, k ∈N, m ≥ 0 and n > k ≥ 0,

∆hm ∆′en−k−1
en = PLDx,q,t(m, n)∗k.
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4.2 State of the art

The case m = k = 0, i.e. the Shuffle conjecture, has been proved by Carlsson and Mellit
in [3]. Several special cases have also been proved in the original work of Haglund,
Remmel and Wilson [13].

We limit ourselves to summarize in the following table some of the most general
special cases that have been proved more recently.

Conditions Reference
m = 0 and q = 0 [9]
m = 0 and q = 1 [21]

m = 0 and 〈·, hn−dhd〉 [4]
〈·, en−dhd〉 Section 4.3

t = 0 or q = 0 Section 4.3

We should mention here also the proof of the so called 4-variable Catalan conjecture
due to Zabrocki [25], which, combined with the results in [8], gives a “compositional”
refinement of the case m = 0 and 〈·, en−dhd〉.

For more results on the Delta conjecture, i.e. the case m = 0 see [14, 15, 14, 18, 19, 20,
24, 23].

4.3 Our recent results

Definition 12. Given two sequences (a1, . . . , am), (b1, . . . , bn) of pairwise distinct ele-
ments, their shuffle (a1, . . . , am)� (b1, . . . , bn) is the set of sequences (c1, . . . , cm+n) such
that

• {ck | 1 ≤ k ≤ m + n} = {ai, bj | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

• cr = ai, cs = aj, i < j =⇒ r < s,

• cr = bi, cs = bj, i < j =⇒ r < s,

i.e. it is the set of sequences obtained by interlacing the elements of the two starting
sequences while preserving their relative order.

Definition 13. Given µ ` n− d and ν ` d, a µ, ν-shuffle is a sequence of numbers from 1
to n in

(1, . . . , µ1)� · · ·� (n− µ`(µ) + 1, . . . , n− d)

� (n− d + ν1, . . . , n− d + 1)� · · ·� (n, . . . , n− ν`(ν) + 1)

i.e. a shuffle of `(µ) increasing sequences of length µ1, . . . , µ`(µ), and `(ν) decreasing
sequences of length ν1, . . . , ν`(ν), obtained by picking every time the smallest available
positive integers.
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It is well known (cf. [10, Chapter 6]) that taking the scalar product of the combinato-
rial side of any of the Delta conjectures with eµ · hν corresponds to taking the subsets of
paths whose reading word is a µ, ν-shuffle.

The following theorem is proved in [6]. It extends the case m = 0 proved in [8].

Theorem 14. For m, n, k, d ∈N with n > k ≥ 0, n ≥ d ≥ 0 and m ≥ 0

〈∆hm ∆′en−k−1
en, en−dhd〉 = ∑

D∈PLD(m,n)∗k

σ(D) is a (n−d),(d)-shuffle

qdinv(D)tarea(D)xD. (4.1)

The following theorem is proved in [7]. It extends the case m = 0 first proved in [9],
giving a new independent proof of that special case (see also [14] and [5] for alternative
proofs).

Theorem 15. For m, n, k, d ∈N with n > k ≥ 0, n ≥ d ≥ 0 and m ≥ 0, we have

∆hm ∆′en−k−1
en

∣∣∣
t=0

= PLDx,q,0(m, n)∗k and ∆hm ∆′en−k−1
en

∣∣∣
q=0

= PLDx,0,t(m, n)∗k. (4.2)

5 The generalized Delta square conjecture

5.1 Statement

In analogy with the Delta conjecture, we will refer to the case m = 0 of the following
conjecture simply as the Delta square conjecture.

We formulated the following conjecture in [5].

Conjecture 16 (Generalized Delta square). For m, n, k ∈N, m ≥ 0 and n > k ≥ 0,

[n− k]t
[n]t

∆hm ∆en−k ω(pn) = PLSQE
x,q,t(m, n)∗k.

Remark 17. Observe that PLSQE
x,q,t(m, n)∗k is a symmetric function. Indeed, consider the

expression ∑P qdinv(P)tarea(P)xP where the sum is taken over all P ∈ PLSQE(m, n)∗k of a
fixed shape, i.e. a fixed underlying square path with prescribed zero valleys. From this
sum we can factor tarea(P), as the area is the same for all such paths P, and qa(P), where
a(P) is the contribution to the dinv of the 0 labels and of the negative letters of the area
word (the bonus dinv): indeed this contribution does not depend on the nonzero labels,
but only on the shape, so it will be the same for all our paths. What we are left with is
in fact an LLT polynomial: the argument is essentially the same as in [13, Section 6.2],
so we omit it (cf also [10, Remark 6.5]). As it is well-known that the LLT polynomials
are symmetric functions (cf. [11, Appendix]), we deduce that also PLSQE

x,q,t(m, n)∗k is
symmetric.
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This conjecture answers a question in [13, Section 8.2].

Remark 18. Notice that the case m = k = 0 of the generalized Delta square conjecture
reduces precisely to the square conjecture of Loehr and Warrington [17], recently proved
by Sergel [22] after the breakthrough of Carlsson and Mellit [3].

5.2 State of the art

We limit ourselves to summarize in the following table some of the most general special
cases that have been proved more recently.

Conditions Reference
m = 0 and k = 0 [22]
〈·, en−dhd〉 Section 5.3

q = 0 Section 5.3

We would like to mention here the early proof by Can and Loehr [2] of the special
case m = k = 0 and 〈·, en〉.

5.3 Our recent results

We recall that taking a scalar product with eµ · hν corresponds to taking the subsets of
paths whose reading word is a µ, ν-shuffle.

The following theorem is proved in [5]. It extends the case m = k = d = 0 proved by
Can and Loehr in [2].

Theorem 19. For m, n, k, d ∈N with n > k ≥ 0, n ≥ d ≥ 0 and m ≥ 0〈
[n− k]t
[n]t

∆hm ∆en−k ω(pn), en−dhd

〉
= ∑

P∈PLSQE(m,n)∗k

σ(P) is a (n−d),(d)-shuffle

qdinv(P)tarea(P)xP. (5.1)

The following theorem is proved in [5].

Theorem 20. For m, n, k, d ∈N with n > k ≥ 0, n ≥ d ≥ 0 and m ≥ 0, we have

[n− k]t
[n]t

∆hm ∆en−k ω(pn)

∣∣∣∣
q=0

= PLSQE
x,0,t. (5.2)

Observe that the case t = 0 of the generalized Delta square conjecture remains open.
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6 Relations among Delta conjectures

In [5] we proved the following results.

Proposition 21. For n ∈N, n > 0,

∆hm ∆′en−1
en

∣∣∣
t=0

= PLDx,q,0(m, n)∗0. (6.1)

Theorem 22. Given m, n ∈N, m ≥ 0 and n ≥ 1, we have the two identities

n−1

∑
s=0

(−t)s∆hm ∆′en−s−1
en = ∆hm ∆′en−1

en

∣∣∣
t=0

(6.2)

and

n−1

∑
s=0

(−t)s [n− s]t
[n]t

∆hm ∆en−s ω(pn) = ∆hm ∆′en−1
en

∣∣∣
t=0

. (6.3)

The last theorem, combined with the Delta conjectures, suggested the following one.

Theorem 23. Given m, n ∈N, m ≥ 0 and n ≥ 1, we have the two identities

n−1

∑
s=0

(−t)sPLSQE
x,q,t(m, n)∗s = PLDx,q,0(m, n)∗0 (6.4)

n−1

∑
s=0

(−t)sPLDx,q,t(m, n)∗s = PLDx,q,0(m, n)∗0. (6.5)

Proof. Fix m, n ∈N, m ≥ 0 and n > 0. Let

X :=
n−1⊔
k=0

PLSQE(m, n)∗k, (6.6)

and define a map ϕ : X → X in the following way: if P ∈ X has no rises, i.e. no two
consecutive vertical steps, then ϕ(P) := P; otherwise, consider the first rise encountered
by following the path P starting from its breaking point (notice that this rise will always
occur before the north-east corner): if the rise is decorated/undecorated, then ϕ(P) is
the path obtained from P by undecorating/decorating that rise. Observe that ϕ is clearly
an involution, whose fixed points are the paths P ∈ X with no rises, i.e. the paths of
area 0 with no decorated rises. Notice also that ϕ restricts to an involution of

Y :=
n−1⊔
k=0

PLD(m, n)∗k ⊂ X. (6.7)
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For any P ∈ X we define a weight by setting

wt(P) := (−t)dr(P)qdinv(P)tarea(P)xP (6.8)

where dr(P) is defined to be the number of decorated rises of P.
Observe that

∑
P∈X

wt(P) =
n−1

∑
s=0

(−t)sPLSQE
x,q,t(m, n)∗s (6.9)

and

∑
P∈Y

wt(P) =
n−1

∑
s=0

(−t)sPLDx,q,t(m, n)∗s. (6.10)

Suppose that P ∈ X is such that ϕ(P) 6= P. Notice that the rise occurring in the
definition of ϕ is always at distance 1 from the base diagonal, so undecorating/decorat-
ing it when it is decorated/undecorated gives dr(ϕ(P)) = dr(P)∓ 1, but area(ϕ(P)) =
area(P) ± 1. Since the decorations of the rises do not affect the dinv, we deduce that
wt(ϕ(P)) = −wt(P). This shows that in the sum ∑P∈X wt(P) all the contributions of the
P that are not fixed by ϕ cancel out, leaving the sum over the fixed points of ϕ, i.e. over
the paths with no rises, as we claimed.

The same argument applies to the sum ∑P∈Y wt(P).

These last results combined give relations among the Delta conjectures. We get im-
mediately the following curious corollary.

Corollary 24. For fixed m, n ∈ N, with m ≥ 0 and n > 0, the truth of the generalized Delta
(square) conjectures for all values of k in {0, 1, . . . , n − 1} except one imply the truth of the
missing case.
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