Cyclic quasi-symmetric functions

Ron M. Adin ${ }^{* 1}$, Ira M. Gessel ${ }^{\dagger 2}$, Victor Reiner ${ }^{\ddagger 3}$, and Yuval Roichman ${ }^{\S 1}$
${ }^{1}$ Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
${ }^{2}$ Department of Mathematics, Brandeis University, Waltham, MA 02453, USA
${ }^{3}$ School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

The ring of cyclic quasi-symmetric functions is introduced in this paper. A natural basis consists of fundamental cyclic quasi-symmetric functions; they arise as toric P-partition enumerators, for toric posets P with a total cyclic order. The associated structure constants are determined by cyclic shuffles of permutations. For every non-hook shape λ, the coefficients in the expansion of the Schur function s_{λ} in terms of fundamental cyclic quasi-symmetric functions are nonnegative. The theory has applications to the enumeration of cyclic shuffles and SYT by cyclic descents.

1 Introduction

The graded rings Sym and QSym, of symmetric and quasi-symmetric functions, respectively, have many applications to enumerative combinatorics, as well as to other branches of mathematics; see, e.g., [11, Ch. 7]. This paper introduces two intermediate objects: the graded ring cQSym of cyclic quasi-symmetric functions, and its subring cQSym ${ }^{-}$.

The rings Sym, QSym and cQSym may be defined via invariance properties. A formal power series $f \in \mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ of bounded degree is symmetric if for any $t \geq 1$, any two sequences i_{1}, \ldots, i_{t} and j_{1}, \ldots, j_{t} of distinct positive integers (indices), and any sequence m_{1}, \ldots, m_{t} of positive integers (exponents), the coefficients of $x_{i_{1}}^{m_{1}} \cdots x_{i_{t}}^{m_{t}}$ and $x_{j_{1}}^{m_{1}} \cdots x_{j_{t}}^{m_{t}}$ in f are equal. We call f quasi-symmetric if for any $t \geq 1$, any two increasing sequences $i_{1}<\cdots<i_{t}$ and $j_{1}<\cdots<j_{t}$ of positive integers, and any sequence m_{1}, \ldots, m_{t} of positive integers, the coefficients of $x_{i_{1}}^{m_{1}} \cdots x_{i_{t}}^{m_{t}}$ and $x_{j_{1}}^{m_{1}} \cdots x_{j_{t}}^{m_{t}}$ in f are equal.
Definition 1.1. A cyclic quasi-symmetric function is a formal power series $f \in \mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ of bounded degree such that, for any $t \geq 1$, any two increasing sequences $i_{1}<\cdots<i_{t}$ and $i_{1}^{\prime}<\cdots<i_{t}^{\prime}$ of positive integers, any sequence $m=\left(m_{1}, \ldots, m_{t}\right)$ of positive integers,

[^0]and any cyclic shift $m^{\prime}=\left(m_{1}^{\prime}, \ldots, m_{t}^{\prime}\right)$ of m, the coefficients of $x_{i_{1}}^{m_{1}} \cdots x_{i_{t}}^{m_{t}}$ and $x_{i_{1}^{\prime}}^{m_{1}^{\prime}} \cdots x_{i_{t}^{\prime}}^{m_{t}^{\prime}}$ in f are equal.

Denote by cQSym the set of all cyclic quasi-symmetric functions, and by cQSym ${ }_{n}$ the set of all cyclic quasi-symmetric functions which are homogeneous of degree n. It will be shown that cQSym is a graded ring; see Proposition 3.18.

Toric posets were recently introduced by Develin, Macauley and Reiner [4]. A toric analogue of P-partitions is presented in Section 3.1. Toric P-partition enumerators, in the special case of total cyclic orders, form a convenient Q-basis for a ring cQSym ${ }^{-}$, which is a subring of cQSym. A slightly extended set actually forms a Q-basis for cQSym itself. The elements of this basis are called fundamental cyclic quasi-symmetric functions, are indexed by cyclic compositions of a positive integer n (equivalently, by cyclic equivalence classes of nonempty subsets $J \subseteq[n]$), and are denoted $F_{n,[J]}^{\mathrm{cyc}}$. Normalized versions of them actually form \mathbb{Z}-bases for cQSym and cQSym ${ }^{-}$; see Proposition 2.4.

A toric analogue of Stanley's fundamental decomposition lemma for P-partitions [12, Lemma 3.15.3], given in Lemma 3.11 below, is applied to provide a combinatorial interpretation of the resulting structure constants in terms of shuffles of cyclic permutations (more accurately, cyclic words), as follows.

For a finite set A of size a, let \mathfrak{S}_{A} be the set of all bijections u : $[a] \rightarrow A$, viewed as words $u=\left(u_{1}, \ldots, u_{a}\right)$. Elements of \mathfrak{S}_{A} will be called bijective words, or simply words. If A is a finite set of integers, or any finite totally ordered set, define the cyclic descent set of $u \in \mathfrak{S}_{A}$ by

$$
\begin{equation*}
\operatorname{cDes}(u):=\left\{1 \leq i \leq a: u_{i}>u_{i+1}\right\} \subseteq[a] \tag{1.1}
\end{equation*}
$$

with the convention $u_{a+1}:=u_{1}$. The cyclic descent number of u is cdes $(u):=|\operatorname{cDes}(u)|$. A cyclic word $[\vec{u}] \in \mathfrak{S}_{A} / \mathbb{Z}_{a}$ is an equivalence class of elements of \mathfrak{S}_{A} under the cyclic equivalence relation $\left(u_{1}, \ldots, u_{a}\right) \sim\left(u_{i+1} \ldots, u_{a}, u_{1}, \ldots, u_{i}\right)$ for all i. A cyclic shuffle of two cyclic words $[\vec{u}]$ and $[\vec{v}]$ with disjoint supports is the cyclic equivalence class $[\vec{w}]$ represented by any shuffle w of a representative of $[\vec{u}]$ and a representative of $[\vec{v}]$. The set of all cyclic shuffles of $[\vec{u}]$ and $[\vec{v}]$ is denoted $[\vec{u}] Ш_{\mathrm{cyc}}[\vec{v}]$, and is clearly a union of cyclic equivalence classes.

The following cyclic analogue of Stanley's shuffling theorem [11, Ex. 7.93] provides a combinatorial interpretation for the structure constants of cQSym ${ }^{-}$.

Theorem 1.2. Let $C=A \sqcup B$ be a disjoint union of finite sets of integers. For each $u \in \mathfrak{S}_{A}$ and $v \in \mathfrak{S}_{B}$, one has the following expansion:

$$
F_{|A|,[\operatorname{cDes}(u)]}^{\mathrm{cyc}} \cdot F_{|B|,[\operatorname{Des}(v)]}^{\mathrm{cyc}}=\sum_{[\vec{w}] \in \mid \overrightarrow{\vec{u}]} \amalg_{\mathrm{cyc}}[\mid \vec{v}]} F_{|C|,[\operatorname{cDes}(w)]}^{\mathrm{cyc}} .
$$

Recall that a skew shape is called a ribbon if it does not contain a 2×2 square.

Theorem 1.3. For every skew shape λ / μ which is not a connected ribbon, all the coefficients in the expansion of the skew Schur function $s_{\lambda / \mu}$ in terms of normalized fundamental cyclic quasi-symmetric functions are nonnegative integers.

A more precise statement, which provides a combinatorial interpretation of the coefficients, is given in Theorem 4.4 below. The proof relies on the existence of a cyclic extension of the descent map on standard Young tableaux (SYT) of shape λ / μ, which was proved in [2]. Using Postnikov's result regarding toric Schur functions, one deduces that the coefficients in the expansion of a non-hook Schur function s_{λ} in terms of fundamental cyclic quasi-symmetric functions are equal to certain Gromov-Witten invariants.

Applications to the enumeration of SYT and cyclic shuffles of permutations with prescribed cyclic descent set or number follow from this theory. Using a ring homomorphism from cQSym to the ring of formal power series $\mathbb{Z}[[q]]_{\odot}$, with product defined by $q^{i} \odot q^{j}:=q^{\max (i, j)}$, Theorem 1.2 implies the following result.
Theorem 1.4. Let A and B be two disjoint sets of integers with $|A|=m$ and $|B|=n$. For each $u \in \mathfrak{S}_{A}$ and $v \in \mathfrak{S}_{B}$ the following holds.

1. If $\operatorname{des}(u)=i$ and $\operatorname{des}(v)=j$ then the number of shuffles of u and v with descent number k is equal to

$$
\binom{m+j-i}{k-i}\binom{n+i-j}{k-j}
$$

2. If $\operatorname{cdes}(u)=i$ and $\operatorname{cdes}(v)=j$ then the number of cyclic shuffles of $[\vec{u}]$ and $[\vec{v}]$ with cyclic descent number k is equal to

$$
\frac{k(m-i)(n-j)+(m+n-k) i j}{(m+j-i)(n+i-j)}\binom{m+j-i}{k-i}\binom{n+i-j}{k-j} .
$$

The group ring $\mathbb{Z}\left[\mathfrak{S}_{n}\right]$ has a distinguished subring, Solomon's descent algebra \mathfrak{D}_{n}, with basis elements

$$
D_{I}:=\sum_{\substack{\pi \in \mathfrak{S}_{n} \\ \operatorname{Des}(\pi)=I}} \pi \quad(I \subseteq[n-1]) .
$$

Cellini [3] and others looked for an appropriate cyclic analogue. We provide a partial answer, using an operation dual to the product in \mathfrak{D}_{n} - the internal coproduct Δ_{n} on QSym $_{n}$.

Theorem 1.5. cQSym_{n} and cQSym_{n}^{-}are right coideals of QSym_{n} with respect to the internal coproduct:

$$
\Delta_{n}\left(\mathrm{cQSym}_{n}\right) \subseteq \mathrm{cQSym}_{n} \otimes \mathrm{QSym}_{n}
$$

and

$$
\Delta_{n}\left(\mathrm{cQSym}_{n}^{-}\right) \subseteq \mathrm{cQSym}_{n}^{-} \otimes \mathrm{QSym}_{n}
$$

The structure constants for cQSym_{n}^{-}are nonnegative integers.

Corollary 1.6. For $n>1$ let $c 2_{0, n}^{[n]}$ be the set of equivalence classes, under cyclic rotations, of subsets $\varnothing \subsetneq J \subsetneq[n]$. Defining

$$
c D_{A}:=\sum_{\substack{\pi \in \mathfrak{S}_{n} \\ \operatorname{cDes}(\pi) \in A}} \pi \quad\left(A \in c 2_{0, n}^{[n]}\right)
$$

the additive free abelian group

$$
\mathfrak{c} \mathfrak{D}_{n}:=\operatorname{span}_{\mathbb{Z}}\left\{c D_{A}: A \in c 2_{0, n}^{[n]}\right\}
$$

is a left module for Solomon's descent algebra \mathfrak{D}_{n}.
This is an extended abstract. Proofs and more details are given in the full version of the paper [1].

2 The fundamental cyclic quasi-symmetric functions

Definition 2.1. For $n \geq 1$ and a subset $J \subseteq[n]$, denote by $P_{n, J}^{\text {cyc }}$ the set of all pairs (w, k) consisting of a word $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$ and an index $k \in[n]$ satisfying
(i) $w_{k} \leq w_{k+1} \leq \ldots \leq w_{n} \leq w_{1} \leq \ldots \leq w_{k-1}$.
(ii) If $j \in J \backslash\{k-1\}$ then $w_{j}<w_{j+1}$, where indices are computed modulo n.

Example 2.2. Let $n=5$ and $J=\{1,3\}$. The pairs $(12345,1),(23312,4)$ and $(23122,3)$ are in $P_{5,\{1,3\}}^{\text {cyc }}$ (see Figure 1), but the pairs $(12354,1),(22312,4)$ and $(23112,3)$ are not.

Figure 1: The pairs $(12345,1),(23312,4)$ and $(23122,3)$ in $P_{5,\{1,3\}}^{\mathrm{cyc}}$.

Definition 2.3. Let $c 2^{[n]}$ be the set of equivalence classes, under cyclic rotations, of subsets $\varnothing \subseteq J \subseteq[n]$. For any subset $J \subseteq[n]$ and orbit $A \in c 2^{[n]}$ define the fundamental cyclic quasi-symmetric function corresponding to J or A by

$$
F_{n, J}^{\mathrm{cyc}}:=\sum_{(w, k) \in P_{n, J}^{\mathrm{cyc}}} x_{w_{1}} x_{w_{2}} \cdots x_{w_{n}} \quad \text { and } \quad F_{n, A}^{\mathrm{cyc}}:=F_{n, J}^{\mathrm{cyc}} \quad(\forall J \in A) .
$$

The corresponding normalized fundamental cyclic quasi-symmetric function is

$$
\widehat{F}_{n, A}^{\mathrm{cyc}}:=\frac{1}{n} \sum_{J \in A} F_{n, J}^{\mathrm{cyc}} .
$$

It is shown that these are all well-defined (i.e., independent of the choice of $J \in A$).
Proposition 2.4. For each $n \geq 1$, the set $\left\{\widehat{F}_{n, A}^{\text {cyc }}: A \in c 2^{[n]} \backslash\{[\varnothing]\}\right\}$ is a \mathbb{Z}-basis for cQSym $_{n}$.
For many combinatorial applications it is natural to consider a certain subring cQSym ${ }_{n}^{-}$ of cQSym n. Define

$$
\operatorname{cQSym}_{n}^{-}:=\operatorname{span}_{\mathbb{Z}}\left\{\widehat{F}_{n, A}^{\mathrm{cyc}}: A \in c 2^{[n]} \backslash\{[\varnothing],[[n]]\}\right\} \quad(n>1)
$$

as well as $\operatorname{cQSym}_{1}^{-}:=\operatorname{span}_{\mathbb{Z}}\left\{\widehat{F}_{1,[[1]]}^{\mathrm{cyc}}\right\}, \mathrm{cQSym}_{0}^{-}:=\mathbb{Z}$, and cQSym ${ }^{-}:=\bigoplus_{n \geq 0} \mathrm{cQSym}_{n}^{-}$.

3 Toric posets and cyclic P-partitions

We recall toric posets from [4], and develop for them a theory of cyclic P-partitions. In particular, we provide a cyclic analogue of Stanley's fundamental decomposition lemma for P-partitions. Just as fundamental quasi-symmetric functions $F_{n, J}$ are P-partition enumerators for certain (labeled) total orders, the fundamental cyclic quasi-symmetric functions $F_{n, J}^{\text {cyc }}$ are cyclic P-partition enumerators for certain (labeled) total cyclic orders. This is used to prove that cQSym ${ }^{-}$is a ring and to study its structure constants.

3.1 Toric DAGs, toric posets, and toric \boldsymbol{P}-partitions

In this section, \vec{D} denotes a directed acyclic graph (DAG) with vertex set $[n]:=\{1,2, \ldots, n\}$. Usual P-partitions use posets instead of DAGs, but the toric analogue will require DAGs.

A \vec{D}-partition is a function $f:\{1,2, \ldots, n\} \rightarrow\{0,1,2, \ldots\}$ for which

- $f(i) \leq f(j)$ whenever $i \rightarrow j$ in \vec{D}, and
- $f(i)<f(j)$ whenever $i \rightarrow j$ in \vec{D} but $i>_{\mathbb{Z}} j$.

Denote by $\mathcal{A}(\vec{D})$ the set of all \vec{D}-partitions f.
Lemma 3.1. (Fundamental lemma of \vec{D}-partitions [12, Lemma 3.15.3]) For any $D A G \vec{D}$, one has a decomposition of $\mathcal{A}(\vec{D})$ as the following disjoint union:

$$
\mathcal{A}(\vec{D})=\bigsqcup_{w \in \mathcal{L}(\vec{D})} \mathcal{A}(\vec{w})
$$

where $\mathcal{L}(\vec{D})$ is the set of all linear (total) orders which extend \vec{D}.
Definition 3.2. (i) $i_{0} \in[n]$ is a source (respectively, sink) in \vec{D} if \vec{D} contains no arrows of the form $j \rightarrow i_{0}$ (respectively, of the form $i_{0} \rightarrow j$).
(ii) \vec{D}^{\prime} is obtained from \vec{D} by a flip at i_{0} if i_{0} is either a source or a sink of \vec{D} and one obtains \vec{D}^{\prime} by reversing all the arrows in \vec{D} incident with i_{0}.
(iii) Define the equivalence relation \equiv on DAGs to be the reflexive-transitive closure of the flips, that is, $\vec{D} \equiv \overrightarrow{D^{\prime}}$ if and only if there exists a (possibly empty) sequence of flips one can apply starting with \vec{D} to obtain \vec{D}^{\prime}.
(iv) A toric $D A G$ is the \equiv-equivalence class $[\vec{D}]$ of a DAG \vec{D}.

Example 3.3. Here is an example of a toric DAG $\left[\vec{D}_{1}\right]$:

Here is another toric DAG $\left[\vec{D}_{2}\right]$:

Definition 3.4. Say that $\left[\vec{D}_{2}\right]$ torically extends $\left[\vec{D}_{1}\right]$ if there exist $\vec{D}_{i}^{\prime} \in\left[\vec{D}_{i}\right]$ for $i=1,2$ with $\overrightarrow{D_{1}^{\prime}} \subseteq \overrightarrow{D_{2}^{\prime}}$.

A certain toric extension, called the toric transitive closure, will be particularly important.

Definition 3.5. (i) Say that $i \rightarrow j$ is implied from toric transitivity in a DAG \vec{D} if there exist in \vec{D} both a chain $i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{k}$ and a direct arrow $i_{1} \rightarrow i_{k}$ such that $i=i_{a}, j=i_{b}$ for some $1 \leq a<b \leq k$.
(ii) The toric transitive closure of \vec{D} is the DAG \vec{P} obtained by adding in all arrows $i \rightarrow j$ implied from toric transitivity in \vec{D}.
(iii) A DAG \vec{D} is toric transitively closed if it equals its toric transitive closure.

Proposition 3.6. If $\vec{D}_{1} \equiv \vec{D}_{2}$, then \vec{D}_{1} is toric transitively closed if and only if so is \vec{D}_{2}.
Definition 3.7. A toric DAG $[\vec{D}]$ is a toric poset if \vec{D} is toric transitively closed for one of its \equiv-class representatives \vec{D}, or equivalently, by Proposition 3.6 , for all such \vec{D}.

Definition 3.8. A total cyclic order is a toric poset with at least one (equivalently, all) of its \equiv-class representatives being a total (linear) order.

Denote by $\mathcal{L}^{\text {tor }}([\vec{D}])$ the set of all total cyclic orders $[\vec{w}]$ which torically extend $[\vec{D}]$.
Remark 3.9. Total cyclic orders may be geometrically visualized as n dots in a directed cycle labeled by $1, \ldots, n$ with no repeats. These configurations are called cyclic permutations, and will be used in the study of cyclic shuffles, see Figure 2.

Definition 3.10. A toric $[\vec{D}]$-partition is a function $f:\{1,2, \ldots, n\} \rightarrow\{0,1,2, \ldots\}$ which is a \vec{D}^{\prime}-partition for at least one DAG \vec{D}^{\prime} in $[\vec{D}]$. Let $\mathcal{A}^{\text {tor }}([\vec{D}])$ denote the set of all toric [$\vec{D}]$-partitions

Lemma 3.11. (Fundamental lemma of toric \vec{D}-partitions) For any $D A G \vec{D}$, one has a decomposition of $\mathcal{A}^{\text {tor }}([\vec{D}])$ as the following disjoint union:

$$
\mathcal{A}^{\operatorname{tor}}([\stackrel{\rightharpoonup}{D}])=\bigsqcup_{[\vec{w}] \in \mathcal{L}^{\operatorname{tor}}([\vec{D}])} \mathcal{A}^{\operatorname{tor}}([\vec{w}])
$$

3.2 Cyclic P-partition enumerators

Definition 3.12. Given a toric poset $[\vec{D}]$ on $\{1,2, \ldots, n\}$, define its cyclic P-partition enumerator

$$
F_{[\vec{D}]}^{\mathrm{cyc}}:=\sum_{f \in \mathcal{A}^{\operatorname{tor}([\vec{D}])}} x_{f(1)} x_{f(2)} \cdots x_{f(n)} .
$$

A special case yields the fundamental cyclic quasi-symmetric functions from Definition 2.3.

Proposition 3.13. If $w \in \mathfrak{S}_{n}$ has $\mathrm{cDes}(w)=J$, then $F_{[\bar{w}]}^{\mathrm{cyc}}=F_{n, J}^{\mathrm{cyc}}$.
An immediate consequence of Lemma 3.11 is then the following.

Figure 2: $[(8,4,5,1,2,3,6,7,9)] \in[(3,7,8,5,1)] \omega_{\mathrm{cyc}}[(6,9,4,2)]$.
Proposition 3.14. For any toric poset $[\vec{D}]$, one has the following expansion

$$
F_{[\vec{D}]}^{\mathrm{cyc}}=\sum_{[\vec{w}] \in \mathcal{L}^{\operatorname{tor}([\vec{D}])}} F_{n, \mathrm{cDes}(w)}^{\mathrm{cyc}}
$$

We now use this fact to expand products of of basis elements $\left\{F_{n, J}^{\mathrm{cyc}}\right\}$ back in the same basis. The key notion is that of a cyclic shuffle of two total cyclic orders.

First recall the notion of a shuffle of permutations. For a finite set A of size a, let \mathfrak{S}_{A} be the set of all bijections $w:[a] \rightarrow A$, viewed as words $w=\left(w_{1}, \ldots, w_{a}\right)$. Elements of \mathfrak{S}_{A} will be called bijective words, a formal extension of permutations. Given two bijective words $u=\left(u_{1}, \ldots, u_{a}\right) \in \mathfrak{S}_{A}$ and $v=\left(v_{1}, \ldots, v_{b}\right) \in \mathfrak{S}_{B}$, where A and B are disjoint finite sets of integers, a bijective word $w \in \mathfrak{S}_{A \sqcup B}$ is a shuffle of u and v if u and v are subwords of w. Denote the set of all shuffles of u and v by $u ш v$.

Definition 3.15. Let $C=A \sqcup B$ be a disjoint union of finite sets. Fix two total cyclic orders [$\vec{u}]$ and $[\vec{v}]$, with representatives $u=\left(u_{1}, \ldots, u_{a}\right) \in \mathfrak{S}_{A}$ and $v=\left(v_{1}, \ldots, v_{b}\right) \in \mathfrak{S}_{B}$. A total cyclic order $[\vec{w}]$, with $w \in \mathfrak{S}_{C}$, is a cyclic shuffle of $[\vec{u}]$ and $[\vec{v}]$ if there exists a representative $w^{\prime} \in \mathfrak{S}_{C}$ of $[\vec{w}]$ which is (equivalently, every representative of $[\vec{w}]$ is) a shuffle of cyclic shifts of u and v, namely,

$$
w^{\prime} \in u^{\prime} ш v^{\prime}
$$

for some cyclic shift u^{\prime} of u and cyclic shift v^{\prime} of v.
Denote the set of all cyclic shuffles of $[\vec{u}]$ and $[\vec{v}]$ by $[\vec{u}] Ш_{\mathrm{cyc}}[\vec{v}]$.
Example 3.16. Let $A=\{1,3,5,7,8\}$ and $B=\{2,4,6,9\}$, and fix $u=(3,7,8,5,1) \in \mathfrak{S}_{A}$ and $v=(6,9,4,2) \in \mathfrak{S}_{B}$. An example of $[\vec{w}] \in[\vec{u}] 山_{\text {cyc }}[\vec{v}]$ is $[(8,4,5,1,2,3,6,7,9)]$, since $w^{\prime}=(1,2,3,6,7,9,8,4,5)$ is a shuffle of $(1,3,7,8,5) \in[\vec{u}]$ and $(2,6,9,4) \in[\vec{v}]$. See Figure 2.

Observation 3.17. Let A and B be disjoint sets of integers, of cardinalities a and b respectively. For each $u=\left(u_{1}, u_{2}, \ldots, u_{a}\right) \in \mathfrak{S}_{A}$ and $v=\left(v_{1}, v_{2}, \ldots, v_{b}\right) \in \mathfrak{S}_{B}$ there are $\frac{(a+b-1)!}{(a-1)!(b-1)!}$ cyclic shuffles in $[\vec{u}] Ш_{\text {cyc }}[\vec{v}]$.

We apply this setting to prove Theorem 1.2 and deduce the following consequences.
Proposition 3.18. cQSym and cQSym ${ }^{-}$are graded rings.
Proposition 3.19. The structure constants of cQSym and cQSym^{-}, with respect to the normalized fundamental basis, are nonnegative integers.

4 Expansion of Schur functions in terms of fundamental cyclic quasi-symmetric functions

Theorem 1.3 follows from Theorem 4.4 below. The cyclic descent map on SYT of a given shape plays a key role in the proof; let us recall the relevant definition and main result from [2].

Definition 4.1 ([2, Definition 2.1]). Let \mathcal{T} be a finite set, equipped with a descent map Des: $\mathcal{T} \longrightarrow 2^{[n-1]}$, where $n>1$. A cyclic extension of Des is a pair (cDes, p), where cDes: $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p: \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms: for all T in \mathcal{T} :

$$
\begin{aligned}
\text { (extension) } & \mathrm{cDes}(T) \cap[n-1]=\operatorname{Des}(T), \\
\text { (equivariance) } & \mathrm{cDes}(p(T))=1+\operatorname{cDes}(T), \\
\text { (non-Escher) } & \varnothing \subsetneq \mathrm{cDes}(T) \subsetneq[n] .
\end{aligned}
$$

Example 4.2. Let \mathcal{T} be \mathfrak{S}_{n}, the symmetric group on n letters equipped with the classical descent map. The pair (cDes, p), with cDes defined as in (1.1) and p the cyclic shift, satisfies the axioms of Definition 4.1.

The notion of a descent set for a standard Young tableau T of skew shape λ / μ is well established (see, e.g., [11, p. 361]) . For the special case of rectangular shapes, Rhoades [10] constructed a cyclic extension satisfying the axioms of Definition 4.1. For almost all skew shapes there is a general existence result, as follows.

Theorem 4.3 ([2, Theorem 1.1]). Let λ / μ be a skew shape with n cells. The descent map Des on $\operatorname{SYT}(\lambda / \mu)$ has a cyclic extension (cDes, p) if and only if λ / μ is not a connected ribbon. Furthermore, for all $J \subseteq[n]$, all such cyclic extensions share the same cardinalities $\# \mathrm{cDes}^{-1}(J)$.

A constructive combinatorial proof of Theorem 4.3 was recently given in [8].
We shall now provide a cyclic analogue of the classical result [11, Theorem 7.19.7] (first proved in [6, Theorem 7]).

Theorem 4.4. For every skew shape λ / μ of size n, which is not a connected ribbon, and for any cyclic extension (cDes, p) of Des on $\operatorname{SYT}(\lambda / \mu)$,

$$
s_{\lambda / \mu}=\sum_{A \in c 2_{0, n}^{[n]}} m^{\mathrm{cyc}}(A) \widehat{F}_{n, A}^{\mathrm{cyc}}
$$

where

$$
m^{\mathrm{cyc}}(A):=m^{\mathrm{cyc}}(J)=\#\{T \in \operatorname{SYT}(\lambda / \mu): \operatorname{cDes}(T)=J\} \quad\left(\forall J \in A \in c 2_{0, n}^{[n]}\right)
$$

Recall Postnikov's toric Schur functions from [9].
Proposition 4.5. For every non-hook shape λ, the coefficient of $\widehat{F}_{n, J]}^{c y c}$ in s_{λ} is equal to the coefficient of s_{λ} in the Schur expansion of Postnikov's toric Schur function $s_{\mu(J) / 1 / \mu(J)}$.

By [9, Theorem 5.3] these coefficients are equal to certain Gromov-Witten invariants.

5 Enumerative applications

Theorem 1.2 implies the following analogue of the shuffling theorem [12, Ex. 3.161] (see also [7, section 2.4]).

Proposition 5.1. Let A and B be two disjoint sets of integers. For each $u \in \mathfrak{S}_{A}$ and $v \in \mathfrak{S}_{B}$, the distribution of the cyclic descent set over all cyclic shuffles of $[\vec{u}]$ and $[\vec{v}]$ depends only on $\mathrm{cDes}([\vec{u}])$ and $\mathrm{cDes}([\vec{v}])$.

Consider now $\mathbb{Z}[[q]]$, the ring of formal power series in q, as a (free abelian) additive group with generators $\left(q^{n}\right)_{n=0}^{\infty}$, and define a new product by

$$
q^{i} \odot q^{j}:=q^{\max (i, j)}
$$

extended linearly. We obtain a (commutative and associative) ring, to be denoted $\mathbb{Z}[[q]]_{\odot}$.
Consider also the ring $\mathbb{Z}[[\mathbf{x}]]=\mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$, and its subring $\mathbb{Z}[[\mathbf{x}]]_{\text {bd }}$ consisting of bounded-degree power series. Define a map $\Psi: \mathbb{Z}[[\mathbf{x}]]_{\text {bd }} \rightarrow \mathbb{Z}[[q]]_{\odot}$ by

$$
\Psi\left(x_{i_{1}}^{m_{1}} \cdots x_{i_{k}}^{m_{k}}\right):=q^{i_{k}} \quad\left(k>0, i_{1}<\cdots<i_{k}, m_{1}, \ldots, m_{k}>0\right)
$$

and $\Psi(1):=1$, extended linearly.
Observation 5.2. Ψ is a ring (\mathbb{Z}-algebra) homomorphism.
Lemma 5.3. For any positive integer n,

$$
\Psi\left(F_{n, J}^{\mathrm{cyc}}\right)=\frac{|J| q^{|J|}+(n-|J|) q^{|J|+1}}{(1-q)^{n}}=(1-q) \sum_{r}\binom{r+n-|J|-1}{n-1} r q^{r} \quad(\forall J \subseteq[n]) .
$$

Using Theorem 1.2 and Lemma 5.3 we prove

Theorem 5.4. Let A and B be two disjoint sets of integers with $|A|=m$ and $|B|=n$. For each $u \in \mathfrak{S}_{A}$ and $v \in \mathfrak{S}_{B}$, the distribution of the cyclic descent number over all cyclic shuffles of $[\vec{u}]$ and $[\vec{v}]$ is given by

$$
\sum_{[\vec{w}] \in[\vec{u}] Ш_{\mathrm{cyc}}[\vec{v}]} q^{\operatorname{cdes}(w)}=(1-q)^{m+n} \sum_{r}\binom{r+m-\operatorname{cdes}(u)-1}{m-1}\binom{r+n-\operatorname{cdes}(v)-1}{n-1} r q^{r}
$$

Theorem 5.4 implies Theorem 1.4. For other applications see the full version [1].

6 Open problems and final remarks

A Schur-positivity phenomenon, involving cyclic quasi-symmetric functions, was presented in Section 4. It is desired to find more results of this type. For example, it was proved in [5, Cor. 7.7] that, for any $0<k<n$, the cyclic quasi-symmetric function

$$
\sum_{\pi \in \mathfrak{S}_{n}: \operatorname{cdes}\left(\pi^{-1}\right)=k} F_{n, \operatorname{Des}(\pi)}
$$

is symmetric and Schur-positive. Computational experiments suggest the following refined cyclic version.

Conjecture 6.1. For every $\varnothing \subsetneq J \subsetneq[n]$ the cyclic quasi-symmetric function

$$
\sum_{\substack{\left.\pi \in \mathfrak{S}_{n} \\ \operatorname{es}\left(\pi^{-1}\right)\right]=[J]}} F_{n, \operatorname{CDes}(\pi)}^{\mathrm{cyc}}=\sum_{\substack{\pi \in \mathfrak{S}_{n} \\(\exists i) \operatorname{cDes}\left(\pi^{-1}\right)=J+i}} F_{n, \operatorname{cDes}(\pi)}^{\mathrm{cyc}}
$$

is symmetric and Schur-positive.
Cyclic descents were introduced by Cellini [3] in the search for subalgebras of Solomon's descent algebra. An important subalgebra of the descent algebra is the peak algebra.

Problem 6.2. Define and study cyclic peaks and a cyclic peak algebra.

References

[1] R. M. Adin, I. M. Gessel, V. Reiner, and Y. Roichman. "Cyclic quasi-symmetric functions". 2018. arXiv:1811.05440.
[2] R. M. Adin, V. Reiner, and Y. Roichman. "On cyclic descents for tableaux". 2017. arXiv:1710.06664.
[3] P. Cellini. "Cyclic Eulerian elements." Eur. J. Comb. 19.5 (1998), pp. 545-552. Link.
[4] M. Develin, M. Macauley, and V. Reiner. "Toric partial orders". Trans. Amer. Math. Soc. 368.4 (2016), pp. 2263-2287. Link.
[5] S. Elizalde and Y. Roichman. "Schur-positive sets of permutations via products of grid classes". J. Algebraic. Combin. 45.2 (2017), pp. 363-405. Link.
[6] I. M. Gessel. "Multipartite P-partitions and inner products of skew Schur functions". Combinatorics and Algebra (Boulder, CO, 1983). Contemp. Math. 34. Amer. Math. Soc., Providence, RI, 1984.
[7] I. M. Gessel and Y. Zhuang. "Shuffle-compatible permutation statistics". Adv. Math. 332 (2018), pp. 85-141. Link.
[8] B. Huang. "Cyclic descents for general skew tableaux". 2018. arXiv:1808.04918.
[9] A. Postnikov. "Affine approach to quantum Schubert calculus". Duke Math. J 128.3 (2005), pp. 473-509. Link.
[10] B. Rhoades. "Cyclic sieving, promotion, and representation theory". J. Combin. Theory Ser. A 117.1 (2010), pp. 38-76. Link.
[11] R. P. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge Studies in Advanced Mathematics 62. Cambridge Univ. Press, Cambridge, 1999.
[12] R. P. Stanley. Enumerative Combinatorics, Vol. 1. 2nd ed. Cambridge Studies in Advanced Mathematics 49. Cambridge Univ. Press, Cambridge, 2012.

[^0]: *radin@math.biu.ac.il. Partially supported by an MIT-Israel MISTI grant and by the Israel Science Foundation, grant no. 1970/18.
 \dagger gessel@brandeis.edu. Partially supported by Simons Foundation Grant \#427060.
 ${ }^{\ddagger}$ reiner@math.umn.edu. Partially supported by NSF grant DMS-1601961.
 §yuvalr@math.biu.ac.il. Partially supported by an MIT-Israel MISTI grant and by the Israel Science Foundation, grant no. 1970/18.

