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Tropical ideals do not realise all Bergman fans
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Abstract. Tropical ideals are combinatorial objects that abstract the possible collec-
tions of subsets arising as the supports of all polynomials in an ideal. Every tropical
ideal has an associated tropical variety: a finite polyhedral complex equipped with
positive integral weights on its maximal cells. This leads to the realisability question,
ubiquitous in tropical geometry, of which weighted polyhedral complexes arise in this
manner. Using work of Las Vergnas on the non-existence of tensor products of ma-
troids, we prove that there is no tropical ideal whose variety is the Bergman fan of
the direct sum of the Vámos matroid and the uniform matroid of rank two on three
elements, and in which all maximal cones have weight one.

Résumé. Les idéaux tropicaux sont des objets combinatoires qui font abstraction des
collections possibles de sous-ensembles constituant les supports de tous les polynômes
d’un idéal. Chaque idéal tropical a une variété tropicale associée: un complexe polyé-
drique fini équipé de pondérations intégrales positives sur ses cellules maximales.
Ceci conduit à la question de la réalisabilité, omniprésente en géométrie tropicale, de
laquelle des complexes polyhédriques pondérés se présentent de cette manière. En
utilisant les travaux de Las Vergnas sur la non-existence de produits tensoriels de ma-
troïdes, nous prouvons qu’il n’existe pas d’idéal tropical dont la variété est l’éventail
de Bergman de la somme directe du matroïde de Vámos et du matroïde uniforme de
rang deux sur trois éléments, et dans lesquels tous les cônes maximaux ont un poids
un.
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1 Introduction

An ideal in a polynomial ring over a field with the trivial valuation gives rise to a poly-
hedral fan called its tropical variety, by taking all weight vectors whose initial ideals
do not contain a monomial. In the middle of this construction sits a tropical ideal, ob-
tained by recording the supports of all polynomials in the ideal. This tropical ideal is a
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purely combinatorial object, and it contains more information than the tropical variety
itself. For these reasons, tropical ideals, axiomatised in [6], were proposed as the correct
combinatorial/algebraic structures on which to build a theory of tropical schemes.

Concretely, if K is an infinite field, a classical ideal J ⊆ K[x1, . . . , xn] gives rise to the
tropical ideal

I = trop(J) := {supp(F) : F ∈ J} ⊆ 2Nn
,

where the support supp(F) of a polynomial F = ∑u∈Nn cuxu ∈ K[x1, . . . , xn] is given by
supp(F) := {u ∈ Nn : cu 6= 0}. A tropical ideal arising in this way is called realisable
(over the field K).

In general, a (possibly non-realisable) tropical ideal in the variables x1, . . . , xn is a non-
empty collection I of finite subsets of Nn satisfying the following conditions:

• If S, T ∈ I then S ∪ T ∈ I.

• If S ∈ I then S + ei := {v + ei : v ∈ S} ∈ I for any 1 ≤ i ≤ n, where {e1, . . . , en}
denotes the standard basis of Zn.

• Monomial elimination axiom: If S, T ∈ I and u ∈ S ∩ T then there is U ∈ I such that
S∆T ⊆ U ⊆ (S ∪ T) \ {u}, where ∆ denotes symmetric difference.

Tropical ideals are in this way combinatorial abstractions of the possible collections of
subsets of Nn that arise as the supports of all polynomials in a fixed ideal over a field.
As described below, the monomial elimination axiom is basically an instance of the
cycle elimination axiom for matroids. While ‘most’ tropical ideals are expected to be
non-realisable, there are essentially very few examples known so far of non-realisable
tropical ideals—one of them, for instance, can be found in [6, Example 2.8].

Generalising the notion of tropical variety for a classical ideal, the variety of an arbi-
trary tropical ideal I is defined to be

V(I) := {x ∈ Rn : ∀S ∈ I, the minimum min
u∈S

(x · u) is attained by at least two terms}.

Tropical ideals turn out to have very nice algebraic and geometric properties. It was
proved in [6] that tropical ideals, while not finitely generated as ideals–nor in any sense
that we know of!—have a rational Hilbert series, satisfy the ascending chain condition
and the weak Nullstellensatz, and have varieties that are finite weighted polyhedral fans.
This leads to the following realisability question.

Question 1.1. Which weighted polyhedral fans are the variety of some tropical ideal?

When the tropical ideal records the supports of the polynomials in a classical prime
ideal J, then the tropical variety is a pure-dimensional and balanced polyhedral fan [7,
Theorem 3.3.5]. Conversely, the question of which balanced polyhedral complexes are
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realised by classical ideals has received much attention, especially in the case of curves
(see, e.g., [12, 3, 2]). But for general tropical ideals, very little is known about Ques-
tion 1.1: no natural algebraic criterion that ensures that the variety is pure-dimensional
is known, nor has their top-dimensional part been proved to be balanced. In fact, until
recently we had no intuition as to whether tropical ideals are flexible enough that they
can realise basically any balanced polyhedral fan, or rather more rigid, like algebraic
varieties. In view of the following theorem, we now lean towards the latter intuition.

Theorem 4.2. There exists no tropical ideal whose tropical variety is the Bergman fan of
the direct sum of the Vámos matroid V8 and the uniform matroid U2,3 of rank two on
three elements, with all maximal cones having weight 1.

We believe that this theorem marks the beginning of an interesting research pro-
gramme, which, in addition to the pureness and balancing questions mentioned above,
asks which tropical ideals define algebraic matroids on the set of variables, and which
matroids are, in this sense, tropically algebraic—see Problem 3.5 and Question 3.6.

2 Definitions and basic results

In this section we review the basic definitions of tropical linear spaces and tropical ideals.
We will work in the general context of the full tropical semifield (corresponding to fields
with a general non-Archimedean valuation), but all these notions can be specialised to
the case of the Boolean semifield, as it was presented in the introduction.

Consider the tropical semifield (R := R ∪ {∞},⊕, ◦· ) with ⊕ := min and ◦· := +.
Let R be a sub-semifield of R. The example most relevant to us is the Boolean semifield
B := {0, ∞}, which is not only a sub-semifield but also a quotient of R.

Definition 2.1. Let N be a finite set. A set L ⊆ RN is a tropical linear space if it is an R-
submodule (i.e., (∞, . . . , ∞) ∈ L and f , g ∈ L, c ∈ R ⇒ (c◦· f )⊕ g ∈ L) and if, moreover,
L satisfies the following elimination axiom: for i ∈ N and f , g ∈ L with fi = gi 6= ∞,
there exists an h ∈ L with hi = ∞ and hj ≥ f j ⊕ gj for all j ∈ N, with equality whenever

f j 6= gj. The R-submodule LR of R
N generated by L is a tropical linear space in R

N,
and has the structure of a finite polyhedral complex; we denote its dimension as such by
dim L.

If K is a field equipped with a non-Archimedean valuation onto R and if V ⊆ KN is
a linear subspace, then the image of V under the coordinate-wise valuation is a tropical
linear space in RN, but not all tropical linear spaces arise in this manner. Tropical linear
spaces are well-studied objects in tropical geometry and matroid theory: the definition
above is equivalent to that of [11], except that we allow some coordinates to be ∞. A
tropical linear space L gives rise to a matroid M(L) in which the independent sets are
those subsets A ⊆ N for which L ∩ (RA × {∞}N\A) = {∞}N, and L is the set of vectors
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(R-linear combinations of valuated circuits) of a valuated matroid on M(L) [9]. With
this setup, dim L = |N| − rk(M(L)). We will freely alternate between these different
characterisations of tropical linear spaces.

Set N := {0, 1, 2, . . .}, and let n ∈ N. Denote by R[x1, . . . , xn] the semiring of poly-
nomials in the variables x1, . . . , xn with coefficients in R. We write Mond and Mon≤d for
the set of monomials in x1, . . . , xn of degree equal to d and at most d, respectively, and
we identify a polynomial in R[x1, . . . , xn] of degree at most d with its coefficient vector
in RMon≤d .

Definition 2.2. A subset I ⊆ R[x1, . . . , xn] is a tropical ideal if xi◦· I ⊆ I for all i = 1, . . . , n
and if for each d ∈ N the set I≤d := { f ∈ I : deg( f ) ≤ d} is a tropical linear space in
RMon≤d . If I is homogeneous, then the latter condition is equivalent to the condition that
for each d the set Id of homogeneous polynomials in I of degree d is a tropical linear
space in RMond .

By Definition 2.1, I is a tropical ideal if and only if I is an ideal of R[x1, . . . , xn]
satisfying the following monomial elimination axiom:
• For any f , g ∈ I≤d and any monomial xu for which [ f ]xu = [g]xu 6= ∞, there exists
h ∈ I≤d such that [h]xu = ∞ and [h]xv ≥ min([ f ]xv , [g]xv) for all monomials xv, with
the equality holding whenever [ f ]xv 6= [g]xv .

Here we use the notation [ f ]xu to denote the coefficient of the monomial xu in the tropical
polynomial f .

There is a natural notion of tropical ideals living in the Laurent polynomial semiring
R[x±1

1 , . . . , x±1
n ] that we will also use, and if I is a tropical ideal in R[x1, . . . , xn] then the

set I′ := { f /xu | f ∈ I, u ∈Nn} is a tropical ideal in R[x±1
1 , . . . , x±1

n ].
Tropical ideals were introduced by Maclagan and Rincón in [6] as a framework for

developing algebraic foundations for tropical geometry. Tropical ideals are much better
behaved than general ideals of the polynomial semiring R[x1, . . . , xn], as we explain
below.

Definition 2.3. For w ∈ Rn and f =
⊕

u cu◦· xu ∈ R[x1, . . . , xn], define the initial part of
f relative to w as

inw( f ) :=
⊕

u : cu+u·w= f (w)

xu ∈ B[x1, . . . , xn].

For a tropical ideal I define the its initial ideal relative to w as

inw I := 〈inw f | f ∈ I〉B.

Note that in this paper we only consider weights w in Rn, not in R
n as in [6]. In

other words, we do geometry only inside the tropical torus.
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Definition 2.4. The Hilbert function of a tropical ideal I ⊆ R[x1, . . . , xn] is the map
HI : N→N given by d 7→ (n+d

d )− dim I≤d.

Note that, as usual in commutative algebra, the Hilbert function measures the codi-
mension of I≤d in its ambient space RMon≤d . A homogeneous variant of this Hilbert
function applies only to homogeneous ideals and measures the codimension of Id in
RMond . The Hilbert function of a not necessarily homogeneous ideal I in R[x1, . . . , xn]
equals the homogeneous Hilbert function of its homogenisation in R[x0, . . . , xn].

The following is a special case of [6, Corollary 3.6].

Theorem 2.5. For a homogeneous tropical ideal I ⊆ R[x1, . . . , xn] and any w ∈ Rn, inw I ⊆
B[x1, . . . , xn] is a homogeneous tropical ideal, and Hinw I = HI .

Theorem 2.5 allows one to pass to monomial initial ideals and show that the Hilbert
function HI(d) of a homogeneous tropical ideal I becomes a polynomial in d for suffi-
ciently large d, and also that homogeneous tropical ideals satisfy the ascending chain
condition. Via homogenisation, one sees that both statements also hold for tropical ide-
als that are not homogeneous (but, as in the classical setting, the theorem does not apply
directly, since for instance, when n = 1, in(1)(0⊕ x1) = 0 generates an ideal—the entire
semiring—with a smaller Hilbert function than any tropical ideal containing 0⊕ x1 but
not 0).

Furthermore, Maclagan and Rincón prove that tropical ideals have tropical varieties
that are finite polyhedral complexes [6, Theorem 5.11].

Theorem 2.6. If I ⊆ R[x1, . . . , xn] is a tropical ideal then its (tropical) variety

V(I) := {w ∈ Rn : inw I contains no monomial}

is the support of a finite polyhedral complex.

Indeed, if I is homogeneous, they show that the sets of w where inw I is constant
form the relatively open polyhedra of a polyhedral complex with support Rn called the
Gröbner complex of I, and that the cells where inw I contains no monomial form a
subcomplex with support V(I). By homogeneity, all cells then contain in their lineality
space the linear span of the all-ones vector 1. In the case where I ⊆ R[x1, . . . , xn] is not
necessarily homogeneous, let Ih be its homogenisation in R[x0, x1, . . . , xn]. Then w 7→
(0, w) is a bijection between V(I) and the intersection of V(Ih) with the zeroth coordinate
hyperplane, and we give V(I) the corresponding polyhedral complex structure.

The variety of a tropical ideal comes equipped with positive integral weights on its
maximal polyhedra; this is inspired by [7, Lemma 3.4.7] and studied more in depth in
[5].
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Definition 2.7. Let I ⊆ R[x1, . . . , xn] be a tropical ideal, let σ be a maximal polyhedron
of V(I), and let w be in the relative interior of σ. The multiplicity of σ in V(I) is
defined as follows. First, let I′ ⊆ R[x±1

1 , . . . , x±1
n ] be the (tropical) ideal in the Laurent

polynomial ring generated by I. After an automorphism of the Laurent polynomial
ring given by xu 7→ xAu with A ∈ GLn(Z), we can assume that the affine span of
σ is a translate of span(e1, . . . , ed) for some d. In this case, by [5], the tropical ideal
J := inw(I′) ∩B[xd+1, . . . , xn] is zero-dimensional, i.e., HJ(e) is a constant for e� 0. The
multiplicity of σ is defined to be equal to this constant, called the degree of J.

Remark 2.8. A slightly more coordinate-free version of Definition 2.7 is the following.
Consider the linear span of σ, defined as

span(σ) := R≥0{v− v′ | v, v′ ∈ σ}.

Let S ⊆ B[x±1
1 , . . . , x±1

n ] be the sub-semiring spanned by monomials xu of w-weight w · u
equal to zero for all w ∈ span(σ). Then S itself is isomorphic to a Laurent polynomial
semiring in n− d variables. The multiplicity of σ is the degree of the zero-dimensional
ideal inw(I′) ∩ S.

We will need the following results.

Lemma 2.9. Let I be a tropical ideal in R[x1, . . . , xn]. Denote by I′ the ideal generated by I
in R[x±1

1 , . . . , x±n
n ], and set Isat := I′ ∩ R[x1, . . . , xn]. Then Isat ⊇ I is a tropical ideal, and

V(Isat) = V(I) as weighted polyhedral complexes.

We call Isat the saturation of I with respect to m := x1 · · · xn, and we call I saturated
with respect to m if Isat = I.

Proof. That Isat is a tropical ideal containing I is straightforward from the definition.
Since Isat ⊇ I we have V(Isat) ⊆ V(I). Conversely, let w ∈ V(I) and f ∈ Isat. Then
xu◦· f ∈ I for some u ∈Nn, hence inw(xu◦· f ) is not a monomial, and therefore neither is
inw f . This shows that V(I) = V(Isat). That the multiplicities are the same follows from
the fact that the multiplicities in V(I) are defined using I′.

If Σ is a polyhedral complex in Rn and σ is a polyhedron in Σ, the star starσ Σ of Σ at
σ is a weighted polyhedral fan, whose cones are indexed by the cones τ of Σ containing
σ. The cone indexed by such τ is

τ := R≥0{v−w | v ∈ τ and w ∈ σ},

with weight equal to the weight of τ in Σ.
The following is a result from [5].

Proposition 2.10. Let I be a tropical ideal in R[x1, . . . , xn], σ be a polyhedron in V(I), and w
be in the relative interior of σ. Then inw I ⊆ B[x1, . . . , xn] is homogeneous with respect to every
vector v ∈ span(σ), and V(inw I) = starw V(I) as weighted polyhedral complexes.
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3 The independence complex of a tropical ideal

Definition 3.1. Let I ⊆ R[x1, . . . , xn] be a tropical ideal. The independence complex of I
is the simplicial complex

I(I) := {A ⊆ {1, . . . , n} : I ∩ R[xi : i ∈ A] = {∞}}. (3.1)

When I(I) is the collection of independent sets of a matroid M, we will say that I is a
matroidal tropical ideal, and that M is its associated algebraic matroid.

The independence complex of a tropical ideal I can be recovered from its variety
V(I), at least if R = R.

Proposition 3.2. If I ⊆ R[x1, . . . , xn] is a tropical ideal then

I(I) = {A ⊆ {1, . . . , n} : πA(V(I)) = RA}, (3.2)

where πA : Rn → RA is the coordinate projection onto the coordinates indexed by A. In partic-
ular, the independence complex I(I) depends only on the variety V(I).

Proof. Let A ⊆ {1, . . . , n}. If A /∈ I(I) then there exists f ∈ I ∩R[xi : i ∈ A] such that
f 6= ∞, and V(I) ⊆ V( f ). We then have πA(V(I)) ⊆ πA(V( f )) ( RA, as claimed. For
the reverse inclusion, suppose that πA(V(I)) ( RA, and let w ∈ RA \πA(V(I)). For any
polynomial f ∈ R[x1, . . . , xn], denote by f |w the polynomial in R[xi : i /∈ A] obtained by
specializing each variable xi with i ∈ A to wi ∈ R. Consider the ideal I|w ⊆ R[xi : i /∈ A]
defined as I|w := { f |w : f ∈ I}. By [5], the ideal I|w is a tropical ideal. Moreover, we
must have V(I|w) = ∅, as any point v ∈ V(I|w) would lift to the point (v, w) ∈ V(I),
contradicting that w /∈ πA(V(I)). By the weak Nullstellensatz [6, Corollary 5.17], the
tropical ideal I|w must contain the constant polynomial 0. But then 0 = f |w for some
f ∈ I, which in particular implies that f ∈ I ∩R[xi : i ∈ A] and f 6= ∞.

Recall that the Hilbert function HI(e) of a tropical ideal I ⊆ R[x1, . . . , xn] eventually
agrees with a polynomial in e, called the Hilbert polynomial of I [6, Proposition 3.8].
The dimension dim(I) of I is defined as the degree of its Hilbert polynomial.

Corollary 3.3. For any tropical ideal I we have

dim I(I) + 1 = dim V(I) = dim I.

Proof. From (3.2) it is clear that dim V(I) ≥ dim I(I) + 1. Now, if V(I) contains a
polyhedron σ of dimension d then there is some coordinate projection πA(σ) that is d-
dimensional, and thus from (3.1) we see that A ∈ I(I) and thus dim I(I) + 1 ≥ d. This
shows that dim I(I) + 1 = dim V(I). The equality dim V(I) = dim I is proved in [5].
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In the classical setting, primality of an ideal implies matroidality. We have no idea
about a similarly appealing sufficient condition for matroidality of general tropical ide-
als.

Example 3.4. If J ⊆ K[x1, . . . , xn] is a prime ideal, where K is a field with a non-
Archimedean valuation, then trop(J) is a matroidal tropical ideal. Its associated alge-
braic matroid is the matroid that captures algebraic independence among the coordinate
functions x1, . . . , xn in the field of fractions of K[x1, . . . , xn]/J. ♦

Problem 3.5. Find algebraic conditions on a tropical ideal that imply matroidality.

As shown in Example 3.4, any (classically) algebraic matroid is the algebraic matroid
of a tropical ideal. However, in principle, it is possible that the class of matroids that are
“tropically algebraic” is strictly larger than the usual class of algebraic matroids.

Question 3.6. Which matroids arise as the algebraic matroid of a tropical ideal?

4 Not every Bergman fan is the variety of a tropical ideal

We now prove that not every balanced polyhedral complex can be obtained as the variety
of a tropical ideal. Our counterexample will in fact be the Bergman fan of a matroid; see
[1] for details.

Definition 4.1. Let M be a loopless matroid of rank d on the ground set {1, . . . , n}. The
Bergman fan B(M) of M is the pure d-dimensional polyhedral fan in Rn consisting of
the cones of the form

σF := cone(eF1 , eF2 , . . . , eFk) + R·e{1,...,n}

where F = {∅ ( F1 ( F2 ( · · · ( Fk ( {1, . . . , n}} is a chain of flats in the lattice of
flats L(M) of M, and where eS stands for the sum of the standard basis vectors ei with i
running through S. The Bergman fan of any matroid is given the structure of a balanced
polyhedral complex by defining the multiplicity of each maximal cone to be equal to 1.

Bergman fans of matroids are the tropical linear spaces (more specifically, their part
inside the torus Rn) that correspond to valuated matroids where the basis valuations all
take values in B.

Let U2,3 be the uniform matroid of rank 2 on the ground set {1, 2, 3}, and let V8 be
the Vámos matroid (of rank 4 on 8 elements). The following is our main result.

Theorem 4.2. There is no tropical ideal I ⊆ R[x1, . . . , x3, y1, . . . , y8] such that V(I) is equal to
B(U2,3 ⊕V8) as weighted polyhedral complexes, even up to common refinement.
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Note that we do not require the polyhedral structure on V(I) coming from the Gröb-
ner complex of the homogenisation of I to be equal to the fan structure on the Bergman
fan described above.

To prove the theorem, in addition to the fundamental results from Section 2, we will
need results relating V(I) to HI for any tropical ideal I.

Lemma 4.3. Let L, L′ ⊆ RN be tropical linear spaces. If dim L + dim L′ > |N|, then L ∩ L′ 6=
{(∞, . . . , ∞)}.

Proof. The notion of stable intersection for tropical linear spaces was studied by Speyer in
[11] when the underlying matroids of both tropical linear spaces were uniform matroids,
and later generalized by Mundinger [8] for arbitrary tropical linear spaces in RN. The
stable intersection L∩st L′ is a tropical linear space contained in both L and L′, and it has
dimension a least dim L + dim L′ − |N| > 0, which implies the desired result.

Proposition 4.4. Let I ⊆ R[x1, . . . , xn] be a tropical ideal. If the independence complex I(I)
contains a subset A of size r, then HI(d) ≥ (r+d

d ) for all d ∈N.

Proof. The space R[xi : i ∈ A]≤d is a tropical linear space in RMon≤d of dimension (r+d
d )

and, by assumption, it does not intersect I≤d. Hence by Lemma 4.3, dim I≤d ≤ (n+d
d )−

(r+d
d ), and therefore HI(d) ≥ (r+d

d ).

Proposition 4.5. Let I ( R[x1, . . . , xn] be a tropical ideal, and set r := HI(1) − 1. Then
HI(d) ≤ (r+d

d ) for all d ∈N.

Proof. Let Ih ⊆ R[x0, . . . , xn] be the homogenisation of I. Then dim(Ih)d = dim I≤d for
all d ∈ N, and in particular dim(Ih)1 = dim I≤1 = n + 1− HI(1) = n− r. Moreover, by
applying Theorem 2.5 with a sufficiently general weight vector w, the Hilbert function
of Ih is also that of some monomial ideal J. We find that J contains precisely n − r
of the n + 1 variables x0, . . . , xn, and therefore all their multiples. This implies that
dim Jd ≥ (n+d

d ) − (r+d
d ), where the last term counts monomials in the remaining r + 1

variables of degree d. We then have

HI(d) = (n+d
d )− dim I≤d = (n+d

d )− dim Jd ≤ (n+d
d )− (n+d

d ) + (r+d
d ),

as desired.

The following proposition shows that the algebraic matroid of a Bergman fan B(M)
(as in Proposition 3.2) is equal to the matroid M.

Proposition 4.6 ([13, Lemma 3]). The independence complex of the Bergman fan B(M) of a
loopless matroid M is the same as the independence complex of M.

We now present a key step towards proving our main result.
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Proposition 4.7. Let M be a loopless matroid on the ground set {1, . . . , n}. Suppose J ⊆
B[x1, . . . , xn] is a homogeneous tropical ideal, saturated with respect to x1 · · · xn, whose variety
V(J) has a common refinement, as weighted polyhedral complexes, with the Bergman fan B(M)
(with weight 1 in all its maximal cones). Then the matroid M(J1) is equal to M, under the
identification xi ↔ i of ground sets.

Proof. Let B = {b1, . . . , bd} be a basis of M. For 0 ≤ i ≤ d, consider the flat Fi of M
obtained as the closure of the set {b1, . . . , bi}, and let σ be the maximal cone of B(M)
corresponding to the chain of flats ∅ = F0 ( F1 ( · · · ( Fd−1 ( Fd = {1, . . . , n}. Let τ ⊆
σ be a maximal cone in a common refinement of both V(J) and B(M). The linear span
span(τ) = span(σ) consists of all vectors w ∈ Rn for which wi = wj whenever {i, j} ⊆
Fk \ Fk−1 for some k = 1, . . . , d. A monomial xu in B[x±1

1 , . . . , x±1
n ] has w-weight equal to

zero for all such w if and only if for every k we have ∑i∈Fk\Fk−1
ui = 0. As in Remark 2.8,

let S be the subsemiring of B[x±1
1 , . . . , x±1

n ] consisting of all polynomials involving only
such monomials, and let J′ be the (tropical) ideal in B[x±1

1 , . . . , x±1
n ] generated by J.

Take v to be a vector in the relative interior of τ. Since τ has multiplicity 1 in V(J),
inv(J′) ∩ S is zero-dimensional of degree 1, and contains no monomials. Hence for any
pair of distinct monomials xu, xu′ in S, inv(J′) ∩ S contains the binomial xu ⊕ xu′ . In
particular, if {i 6= j} ⊆ Fk \ Fk−1 for some k then 0 ⊕ x−1

i xj ∈ inv(J′) ∩ S, and thus
xi ⊕ xj ∈ inv(J′). As J is homogeneous and saturated with respect to x1 · · · xn, this
implies that there is a polynomial of the form xi ⊕ xj ⊕ f in J1 where f is a sum of
variables all contained in Fk−1. It follows that xi is in the closure of Fk−1 ∪ {xj} in the
matroid M(J1). We conclude that {b1, . . . , bd} is a generating set in the matroid M(J1),
and thus rank(M(J1)) ≤ rank(M). Now, the tropical prevariety cut out by the linear
polynomials in J is equal to B(M(J1)), so we have B(M(J1)) ⊇ V(J) = B(M). It follows
from [10, Lemma 7.4] that B(M(J1)) = B(M), and thus M(J1) = M, completing the
proof.

We conclude with the proof of the main theorem.

Proof of Theorem 4.2. Suppose that such an I exists, and denote M := U2,3⊕V8. Let σ be a
polyhedron in V(I) whose affine span is R · 1 (which is contained in the lineality space of
B(M)), and let w be in the relative interior of σ. Set J′ := inw I ⊆ B[x1, . . . , x3, y1, . . . , y8].
By Proposition 2.10, the tropical ideal J′ is homogeneous (with respect to 1) and has
variety V(J′) = starw V(I), which is equal to B(M) up to common refinement. Consider
the homogeneous ideal J := (J′)sat. By Lemma 2.9, we have that V(J) is also equal
to B(M) up to common refinement, and so by Proposition 4.7, M(J1) is equal to M.
Since rk M = 6, we find that HJ(1) = 1 + 6 = 7 and thus, by Proposition 4.5, HJ(d) ≤
(6+d

d ) for all d. On the other hand, since V(J) = B(M), by Propositions 3.2 and 4.6 the
tropical ideal J is matroidal, with associated algebraic matroid M = U2,3 ⊕ V8. Hence,
by Proposition 4.4 we have HJ(d) ≥ (6+d

d ). We conclude that HJ(d) = (6+d
d ).
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Denote Q := M(J2). The matroid Q has rank HJ(2) − HJ(1) = 21 on the ground
set S1 t S2 t S3 where S1 := {xixj | 1 ≤ i ≤ j ≤ 3}, S2 := {yiyj | 1 ≤ i ≤ j ≤ 8}, and
S3 := {xiyj | 1 ≤ i ≤ 3, 1 ≤ j ≤ 8}. The restriction Q|S1 is spanned by all products of two
elements in a basis of M(J1)|{x1, x2, x3}, hence has rank at most (2+1

2 ) = 3. Similarly, the
restriction Q|S2 has rank at most (4+1

2 ) = 10. Hence Q|S3 has rank at least 21− 3− 10 =
8.

Since J is saturated, for each 1 ≤ i ≤ 3, multiplication by xi yields an isomorphism be-
tween the matroid M(J1)|{y1, . . . , y8} ∼= V8 and the restriction of Q to xi · {y1, . . . , y8} ⊆
S3. Similarly, for each 1 ≤ j ≤ 8, the restriction of Q to yj · {x1, . . . , x3} is isomorphic
to U2,3. Hence Q|S3 is a quasi-product of U2,3 and V8 in the sense of [4]. But the main
result of [4] shows that such a quasi-product has rank at most 7, a contradiction.
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