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Abstract. Noncrossing partitions, Dyck paths, and 231-avoiding permutations are clas-
sical examples of Catalan objects, and they may be defined in terms of the symmetric
group. Moreover, when we consider noncrossing partitions ordered by refinement and
231-avoiding permutations ordered by inclusion of inversion sets, then there is a close
structural relationship between the two resulting posets. In this abstract we show that
this connection, together with some other properties of these two posets, still holds in
the generalized setting of (certain special) parabolic quotients of the symmetric group.

Résumé. Les partitions non-croisées, les chemins de Dyck et les permutations évitant
231 sont des exemples classiques d’objets de Catalan, et peuvent être définis à partir
du groupe symétrique. De plus, lorsque l’on considère les partitions non-croisées
ordonnées par raffinement, et les permutations évitant 231 ordonnées par inclusion de
leurs ensembles d’inversion, les posets obtenus ont des structures proches. Dans ce
résumé nous montrons que cette connexion, ainsi que d’autres propriétés de ces deux
posets, s’étend au cadre plus général de certains quotients paraboliques du groupe
symétrique.

Keywords: noncrossing partitions, ballot paths, 231-avoiding permutations, Tamari
lattice, Galois graph, alternate order

1 Introduction

Noncrossing set partitions, Dyck paths and 231-avoiding permutations are well-studied
members of the huge class of Catalan objects, i.e. combinatorial objects enumerated by
the Catalan numbers.

These three families have another remarkable property: they can be defined in terms
of the symmetric group. In this guise, noncrossing set partitions become the members
of the order ideal under absolute order generated by a long cycle, Dyck paths become
order ideals in a particular order on all transpositions, and 231-avoiding permutations
become the elements sortable with respect to a particular long cycle.

In [12], a generalization of these three families to parabolic quotients of the symmet-
ric group was proposed, and it was shown that they are still equinumerous by exhibit-
ing explicit bijections. Subsequently, in [10] these parabolic noncrossing partitions and
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parabolic 231-avoiding permutations were studied more closely, and it was shown that
many structural properties and connections that were previously known for the classi-
cal noncrossing partitions and classical 231-avoiding permutations are still true in the
parabolic setting.

In this abstract we focus on particular parabolic quotients of the symmetric group:
those generated by an initial segment of the lexicographic order on the set of simple
transpositions. In this case, the parabolic Dyck paths are essentially ballot paths, and we
therefore refer to the corresponding parabolic noncrossing partitions as ballot-noncrossing
partitions.

The purpose of this abstract is to illustrate some of the main results of [10] in the
setting of ballot-noncrossing partitions. We give some of the proofs here (in a shortened
form) for the convenience of the reader, but skip most of the details. They can be found
in the appropriate places of [10]; as is the case for any undefined terminology.

The main results presented here are Theorems 3.2, 4.1 and 4.2, as well as Conjec-
ture 5.2 stated in Sections 3, 4.1, 4.2 and 5, respectively. In Section 2 we define the basic
concepts needed here.

2 Preliminaries

We assume the reader to be familiar with the basic notions of poset and lattice theory,
and we refer to [10, Section 2.1] for any undefined terminology.

For any two natural numbers a, b we define [a, b] def
= {a, a + 1, . . . , b}. If a > b, then

this set is empty, and if a = 1, then we usually write [b] instead of [1, b].
For the rest of the article, fix a positive integer n > 0 and let α = (α1, α2, . . . , αr) be a

composition of n. We define sk
def
= α1 + α2 + · · ·+ αk for k ∈ [0, r], and for k ∈ [r] we call

the set {sk−1 + 1, sk−1 + 2, . . . , sk} the k-th α-region.

2.1 Parabolic Noncrossing Partitions

Let us introduce parabolic noncrossing partitions graphically. To that end we write n
dots labeled from 1 through n on a horizontal line, and we highlight the elements of the
k-th α-region by color k. For a, b ∈ [n] in different α-regions, the bump connecting a and
b is a curve that leaves the a-th dot to the bottom, passes below the α-region containing
a, passes above every subsequent α-region and enters b from above. Two bumps cross if
there is no way to draw them according to those rules without crossing. A noncrossing
α-partition is a collection of pairwise noncrossing bumps. Let us denote the set of all
noncrossing α-partitions by NCα.

We may view P ∈ NCα as a set partition of [n], whose parts are given by the connected
components of P. Therefore, we may order NCα by dual refinement, and obtain the
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(a) A noncrossing α-partition, and its corresponding (α, 231)-avoiding permutation for
α = (3, 1, 5, 2, 2, 2).

(b) The α-Dyck path corresponding to the noncrossing α-partition from Figure 1a. The
region between να and the main diagonal is highlighted, and the marked valleys corre-
spond to the bumps of the partition.

Figure 1: Examples of noncrossing α-partitions, (α, 231)-avoiding permutations and
α-Dyck paths.

partially ordered set NCα. This is in general a ranked meet-semilattice, where the rank
of P ∈ NCα is given by the number of bumps of P [10, Proposition 3.6].

If α = (1, 1, . . . , 1), then we recover the classical noncrossing set partitions introduced
in [8]. Figure 1a shows an example.

2.2 Parabolic Dyck Paths

Recall that a Dyck path is a lattice path in N×N that starts at the origin and consists

only of north-steps N def
= (0, 1) and east-steps E def

= (1, 0) and ends on the main diagonal.
The α-bounce path να is the Dyck path given by the following sequence of 2n steps:

Nα1 Eα1 Nα2 Eα2 · · ·Nαr Eαr .

An α-Dyck path is any Dyck path consisting of 2n steps, which stays weakly above να.
Let us denote the set of all α-Dyck paths by Dα.
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If α = (1, 1, . . . , 1), then we recover the classical Dyck paths. Figure 1b shows an
example.

2.3 Parabolic 231-Avoiding Permutations

The symmetric group Sn is the group of all permutations of [n]. For w ∈ Sn, an inversion
of w is a pair (i, j) with i < j and w(i) > w(j). If an inversion (i, j) satisfies w(i) =
w(j) + 1, then it is a descent. The parabolic quotient of Sn with respect to α is

Sα
def
=
{

w ∈ Sn | w(i) < w(i + 1) for all i /∈ {s1, s2, . . . , sr−1}
}

.

We normally represent the elements of Sα in one-line notation, where we highlight the
values in the k-th α region by color k.

A permutation w ∈ Sα has an (α, 231)-pattern if there exist three integers i < j <
k in different α-regions such that w(k) < w(i) < w(j) and (i, k) is a descent of w.
A permutation is (α, 231)-avoiding if it does not have an (α, 231)-pattern. Let Sα(231)
denote the set of all (α, 231)-avoiding permutations in Sα. If α = (1, 1, . . . , 1), then it
is an easy exercise to prove that we recover the classical 231-avoiding permutations.
Figure 1a shows an example.

It is classical to order permutations by inclusion of inversion sets; the resulting or-
der is usually called the (left) weak order. We write Weak(Sn) for the corresponding

poset. Since Sα ⊆ Sn it makes sense to consider the parabolic Tamari lattice Tα
def
=

Weak
(
Sα(231)

)
.

Theorem 2.1 ([10, Theorem 1.3]). For every integer composition α, the poset Tα is a trim,
congruence-uniform lattice.

We do not want to explain trimness and congruence-uniformity in detail here. See for
instance [10, Sections 2.2 and 2.4] for exact definitions and examples. Let us instead just
mention that trimness is a generalization of distributivity to non-graded lattices [18], and
that congruence-uniform lattices can be constructed from the singleton lattice by iterated
doublings of intervals [5].

Remark 2.2. L.-F. Préville-Ratelle and X. Viennot have introduced a partial order on the set of
Dyck paths that stay weakly above a fixed Dyck path ν [13]. This poset is in general a lattice; the
ν-Tamari lattice. In the case, where ν = να is the α-bounce path, the author has shown together
with C. Ceballos and W. Fang in [2, Theorem II] that the να-Tamari lattice is isomorphic to Tα.

We conclude this section by stating that all three parabolic families that we have
introduced so far are equinumerous.

Theorem 2.3 ([12, Theorem 1.2]). For every integer composition α, the sets NCα, Sα(231),
and Dα are in bijection.
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Remark 2.4. In fact, instead of α-Dyck paths, the article [12] considers nonnesting α-partitions,
which are certain order ideals in certain subposets of a triangular poset. However, it is quickly
verified that the set of α-Dyck paths and the set of nonnesting α-partitions are in bijection.

3 Ballot-Noncrossing Partitions

In this abstract we want to restrict our attention to the case where only the first entry

of α may exceed 1. From now on, we fix t ∈ [n] and consider the composition α(n;t)
def
=

(t, 1, 1, . . . , 1) of n.
The main reason for this restriction is the fact that noncrossing α(n;t)-partitions and

(α(n;t), 231)-avoiding permutations possess many of the nice properties that are known
to hold for classical noncrossing partitions and 231-avoiding permutations. Some of
these properties do not generalize to the case of arbitrary α. We point this out at the
appropriate moment.

We first observe that α(n;t)-Dyck paths are in bijection with ballot paths, i.e. lattice
paths from (0, 0) to (n− t, n) which stay weakly above the main diagonal and use only
north- and east-steps.

Proposition 3.1. For n > 0 and t ∈ [n] we have∣∣∣Dα(n;t)

∣∣∣ = t + 1
n + 1

(
2n− t
n− t

)
.

Proof. By definition an α(n;t)-Dyck path is a Dyck path that stays weakly above να(n;t) =

NtEt(NE)n−t. In particular it must start with t north-steps. If we flip the path across the
line x = n− x, then such a path ends with t east-steps, and may therefore be viewed as a
ballot path from (0, 0) to (n− t, n). The enumeration of these ballot paths is well known,
see for instance [6, Corollary 10.3.2], and we obtain the formula in the statement.

We may thus conclude our first main result.

Theorem 3.2. Let n > 0 and t ∈ [n]. For k ∈ {0, 1, . . . , n − t}, the number of noncrossing
α(n;t)-partitions with exactly k bumps is given by

R(n, t, k) def
=

(
n
k

)(
n− t

k

)
−
(

n− 1
k− 1

)(
n− t + 1

k + 1

)
. (3.1)

Moreover, the cardinality of NCα(n;t) is given by

C(n, t) def
=

t + 1
n + 1

(
2n− t
n− t

)
. (3.2)
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Proof. Theorem 2.3 and Proposition 3.1 imply the claim for the cardinality of NCα(n;t) .
Moreover, the rank of P ∈ NC(α(n;t)

is given by the number of bumps, and the bijection
from NCα(n;t) to Dα(n;t) described in [12, Theorem 5.2] sends bumps to valleys, i.e. subpaths
of the form EN. The enumeration of ballot paths with respect to the number of valleys
is also well known, see for instance [6, Theorem 10.14.1], and yields (3.1).

We end this section with some further observations on the poset NCα(n;t) . Recall that
the zeta polynomial of a poset is the polynomial Z whose evaluation at an integer q yields
the number of (q− 1)-multichains in the poset.

Theorem 3.3 ([7]). For n > 0 and t ∈ [n], the zeta polynomial of NCα(n;t) is

ZNCα(n;t)
(q) =

t(q− 1) + 1
n(q− 1) + 1

(
nq− t
n− t

)
.

In the first draft of this extended abstract, Theorem 3.3 was still a conjecture, but in
the meantime C. Krattenthaler has found a beautiful bijective proof of this result. As
a consequence, the number of intervals of NCα(n;t) is given by ZNCα(n;t)

(3) = 2t+1
2n+1(

3n−t
n−t ).

Another consequence of Theorem 3.3 is the following enumeration of maximal chains in
NCα(n;t) .

Corollary 3.4. For n > 0 and t ∈ [n], the number of maximal chains in NCα(n;t) is tnn−t−1.

In fact, the formula in Corollary 3.4 recovers [16, A058127], and counts acyclic func-
tions from [n− t] to [n]. (Here, a function f : [n− t] → [n] is acyclic if it does not fix any
non-empty subset of [n− t].) A nice follow-up would be an explicit bijection from the set
of maximal chains of NCα(n;t) to the set of acyclic functions from [n− t] to [n]. Figure 2
shows the poset NC(3,1,1).

In the case of arbitrary integer compositions α, the zeta polynomial of NCα may have
non-integral roots. For instance, the zeta polynomial of NC(2,2) is q2 + 2q− 2, which does
not factor (nontrivially) over Z. We suspect, however, that the cases α = (t, 1, 1, . . . , 1)
and α = (1, 1, . . . , 1, t) for arbitrary t are the only cases in which the zeta polynomial of
NCα has only integral roots.

Moreover, a ranked poset is Sperner if the size of the largest antichain does not exceed
the size of the largest rank.

Conjecture 3.5. For n > 0 and t ∈ [n], the poset NCα(n;t) is Sperner.

Conjecture 3.5 is known to hold for t = 1 [15, Theorem 2], it holds trivially for t = n
or t = n− 1, and it has been verified for n ≤ 7. However, the poset NCα is not Sperner
for arbitrary α, as can be witnessed for instance in the case α = (3, 3). We do not,
however, currently have a suggestion for which other integer compositions α the poset
NCα is Sperner.
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Figure 2: The poset NC(3,1,1).

4 Ballot-Tamari Lattices

4.1 The Core Label Order of Tα(n;t)

Let us now explain a nice connection between the posets NCα and Tα. It follows from
Theorem 2.1 that Tα is congruence uniform, which means that it can be constructed
in a nice way from the singleton lattice by iterated doublings of intervals. This dou-
bling procedure naturally assigns a label to each edge in the poset diagram, and in
the present case, these labels can be identified with the atomic noncrossing α-partitions,
i.e. noncrossing α-partitions with a unique bump; see Section 2.2 and Corollary 4.5 in
[10]. Let us write P(a,b) for the noncrossing α-partition whose only bump is (a, b).

For w ∈ Sα we define w↓ to be the meet of all lower covers of w in Tα, and we define
the following set:

Ψ(w)
def
=
{
(a, b) | P(a,b) appears as a label in the poset diagram of Weak

(
[w↓, w]

)}
.

If we order
{

Ψ(w) | w ∈ Sα(231)
}

by containment, we obtain a new poset; the core
label order of Tα denoted by CLO

(
Tα

)
. See [11] for more background. Figure 3 shows

T(3,1,1), and Figure 2 shows CLO
(
T(3,1,1)

)
, where we have identified the sets Ψ(w) by

the corresponding noncrossing (3, 1, 1)-partitions. We may now prove our second main
result.

Theorem 4.1. For n > 0 and t ∈ [n], the core label order of Tα(n;t) is isomorphic to NCα(n;t) .

Proof. Since α(n;t) is such that only the first entry may exceed 1, we can show that Ψ(w)
contains precisely all the pairs (a, b), where a and b lie in the same block of the noncross-
ing α(n;t)-partition Φ(w) under the bijection Φ : Sα(n;t)(231) → NCα(n;t) described in [12,
Theorem 4.2]; see [10, Propositions 5.2 and 5.3].

It remains to show that the dual refinement order on NCα(n;t) is equivalent to inclusion
on
{

Ψ(w) | w ∈ Sα(n;t)(231)
}

, but this is straightforward to verify; see [10, Lemma 5.1].
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1 2 3 5 4 1 2 4 3 5

1 2 5 3 4 1 3 4 2 5

1 2 5 4 3 1 3 5 2 4 2 3 4 1 5

1 4 5 2 3 2 3 5 1 4

1 4 5 3 2 2 4 5 1 3

3 4 5 1 2

3 4 5 2 1

(4, 5) (3, 4)

(3, 4)

(3, 5) (2, 4)

(4, 5) (2, 4) (3, 5) (1, 4)

(2, 4)

(2, 5) (1, 4) (3, 5)

(4, 5) (1, 4) (2, 5)

(1, 4)

(1, 5)

(4, 5)

Figure 3: The lattice T(3,1,1), where every element is additionally labeled by the corre-
sponding noncrossing (3, 1, 1)-partition. The edges are labeled by the unique descent
of the element on the top of the edge, which is not an inversion of the element on the
bottom of the edge.

In the case t = 1, Theorem 4.1 is [14, Theorem 8.5]. In fact, [12, Theorem 1.5] states
that this isomorphism holds precisely for the compositions α = (t1, 1, 1, . . . , 1, t2).

4.2 The Galois Graph of Tα(n;t)

Another consequence of Theorem 2.1 is that Tα(n;t) is a trim lattice. Trim lattices were
introduced in [18], and should be regarded as non-graded analogues of distributive
lattices. Such lattices are in particular extremal in the sense that they have the same
number of join- and meet-irreducible elements, and this number equals the length of a
longest maximal chain.

Extremal lattices can be uniquely represented by a particular directed graph on the
vertex set [k], where k denotes the number of join-irreducible elements of the lattice; the
Galois graph, see [9, Theorem 11]. If a trim lattice is also congruence uniform, then this
Galois graph may be viewed as a graph whose vertices are the join-irreducible elements
of the lattice [10, Corollary 2.17].

Recall from [10, Corollary 4.5] that the join-irreducible elements of Tα correspond
bijectively to the atomic noncrossing α-partitions. Theorem 1.8 in [10] characterizes the
Galois graph of Tα, and this result enables us to prove our third main result.

Theorem 4.2. For n > 0 and t ∈ [n], the ballot-Tamari lattice Tα(n;t) is trim, and its Galois
graph is isomorphic to the directed graph with vertex set{

(a, b) | either a ∈ [t] and b > t, or t < a < b},
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(2, 4) (2, 5)

(1, 4) (1, 5) (4, 5)

(3, 4) (3, 5)

Figure 4: The Galois graph of T(3,1,1).

where we have a directed edge

(a, b)→ (a′, b′) if and only if


a′ < b′ ≤ b, if a < a′ ≤ t,
a < b′ ≤ b, if a′ < a and t < a,
a′ < b′ < b, if a = a′.

Proof. The fact that Tα(n;t) is trim follows from Theorem 2.1.
According to the paragraphs preceding this proof we may view the Galois graph

of Tα(n;t) as a directed graph whose vertices are the bumps of the atomic noncrossing
α(n;t)-partitions.

Let P(a,b) and P(a′,b′) be atomic noncrossing α(n;t)-partitions. From [10, Theorem 1.8]
we conclude that there exists a directed edge (a, b)→ (a′, b′) if and only if (a, b) 6= (a′, b′)
and either a and a′ belong to the same α(n;t)-region and a ≤ a′ < b′ ≤ b or they belong
to different α(n;t)-regions and a′ < a < b′ ≤ b, where a and b′ belong to different α(n;t)-
regions, too. By construction we conclude that there is an edge (a, b) → (a′, b′) if and
only if the conditions in the statement are met.

For t = 1, the Galois graph of Tα(n;t) has been described in [9, Corollary 1] and [19,
Example 2.9] in a slightly different language. Figure 4 shows the Galois graph of T(3,1,1).

5 Ballot-Chapoton Triangles

In this section we point out a strong enumerative connection between the sets NCα and
Dα. Recall that the Möbius function of a poset P = (P,≤) is the function µP : P× P→ Z

which is recursively defined via the property that ∑x≤z≤y µ(x, z) = δx,y for all x ≤ y.
(Here δx,y is the indicator function that equals 1 precisely when x = y and 0 otherwise.)

For P ∈ NCα let bump(P) denote its number of bumps. Let us define the Mα-triangle
to be the following bivariate polynomial:

Mα(p, q) def
= ∑

P,P′∈NCα

µ
CLO

(
Tα

)(P, P′
)

pbump(P′)qbump(P). (5.1)
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For an α-Dyck path µ ∈ Dα we call a peak a subpath of the form NE. A peak of µ is
a bounce peak if it is also a peak of να. Now suppose that a peak consists of three lattice
points (x1, y1), (x2, y2), and (x3, y3). (We thus have x1 = x2 and y2 = y1 + 1, as well as
y2 = y3 and x3 = x2 + 1.) If (x3, y1) is a lattice point on να, then we call such a peak a
base peak. Let peak(µ) denote the number of peaks of µ, let bouncepeak(µ) denote the
number of bounce peaks of µ, and let basepeak(µ) denote the number of base peaks of
µ. We define the Hα-triangle by

Hα(p, q) def
= ∑

µ∈Dα

ppeak(µ)−bouncepeak(µ)qbasepeak(µ). (5.2)

Remark 5.1. In [10, Section 6.2] we have defined the Hα-triangle in terms of antichains in a
certain subposet of a triangular poset. If µ ∈ Dα and Aµ is the corresponding antichain, then the
number peak(µ)−bouncepeak(µ) corresponds to the size of Aµ, and the number basepeak(µ)
corresponds to the number of minimal elements of the triangular subposet contained in Aµ.

Our main conjecture states that we can obtain Hα(n;t) from Mα(n;t) by appropriate sub-
stitution of variables, and it has been verified by computer for n ≤ 8.

Conjecture 5.2. For n > 0 and t ∈ [n], we have

Hα(n;t)(p, q) =
(
1 + p(q− 1)

)n−tMα(n;t)

(
p(q− 1)

p(q− 1) + 1
,

q
q− 1

)
.

Computer evidence suggests that Conjecture 5.2 holds if and only if α has at most
one part which may exceed 1. The reader is cordially invited to verify the failure of this
conjecture in the case α = (2, 2).

Moreover, it turns out that we can define yet another polynomial, the Fα(n;t)-triangle
from the (conjectured) correspondence in Conjecture 5.2:

Fα(n;t)(p, q) def
= pn−tHα(n;t)

(
p + 1

p
,

q + 1
p + 1

)
. (5.3)

A priori, this is only a rational function, but computer evidence suggests that it is indeed
a polynomial with nonnegative integer coefficients.

Conjecture 5.3. For n > 0 and t ∈ [n], the rational function Fα(n;t)(p, q) is in fact a polynomial
with nonnegative integer coefficients.

We expect Conjecture 5.3 to hold for the same compositions, for which Conjecture 5.2
is supposed to be true. It is intriguing to find a combinatorial definition of Fα(n;t) , i.e. a
family Xα(n;t) of combinatorial objects, and two statistics P and Q, such that

Fα(n;t)(p, q) = ∑
x∈Xα(n;t)

pP(x)qQ(x).
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Figure 5: The fourteen (3, 1, 1)-Dyck paths. The base peaks are indicated by orange
dots, the bounce peaks by blue dots, and the remaining peaks by black dots.

For t = 1, Conjecture 5.2 was first posed in [3, 4], and it was proven in [1, 17]. The
desired family Xα(n;1) is the set of triangulations of a convex (n + 2)-gon together with a
canonical labeling of the diagonals using positive and negative labels. For any triangu-
lation x, the statistic P(x) counts the positively labeled diagonals and the statistic Q(x)
counts the negatively labeled diagonals. Can this be generalized to parabolic quotients?

Let us illustrate Conjecture 5.2 on the running example α = (3, 1, 1). By inspection of
Figures 2 and 5 we obtain

M(3,1,1)(p, q) = 6p2q2 − 15p2q + 9p2 + 7pq− 7p + 1,

H(3,1,1)(p, q) = p2q2 + 2p2q + 3p2 + 2pq + 5p + 1.

It is now straightforward to see that Conjecture 5.2 works out, and that we obtain

F(3,1,1)(p, q) = 9p2 + 4pq + q2 + 15p + 4q + 6.
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