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Abstract. We use k-Schur functions to get the minimal boundary of the k-bounded
partition poset. This permits to describe the central random walks on affine Grass-
mannian elements of type A and yields a rational expression for their drift. We also
recover Rietsch’s parametrization of totally nonnegative unitriangular Toeplitz matri-
ces without using quantum cohomology of flag varieties. All the homeomorphisms we
define can moreover be made explicit by using the combinatorics of k-Schur functions
and elementary computations based on Perron-Frobenius theorem.

Résumé. Nous obtenons la frontière minimale du graphe des partitions k-bornées
en utilisant l’algèbre des fonctions de k-Schur. Nous en déduisons une description
des mesures de Gibbs pour les marches sur les Grassmaniennes affines de type A,
ainsi qu’une expression rationnelle de la dérive d’une marche aléatoire suivant une
telle mesure. Cela donne une preuve alternative et combinatoire de la paramétrisation
des matrices de Toeplitz unitriangulaires totalement positives obtenue par Rietsch.
Tous les homéomorphismes sont de plus explicites et découlent de la combinatoire
des fonctions de k-Schur et de manipulations du théorème de Perron-Frobenius.

Keywords: k-bounded partitions, k-Schur functions, affine Grassmannian, central prob-
ability measure

1 Introduction

A real function on the Young graph is harmonic when its value on any Young diagram
λ is equal to the sum of its values on the Young diagrams obtained by adding one box
to λ. The set of extremal nonnegative such functions (i.e. those that cannot be writ-
ten as a convex combination) is called the minimal boundary of the Young graph. It
is homeomorphic to the Thoma simplex. Kerov and Vershik proved that the extremal
nonnegative harmonic functions give the asymptotic characters of the symmetric group.
Kerov-Vershik approach of these harmonic functions yields both a simple parametriza-
tion of the set of infinite totally nonnegative unitriangular Toeplitz matrices (see [2]) and
a characterization of the morphisms from the algebra Λ of symmetric functions to R
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which are nonnegative on the Schur functions. These results were generalized in [9]
and [10]. A crucial observation here is the connection between the Pieri rule on Schur
functions and the structure of the Young graph (which is then said multiplicative in
Kerov-Vershik terminology).

In [14], Rietsch obtained a parametrization for the variety T≥0 of finite unitriangular
(k + 1)× (k + 1) totally nonnegative Toeplitz matrices by Rk

≥0 from the quantum coho-
mology of partial flag varieties. More precisely, such a matrix is proved to be completely
determined by the datum of its k initial minors obtained by considering its southwest
corners. On the combinatorial side, there is also an interesting k-analogue Bk of the
Young lattice of partitions whose vertices are the k-bounded partitions (i.e. those with
no parts greater than k). Its oriented graph structure is isomorphic to to the Hasse poset
on the affine Grassmannian permutations of type A which are minimal length coset
representatives in W̃/W, where W̃ is the affine type A(1)

k group and W the symmetric
group of type Ak. The graph Bk is also multiplicative but we have then to replace the
ordinary Schur functions by the k-Schur functions (see [6] and the references therein)
and the algebra Λ by Λ(k) = R[h1, . . . , hk]. The k-Schur functions were introduced by
Lascoux, Lapointe and Morse [8] as a basis of Λ(k). It was established by Lam [4] that
their corresponding constant structures (called k-Littlewood-Richardson coefficients) are
nonnegative. This was done by interpreting Λ(k) in terms of the homology ring of the
affine Grassmannian which, by works of Lam and Shimozono, can be conveniently iden-
tified with the quantum cohomology ring of partial flag varieties studied by Rietsch. By
merging these two geometric approaches one can theoretically deduce that the set of
morphisms from Λ(k) to R, nonnegative on the k-Schur functions, is also parametrized
by Rk

≥0.
In this note, we shall use another approach to avoid sophisticated geometric notions

and make our construction as effective as possible. Our starting point is the combi-
natorics of k-Schur functions. The latter yield an explicit parametrization of the mor-
phisms ϕ which are nonnegative on the k-Schur functions, or equivalently of all the
minimal t-harmonic functions with t ≥ 0 on Bk. Both notions are related by the sim-
ple equality t = ϕ(s(1)). Each such morphism is in fact completely determined by its
values~r = (r1, . . . , rk) ∈ Rk

≥0 on the Schur functions indexed by the rectangle partitions
Ra = (k− a + 1)a. We get a bi-continuous (homeomorphism) parametrization which is
moreover effective in the sense one can compute from~r the values of ϕ on any k-Schur
function from the Perron-Frobenius vector of a matrix Φ encoding the multiplication by
s(1) in Λ(k). Also, applying the primitive element theorem in the field of fractions of Λ(k)

permits to prove that for any fixed t ≥ 0 each ϕ(s(k)λ ) is a rational functions on Rk
≥0. It

becomes then quite easy to derive Rietsch’s parametrization. So, the only place where
geometry is needed in this paper is in Lam’s proof of the nonnegativity of the k-Schur
coefficients. As far as we are aware a complete combinatorial k-Littlewood-Richardson
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Figure 1: A reduced alcove walk on Grassmannian elements for k = 2.

rule is not yet available (see nevertheless [12]).
Random walks on reduced alcove paths have been considered by Lam in [5]. They are

random walks on a particular tessellation of Rk by alcoves supported by hyperplanes,
where each hyperplane can be crossed only once. The random walks considered in this
paper are central and thus differ from those of [5]. Two trajectories with the same ends
will have the same probability. We characterize all the possible laws of these alcove
random walks and also get a simple algebraic expression of their drift as a rational
function on Rk

≥0. Our results are more precisely summarized in the following Theorem.

Theorem 1.1.

1. To each ~r ∈ Rk
≥0 corresponds a unique morphism ϕ : Λ(k) → R nonnegative on the

k-Schur functions and such that ϕ(sRa) = ra for any a = 1, . . . , k.

2. To each~r ∈ Rk
≥0 corresponds a unique matrix M in T≥0 whose k southwest initial minors

are exactly r1, . . . , rk.

3. Both previous one-to-one correspondences are homeomorphisms, moreover ϕ and M can be
explicitly computed from~r by using Perron Frobenius theorem.

4. The minimal boundary of Bk is homeomorphic to the simplex Sk = {(r1, . . . , rk) ∈ Rk
≥0 |

r1 + · · ·+ rk = 1}.

5. To each ~r ∈ Sk corresponds a central random walk (vn)n≥0 on affine Grassmannian ele-
ments which verifies a law of large numbers. The coordinates of its drift are the image by ϕ

of rational fractions in the k-Schur functions. They are moreover rational on Sk.

This note is organized as follows. In Section 2, we recall some background on alcoves,
partitions and k-Schur functions and prove the first four statements of Theorem 1.1. In
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Section 3, we explain briefly the theory of central random walks and establish the fifth
statement of Theorem 1.1.

Although we restrict ourselves to type A in this note, we expect to extend our ap-
proach to other types in a future work by using notably the results of [7] and [13].

2 Harmonic analysis on the lattice of k-bounded partitions

2.1 The lattice Bk.

In this section, we refer to [6] and [11] for the material which is not defined. Fix l > 1
a nonnegative integer and set k = l − 1. Let W̃ be the affine Weyl group of type A(1)

k .
As a Coxeter group, W̃ is generated by the reflections s0, s1, . . . , sk so that its subgroup
generated by s1, . . . , sk is isomorphic to the symmetric group Sl. Write ` for the length
function on W̃. The group W̃ determines a Coxeter arrangement by considering the
hyperplanes orthogonal to the roots of type A(1)

k . The connected components of this
hyperplane arrangement yield a tessellation of Rk by alcoves on which the action of W̃
is regular. We denote by A(0) the fundamental alcove. Write R̃ for the set of affine roots of
type A(1)

k and R for its subset of classical roots of type Ak. The simple roots are denoted
by α0, . . . , αk and P is the weight lattice of type Ak with fundamental weights Λ1, . . . , Λk.

A reduced alcove path is a sequence of alcoves (A1, . . . , Am) such that A1 = A(0) and
for any i = 1, . . . , m − 1, the alcoves Ai+1 and Ai share a common face contained in a
hyperplane Hi so that the sequence H1, . . . , Hm−1 is without repetition (each hyperplane
can be crossed only once). In the sequel, all the alcove paths we shall consider will
be reduced. For any i = 1, . . . , m − 1, let wi be the unique element of W̃ such that
Ai = wi(A(0)). Write C for the weak Bruhat order on W̃ and→ for the covering relation
w→ w′ if and only if w C w′ and `(w′) = `(w) + 1. We then have w1 → w2 → · · · → wm.
The affine Grassmannian elements are the elements w ∈ W̃ whose associated alcoves are
exactly those located in the fundamental Weyl chamber (that is, in the Weyl chamber
containing the fundamental alcove A(0)).

We shall identify a partition and its Young diagram. A k-bounded partition is a
partition λ such that λ1 ≤ k. There is a simple bijection between the k-bounded partitions
and the affine Grassmannian elements (see [6] pages 18 and 19). Hence, the weak Bruhat
order on W̃ yields a lattice structure on the k-bounded partitions, and the corresponding
lattice is denoted by Bk. So reduced alcove paths in the fundamental Weyl chamber,
saturated chains of affine Grassmannian elements and paths in Bk naturally correspond.
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2.2 The k-Schur functions

Let Λ be the algebra of symmetric functions in infinitely many variables over R. It is
endowed with a scalar product 〈·, ·〉 such that 〈sλ, sµ〉 = δλ,µ for any partitions λ and
µ. Let Λ(k) be the subalgebra of Λ generated by the complete homogeneous functions
h1, . . . , hk. In particular, {hλ | λ is k-bounded} is a basis of Λ(k).

We now define a distinguished basis of Λ(k) related to the graph structures of Bk.
Consider λ and µ two k-bounded partitions with λ ⊂ µ and r ≤ k a positive integer.
Recall the involution ωk on Λ(k) analogue to the conjugation of partitions (see [6]).

Definition 2.1. We will say that µ/λ is a weak horizontal strip of size r when

1. µ/λ is an horizontal strip with r boxes (i.e. the boxes in µ/λ belong to different columns),

2. µωk /λωk is a vertical strip with r boxes (i.e. the boxes in µωk /λωk belong to different
rows).

Definition 2.2 (Pieri rule for k-Schur functions, [6]). The k-Schur functions s(k)κ , κ ∈ Bk are
the unique functions in Λ(k) such that for any r ≤ k, s(k)

(r) = hr and for any r ≤ k, any κ ∈ Bk

we have
hrs(k)κ = ∑

κ∈Bk

s(k)κ (2.1)

where the sum is over all the k-bounded partitions κ such that κ/κ is a weak horizontal strip of
size r in Bk.

We write κ → µ when κ/κ is a weak horizontal strip of size 1. Thanks to a geometric
interpretation of the k-Schur functions in terms of the homology of affine Grassmanni-
ans, Lam showed that the product of two k-Schur functions has nonnegative coefficients
on the basis of k-Schur functions:

Theorem 2.3 ([4]). Given κ and δ two k-bounded partitions, we have s(k)κ s(k)δ = ∑ν∈Bk
cν(k)

λ,δ s(k)ν

with cν(k)
λ,δ ∈ Z≥0.

For any a = 1, . . . , k, let Ra be the rectangle partition (k− a + 1)a.

Proposition 2.4. (See [6].) For each k-bounded partition λ, there exists a unique irreducible
k-bounded partition1 λ̃ and a unique sequence of nonnegative integers p1, . . . , pk such that

s(k)λ =
k

∏
a=1

spa
Ra

s(k)
λ̃

.

In particular, the k-Schur functions are completely determined by the k-Schur functions indexed
by the irreducible k-bounded partitions and by the ordinary Schur functions s(k−a+1)a , a =
1, . . . , k.

1A k-bounded partition is irreducible when it contains less than a parts equal to k − a for any a =
0, . . . , k− 1.
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2.3 Harmonic functions and minimal boundary of Bk

Definition 2.5. A function f : Bk → R is harmonic when f (λ) = ∑λ→µ f (µ) for any λ ∈ Bk.
We denote by H(Bk) the set of harmonic functions on Bk.

The harmonic functions on Bk correspond to the right eigenvectors associated to the
eigenvalue 1 ofM, the infinite adjacency matrix of the graph Bk. One can also consider
t-harmonic functions which correspond to the right eigenvectors for M associated to
the eigenvalue t. Clearly H(Bk) is a vector space over R. In fact, we mostly restrict
ourselves to the set H+(Bk) of positive harmonic functions for which f takes values in
R≥0. Then, H+(Bk) is a cone since it is stable by addition and multiplication by a pos-
itive real. To study H+(Bk), we only have to consider its subset H+

1 (Bk) of normalized
harmonic functions such that f (1) = 1. In fact, H+

1 (Bk) is a convex set and its structure
is controlled by its extremal subset ∂H+(Bk).
We aim to characterize the extremal positive harmonic functions defined on Bk and
obtain a simple parametrization of ∂H+(Bk). By applying the Pieri rule on k-Schur
functions, we get

sλs(1) = ∑
λ→µ

sµ

for any k-bounded partitions λ and µ. This means that Bk is a so-called multiplicative
graph with associated algebra Λ(k). Moreover, if we denote by K the positive cone
spanned by the set of k-Schur functions, we can apply the ring theorem of Kerov and
Vershik (see for example [10, Section 8.4]) which characterizes the subset of extreme
points ∂H+(Bk). Denote by Mult+(Λ(k)) ⊂ Λ∗(k) the set of multiplicative functions on
Λ(k) which are nonnegative on K and equal to 1 on s1. So a linear form f ∈ Λ∗(k)
belongs to Mult+(Λ(k)) when f (K) ⊂ R+, f (s1) = 1 and it satisfies f (uv) = f (u) f (v)

for any u, v ∈ Λ(k). Note that i : Bk −→ Λ(k) such that i(λ) = s(k)λ induces a map i∗ :
Λ∗(k) −→ F(Bk, R). Then, the ring theorem yields the following algebraic characterization
of ∂H+(Bk).

Proposition 2.6. The map i∗ yields an homeomorphism between Mult+(Λ(k)) and ∂H+(Bk).

Since i(Bk) is a basis of Λ(k), this means that ∂H(Bk) is completely determined by

the R-algebra morphisms ϕ : Λ(k) → R such that ϕ(s1) = 1 and ϕ(s(k)λ ) ≥ 0 for any
k-bounded partition λ. Each function f ∈ ∂H+(Bk) can then be written f = ϕ ◦ i.

2.4 The matrix Φ

By Proposition 2.4, each morphism ϕ : Λ(k) → R is uniquely determined by its values

on the rectangle Schur functions sRa , 1 ≤ a ≤ k and on each s(k)
λ̃

where λ̃ is an irreducible
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k-bounded partition. Set ra = ϕ(sRa), a = 1, . . . , k and ~r = (r1, . . . , rk). Denote by Pirr
the set of irreducible k-bounded partitions (including the empty partition). Then, for
λ ∈ Pirr,

ϕ(s(k)λ )ϕ(s(1)) = ∑
λ→µ

ϕ(s(k)µ ). (2.2)

By Proposition 2.4, for each k-bounded partition µ there exists a sequence {pµ
1 , pµ

2 . . . , pµ
k }

of integers and an irreducible partition µ̃ such that

s(k)µ =
k

∏
a=1

spµ
a

Ra
s(k)µ̃ and thus ϕ(s(k)µ ) =

k

∏
a=1

rpµ
a

a ϕ(s(k)µ̃ ). (2.3)

Hence by setting

ϕλν = ∑
λ→µ
µ̃=ν

∏
1≤a≤k

rpµ
a

a

we get
ϕ(s(k)λ ) = ∑

ν∈Pirr

ϕλν ϕ(s(k)ν ).

Let Φ(r1,...,rk)
:= (ϕνλ)λ,ν∈Pirr

2 and define f ∈ RPirr as the vector (ϕ(s(k)λ ))λ∈Pirr . When
there is no risk of confusion, we simply write Φ instead of Φ(r1,...,rk)

. The vector f is a
left eigenvector of Φ for the eigenvalue ϕ(s1) with positive entries having value 1 on ∅
and ϕ(s1) on s1.

Recall that a matrix M ∈ Mn(R) with nonnegative entries is irreducible if and only
if for each 1 ≤ i, j ≤ n there exists n ≥ 1 such that (Mn)ij > 0. In view of using the
Perron-Frobenius theorem, we have the following result on the irreducibility of Φ.

Proposition 2.7. Consider~r = (r1, . . . , rk) ∈ Rk
≥0. Then, the matrices Φ(r1,...,rk)

and Φt
(r1,...,rk)

associated to ϕ are irreducible if and only if for all 1 ≤ a ≤ k− 1, ra or ra+1 is positive.

2.5 Field extensions and k-Schur functions

Recall that Λ(k)= R[h1, . . . , hk]. Since h1, . . . , hk are algebraically independent over R, we
can consider the fraction field L = R(h1, . . . , hk). Write A = R[sR1 , . . . sRk ] the subalgebra
of Λ(k) generated by the rectangle Schur functions sRa , a = 1, . . . , k. By standard argu-
ments one can prove that sR1 , . . . sRk are algebraically independent over R, so that we can
consider the fraction field K = R(sR1 , . . . sRk) of the algebra A. By classical results from
[3] and Proposition 2.4, s1 = h1 is algebraic over K. The following result is a main step
in the proof of Theorem 1.1.

2Observe we have defined Φ(r1,...,rk)
as the transpose of the matrix (ϕλµ)λ,ν∈Pirr to make it compatible

with the multiplication by s(1) used in Section 2.5.
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Theorem 2.8. We have L = K(s(1)), that is s(1) is a primitive element for L regarded as an
extension of K. In particular, there exist ∆ ∈ A and for each irreducible k-bounded partition κ a
polynomial Pκ ∈ A[T] such that

s(k)κ =
1
∆

Pκ(s(1)).

In particular, for any morphism ϕ : Λ(k) → R such that ϕ(∆) 6= 0 we have

ϕ(s(k)κ ) =
1

ϕ(∆)
ϕ(Pκ)ϕ(s(1)).

2.6 Minimal boundary of Bk

We give here a sketch of the proof of the first part of Theorem 1.1. Set R = {sRi , 1 ≤ i ≤
k}. Recall that by Proposition 2.6, we have ∂H+(Bk) ' Mult+(Λ(k)). Using the particular
structure of morphisms on Λ(k) given by (2.3) and the Perron-Frobenius Theorem, one
can prove the following crucial step:

Theorem 2.9.

1. Let ϕ : A → R be a morphism, nonnegative on R and such that its associated matrix
Φ is irreducible. Then there exists a unique morphism ϕ̃ : Λ(k) −→ R≥0 extending ϕ,
nonnegative on the k-Schur functions and positive on I = {sλ | λ ∈ Pirr}.

2. A positive morphism ϕ : Λ(k) −→ R is uniquely determined by its values on R.

Remark that this solves almost all the cases thanks to Proposition 2.7. To conclude
the proof of the first part of Theorem 1.1, we need to extend the previous result to
the case when Φ is not irreducible. This extension is proven by classical continuity
arguments using the algebraic structure of Λ(k) given in Section 2.5. Since morphisms
on A which are nonnegative onR are homeomorphic to Rk

≥0, simple computations yield
the following result.

Proposition 2.10. Mult+(Λ(k)) is homeomorphic to Rk
≥0 and ∂H+(Bk) is homeomorphic to

Sk = {(r1, . . . , rk) ∈ Rk
≥0 | r1 + · · ·+ rk = 1}.

2.7 Rietsch parametrization of Toeplitz matrices

Consider the variety T≥0 ⊂ Rk
>0 of totally nonnegative unitriangular Toeplitz (k + 1)×

(k + 1) matrices
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M =


1
h1 1
... h1

. . .

hk−1
...

... . . .
hk hk−1 · · · h1 1

 .

The set T>0 of totally positive unitriangular Toeplitz (k + 1) × (k + 1) matrices is
defined as the subset of T≥0 of matrices M whose minors with no row and no column
in the upper part of M are positive. By Theorem 3.2.1 in [1], M is totally positive if
and only if for a = 1, . . . , k, the a× a initial minors obtained by selecting a rows of M
arbitrary and then the first a columns of M are positive.

Lemma 2.11.

1. The previous initial minors are equal to Schur functions sλ, where the maximal hook of the
partition λ has length less or equal to k.

2. We have T>0 = T≥0 that is, each totally nonnegative unitriangular Toeplitz matrix is the
limit of a sequence of totally positive unitriangular Toeplitz matrices.

Observe in particular that for any a = 1, . . . , k, the initial minor ∆[k−a+1,k] gives the
value ra of the rectangle Schur function sRa evaluated in (h1, . . . , hk). In [14], Rietsch
obtained the parametrization of T≥0 by using the quantum cohomology of partial flag
varieties. Our approach permits to reprove this theorem and makes both the associated
homeomorphism and its converse explicit.

Theorem 2.12. The map g : T≥0 → Rk
≥0 : (h1, . . . , hk) 7−→ (r1, . . . , rk) is a homeomorphism.

Moreover, g−1 can be made explicit from the Perron-Frobenius theorem applied on Φ and Theo-
rem 2.8.

So our Theorem 2.12 permits in fact to compute the nonnegative Toeplitz matrix
associated to any point of Rk

≥0 (i.e. to reconstruct M from the datum of the minors
(r1, . . . , rk)). When Φ is irreducible this is achieved directly by applying the Perron-
Frobenius theorem which gives the ϕ(sκ)’s with κ any irreducible k-bounded partition
of Theorem 2.8. In particular, one so gets ϕ(s(a)) = ha for a = 1, . . . , k. In general we
show that the formulas of Theorem 2.8 can be extended by continuity when ∆ = 0.

3 Markov chains on alcoves

3.1 Central Markov chains on alcoves from harmonic functions

Recall the notation of Section 2.1 for the notion of reduced alcove paths. A probability
distribution on reduced alcove paths is said central when the probability pπ of the path
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π = (A1 = A(0), A2, . . . , Am) only depends on m, A1 and Am, that is only on its length
and its alcoves ends. In the situation we consider, central random reduced alcove paths
in the Weyl chamber correspond to central random paths on Bk. They are determined
by the positive harmonic functions on Bk (see [2]).

More precisely any central probability distribution on the affine Grassmannian alcove
paths can be written

pπ =
h(µ)
h(λ)

where h ∈ H+(Bk) is positive and for any path π = (A1, . . . , Am), µ and λ are the k-
bounded partitions associated to A1 and Am. Also we then get a Markov chain on Bk (or
equivalently on the affine Grassmannian elements) with transition matrix

Π(λ, µ) =
h(µ)
h(λ)

.

When the harmonic function h is extremal, it corresponds to a morphism ϕ on Λ(k)
with ϕ(s(1)) = 1, nonnegative on the k-Schur functions. We get an extremal central

distribution on the trajectories starting at A(0) verifying pπ =
ϕ(s(k)µ )

ϕ(s(k)λ )
. The associated

Markov chain has then the transition matrix Π(λ, µ) =
ϕ(s(k)µ )

ϕ(s(k)λ )
.

Involutions on the reduced walk

Let Ak be the set of alcoves in the dominant Weyl chamber. We describe here two
important involutions on the set of irreducible k-bounded partitions. The first symmetry
is due to the action of ωk on Λ(k) which sends sRa to sRk−a for any a = 1, . . . , k. By bijection
between alcoves in the Weyl chamber and k-bounded partitions, this symmetry yields
an involution Ω on Ak, which corresponds to the involution on the Dynkin diagram of
affine type A(1)

k fixing the node 0 and sending each node i ∈ {1, . . . , k} to i∗ = k + 1− i.
For the second symmetry, we need some basic facts about the affine Coxeter arrange-

ment of type A(1)
k . For any root α and any integer, let Hα,r be the affine hyperplane

Hα,r = {v ∈ Rk, 〈v, α〉 = r}.

We denote by sα,r the reflection with respect to this hyperplane and for β in the weight
lattice P, we write tβ for the translation by β. We have then sα,r = trαsα,0. Affine Grass-
mannian elements are in bijection with alcoves in the dominant Weyl chamber through
a map w 7→ Aw such that w→ w′ (that is we have a covering relation for the weak order
from w to w′) if and only if there is a hyperplane Hα,r such that Aw′ = sα,r(Aw). In this
case, we write w α,r−→ w′.
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Write vw for the center of the alcove Aw (defined as the mean of the its extreme
weights). Any alcove Aw is completely determined by its center vw, and with this nota-
tion w α,r−→ w′ if and only if vw′ = sα,r(vw) and r < 〈α, vw′〉 < r + 1.

Let B be the set of alcoves which are included in the fundamental parallelepiped
{v ∈ Rk|〈v, αi〉 ∈]0, 1[ for i = 1, . . . , k}. This set is in bijection with the set of irreducible
k-bounded partitions. For example, after identifying an alcove with its center, we have
B = {Λ1/3+Λ2/3, 2Λ1/3+ 2Λ2/3} for k = 2. Consider now the involution I : Rk → Rk

defined by
I = tρ ◦ w0,

where ρ = ∑k
i=1 Λi and w0 is the longest element of W. Observe we indeed get an

involution because w0 ◦ tρ ◦ w0 = t−ρ. The involution I has the simple expression
I(l1Λ1 + · · ·+ lkΛk) = (1− lk)Λ1 + · · ·+ (1− l1)Λk for l1, . . . , lk ∈ R.

Lemma 3.1. The involution I restricts to an involution on the set B, and A→ A′ if and only if
I(A′)→ I(A).

Hence, I yields a bijection on B which preserves the graph structure coming from Bk.

Drift under harmonic measures

We denote by Γ f (Ak) the set of reduced finite alcove paths which start at A(0) and
remain in the dominant Weyl chamber. For any A in Ak, write λA ∈ Bk its corre-
sponding k-bounded partition. Conversely recall that for any λ ∈ Bk, Awλ

∈ Ak is the
alcove associated to λ. Let ϕ be an extremal harmonic measure on Bk associated to
~r = (r1, . . . , rk) ∈ Rk, and let (An)n≥1 be the central Markov chain on Ak defined in Sec-
tion 3.1. By considering for each n ≥ 1 the center vn of the alcove An, we get a genuine
random walk (vn)n≥1 on Rk. Our goal is now to prove the law of large numbers for this
random walk. For any alcove A, set A = IΩ(A).

Theorem 3.2. As n goes to infinity, the normalized random walk
(

1
n vn

)
n≥1

converges almost

surely to a vector vϕ ∈ Rk, whose coordinate on Λi satisfies

vϕ(i) = ϕ

 sRi

∑A∈B s(k)λA
s(k)λA

∑
e:A→A′
c(e)=i

s(k)λA
s(k)λA′


which is a rational function on Rk.



12 Cédric Lecouvey and Pierre Tarrago

Acknowledgments

Both authors thank the international French-Mexican laboratory LAISLA, the CIMAT
and the IDP for their support and hospitality. We are also grateful to J. Guilhot for
numerous discussions on the combinatorics of alcoves and T. Lam for indicating us
references potentially useful to extend results of the paper beyond type A.

References

[1] A. Berenstein, S. Fomin, and A. Zelevinsky. “Parametrizations of canonical bases and to-
tally positive matrices”. Adv. Math. 122.1 (1996), pp. 49–149. Link.

[2] S. V. Kerov. Asymptotic Representation Theory of the Symmetric Group and its Applications in
Analysis. Translations of Mathematical Monographs 219. American Mathematical Society,
Providence, RI, 2003.

[3] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 2. Springer-Verlag, Berlin,
2005.

[4] T. Lam. “Schubert polynomials for the affine Grassmannian”. J. Amer. Math. Soc. 21.1 (2008),
pp. 259–281. Link.

[5] T. Lam. “The shape of a random affine Weyl group element and random core partitions”.
Ann. Probab. 43.4 (2015), pp. 1643–1662. Link.

[6] T. Lam, L. Lapointe, J. Morse, A. Schilling, M. Shimozono, and M. Zabrocki. k-Schur Func-
tions and Affine Schubert Calculus. Fields Institute Monographs 33. Springer, New York, 2014.

[7] T. Lam, A. Schilling, and M. Shimozono. “Schubert polynomials for the affine Grassman-
nian of the symplectic group”. Math. Z. 264.4 (2010), pp. 765–811. Link.

[8] L. Lapointe, A. Lascoux, and J. Morse. “Tableau atoms and a new Macdonald positivity
conjecture”. Duke Math. J. 116.1 (2003), pp. 103–146. Link.

[9] C. Lecouvey, E. Lesigne, and M. Peigné. “Conditioned random walks from Kac-Moody
root systems”. Trans. Amer. Math. Soc. 368.5 (2016), pp. 3177–3210. Link.

[10] C. Lecouvey and P. Tarrago. “Harmonic functions on multiplicative graphs and weight
polytopes of representations”. 2016. arXiv:1609.00138.

[11] I. G. Macdonald. Symmetric Functions and Hall Polynomials. 2nd ed. Oxford Classic Texts in
the Physical Sciences. The Clarendon Press, Oxford University Press, New York, 2015.

[12] J. Morse and A. Schilling. “Crystal approach to affine Schubert calculus”. Int. Math. Res.
Not. IMRN 8 (2016), pp. 2239–2294. Link.

[13] S. Pon. “Affine Stanley symmetric functions for classical types”. J. Algebraic Combin. 36.4
(2012), pp. 595–622. Link.

[14] K. Rietsch. “Totally positive Toeplitz matrices and quantum cohomology of partial flag
varieties”. J. Amer. Math. Soc. 16.2 (2003), pp. 363–392. Link.

http://dx.doi.org/10.1006/aima.1996.0057
http://dx.doi.org/10.1090/S0894-0347-06-00553-4
http://dx.doi.org/10.1214/14-AOP915
http://dx.doi.org/10.1007/s00209-009-0488-9
http://dx.doi.org/10.1215/S0012-7094-03-11614-2
http://dx.doi.org/10.1090/tran/6468
https://arxiv.org/abs/1609.00138
http://dx.doi.org/10.1093/imrn/rnv194
http://dx.doi.org/10.1007/s10801-012-0352-6
http://dx.doi.org/10.1090/S0894-0347-02-00412-5

	Introduction
	Harmonic analysis on the lattice of k-bounded partitions
	The lattice Bk.
	The k-Schur functions
	Harmonic functions and minimal boundary of Bk
	The matrix 
	Field extensions and k-Schur functions
	Minimal boundary of Bk
	Rietsch parametrization of Toeplitz matrices

	Markov chains on alcoves
	Central Markov chains on alcoves from harmonic functions


