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Manfred Buchacher and Manuel Kauers∗

Institute for Algebra, Johannes Kepler University, Linz, Austria

Abstract. We consider inhomogeneous lattice walk models in a half-space and in the
quarter plane. For the models in a half-space, we show by a generalization of the ker-
nel method to linear systems of functional equations that their generating functions are
always algebraic. For the models in the quarter plane, we have carried out an experi-
mental classification of all models with small steps. We discovered many (apparently)
D-finite cases for most of which we have no explanation yet.
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1 Introduction

Given a specific counting problem, it is often easy to write down a functional equation
for the corresponding generating function, but it can be quite hard to derive from it
something interesting about its solution. Counting problems for restricted lattice walks
are a source of functional equations which are neither trivial nor hopeless, and therefore
interesting. Using the kernel method, Banderier and Flajolet [2] have shown that the
generating functions for lattice walks restricted to a half-space are always algebraic. For
walks restricted to the quarter plane, the functional equations are more intricate, and as
a consequence, the resulting generating functions come in more flavours. A systematic
classification was initiated by Bousquet-Mélou and Mishna [12] and has since led to a
substantial amount of literature, see [8] and the references given there, as well as [4, 16]
for some more recent developments.

Since the main questions raised in the paper of Bousquet-Mélou and Mishna have
been answered, the focus has shifted to modified versions of the problem, including, for
example, weighted steps [18, 14], longer steps [10], higher dimensions [9, 1, 5], or inter-
acting boundaries [3]. All these variations are homogeneous in the sense that the walks
are formed from a fixed set of admissible steps. Little is known about inhomogeneous
models, e.g., lattice walk models where the set of admissible steps may vary with the
time and/or the position of the walk. Bousquet-Mélou and Xin [13] have studied such a
case. They analyzed a quarter plane model where the step set varies with the parity of
the time. Also D’Arco et al. [15] have studied an inhomogeneous case. They determined
the asymptotics for walks in the quarter plane where at position (i, j), the next step is
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taken from if i + j is even and from if i + j is odd. In the present paper, we
study such inhomogeneous models more systematically.

We consider half-space models and quarter plane models. For the half-space, we
show for a general class of inhomogeneities that the generating function is invariably
algebraic. Our proof is an adaption of an argument given by Bousquet-Mélou and Je-
hanne [11] to the case of linear systems of functional equations (Section 3). The state-
ment also follows from a deep theorem of Popescu [19] (see also Theorem 16 in [7]).
For regions defined by more than one restriction, we generalize the notion of dimension
introduced by Bostan et al. [9] to inhomogeneous models (Section 4). For the quarter
plane (Section 5), we give an experimental classification for models with short steps and
two specific inhomogeneities. We recognize many generating functions as D-finite, but
in most cases we have no explanation for their D-finiteness.

2 Inhomogeneous Lattice Walks in the Half-Space

We consider walks in a half-space Z≥0 ×Zd−1 which start at some point (i0, j0) of the
half-space, consist of n steps, and end at some point (i, j) of the half-space. Restrictions
are imposed on the steps the walks consist of. For a homogeneous model, there is a fixed
finite set S ⊆ Zd, called the step set, from which each step of the walk is taken.

For an inhomogeneous model, the allowed steps are governed by a deterministic finite
automaton. A finite automaton is a directed multigraph (Q, E) whose (finitely many)
edges are labelled by letters of some alphabet. The vertices q ∈ Q are called states. One
particular state q0 ∈ Q is called the initial state, and there is a subset Q̄ ⊆ Q of final
states. In our setting the edges are labelled by elements of Zd. To be deterministic means
that for every pair (q, s) with q ∈ Q and s ∈ Zd there is at most one edge starting from
q and labelled by s. A lattice walk w = w0, . . . , wn belongs to the inhomogeneous model
if wk ∈ Z≥0 ×Zd−1 for k = 0, . . . , n and there is a path in the automaton starting at the
initial state, ending at one of the final states, and such that the kth edge of the path is
labelled with wk − wk−1 ∈ Zd for k = 1, . . . , n. Below we will write Spq for the set of all
s ∈ Zd which label an edge from p to q.

Example 1. Let S0 = and S1 = , and consider walks in Z≥0 ×Z starting at (0, 0) and
consisting of steps taken from S0 ∪ S1 with the restriction that whenever the current position of
a walk is (i, j), the next step must be taken from S(i+j) mod 2. In the notation from above we can
take Q = Q̄ = {0, 1}, q0 = 0, and S01 = , S10 = and S11 = .

When the admissible steps only depend on the current position (i, j), as in Example 1,
we call the model space inhomogeneous. When they only depend on the time n, the model
is called time inhomogeneous.

Fix an inhomogeneous lattice walk model as introduced above, and for each set Spq
fix a function wpq : Spq → K, where K is a field of characteristic zero. We call wpq(u, v)
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the weight of the step (u, v) ∈ Spq. The weight of a walk is the product of the weights of
the steps it consists of. Note that the weight does not only depend on the step (u, v) but
also on the edge it labels.

For any i, j, n, let fi,j,n be the sum of the weights of all walks from (i0, j0) to (i, j)
of length n, and let F(x, y, t) = ∑i,j,n fi,j,nxiyjtn ∈ K[x, y, y−1][[t]] be the corresponding
generating function, where we write y and y−1 for y1, . . . , yd−1 and y−1

1 , . . . , y−1
d−1, respec-

tively, and yj for yj1
1 · · · y

jd
d−1. Note that fi,j,n is just the total number of walks in the model

if all weights are defined as 1. If Fq is the generating function of walks associated with
paths in the automaton ending at state q, then F = ∑q∈Q̄ Fq.

Example 2. Continuing the previous example, F0 is the generating function counting walks
ending at a point (i, j) with i + j even and F1 is the generating function counting walks ending
at a point (i, j) with i + j odd. The full generating function is F = F0 + F1.

For the inhomogeneities under consideration the Fq’s satisfy a system of functional
equations: writing Spq := ∑(u,v)∈Spq wpq(u, v)xuyv, the combinatorial specification, in-
cluding the boundary condition, translates into the system of functional equations

∀ q : Fq = [q = q0] + t ∑
p
([x≥0]Spq)Fp + t ∑

k≥1
∑
p

x−k([x−k]Spq)[x≥k]Fp,

where [x≥0]Spq ∈ K[x, y, y−1] is the Laurent polynomial obtained from Spq by discard-
ing all terms with negative exponents in x, where [x−k]Spq ∈ K[y, y−1] is the coefficient
of x−k of Spq ∈ K[x, x−1, y, y−1], and where [x≥k]Fp denotes the series obtained from
Fp by discarding all terms xiyjtn with i < k. The functional equation can also be ex-
pressed using the ∆ operator defined by ∆F(x, y, t) := (F(x, y, t) − F(0, y, t))/x. Note
that [x≥k]F = xk∆kF for all k ∈N, so x−k([x−k]Spq)[x≥k]Fp simplifies to ([x−k]Spq)∆kFp.

Example 3. Continuing the previous example and taking all weights to be 1, we have

F0(x, y) = 1 + t(y + y−1 + x)F1(x, y) + tx−1(F1(x, y)− F1(0, y)), (2.1)

F1(x, y) = t(y + y−1 + x)F0(x, y) + tx(y + y−1)F1(x, y)

+ tx−1(F0(x, y)− F0(0, y)) + tx−1(y + y−1)(F1(x, y)− F1(0, y)).

Eliminating F0(x, y) from these equations leads to the equation(
x2y2 − t2(x + y)2(1 + xy)2 − tx(1 + x2)y(1 + y2)

)
F1(x, y)

= txy(x + y)(1 + xy)− txy2F0(0, y)− ty(x(1 + y2) + t(x + y)(1 + xy))F1(0, y).
(2.2)

which we can solve using the kernel method: the polynomial x2y2 − t2(x + y)2(1 + xy)2 −
tx(1 + x2)y(1 + y2) ∈ Q(y)[[t]][x] has two roots in Q(y)[[t]], and if we substitute them for x
in (2.2), we get a system of two linear equations for the two unknown series F0(0, y) and F1(0, y).
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This system turns out to have a unique solution, which implies that F0(0, y) and F1(0, y) are
algebraic. Consequently, by (2.2), also F1(x, y) is algebraic. Consequently, by (2.1), also F0(x, y)
is algebraic. Finally, it follows by algebraic closure properties that F(x, y) = F0(x, y) + F1(x, y)
is algebraic.

For any particular choice of inhomogeneity we can write down an explicit system
of functional equations for the auxiliary series Fq, which we can attempt to solve as
illustrated in the example above. Potentially, such an attempt could fail, for example
because there are too few roots for applying the kernel method, or because there are too
many solutions of the linear system for the evaluated auxiliary series Fq(0, y). The next
theorem says that we do not need to worry about such problems.

Theorem 1. The generating function F(x, y, t) ∈ K[x, y, y−1][[t]] for a model of inhomogeneous
lattice walks and a choice of weight functions wpq as specified above is algebraic over K[x, y, t].

Proof. As argued above, for every q there is a functional equation Fq = · · · , where the
right hand side is a K(y)[x, t]-linear combination of 1 and the series ∆iFq. These equa-
tions together form a system of functional equations which can be written as

f = a + t
k

∑
i=0

Bi∆if,

where f is the vector of the Fq’s, where a is a certain explicit vector, and where the Bi’s
are certain explicit matrices with entries in K(y)[x, t]. According to Theorem 2 shown
in the next section (applied with K(y) in place of K), the unique solution vector of such
a system always has algebraic components. This means that every Fq is algebraic, and
consequently, the finite sum F = ∑q∈Q̄ Fq is algebraic too.

3 Systems of Linear Functional Equations

The purpose of the present section is to prove the following theorem, which says that
the solutions of certain systems of linear functional equations are always algebraic. For
a more general statement on systems of polynomial equations see Popescu [19].

Throughout this section, let K be a field of characteristic zero. Recall from the pre-
vious section that ∆ : K[x][[t]] → K[x][[t]] is defined by ∆ f (x, t) = 1

x ( f (x, t)− f (0, t)).
Applied to a vector of series, the action of ∆ is meant componentwise.

Theorem 2. Let a ∈ K[x][t]n and Bi ∈ K[x][t]n×n (i = 0, . . . , k). Then the functional equation

f = a + t
k

∑
i=0

Bi∆if (3.1)

has a unique solution f in K[x][[t]]n, and its components are algebraic over K[x, t].
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It is clear that the functional equation has a unique solution in K[x][[t]]n, because we
can compute its coefficients recursively via

[t0]f = [t0]a and [tn+1]f = [tn+1]a +
k

∑
i=0

n

∑
j=0

([tj]Bi)∆i[tn−j]f (n ∈N).

The nontrivial part of the theorem is that the components of the solution are algebraic.
For proving this part of the theorem, we may assume without loss of generality that K

is algebraically closed, and we will do so from now on.
Our proof is an adaption of the proof idea of Thm. 3 in [11] to linear systems. We

first bring the unevaluated terms f(x, t) hidden in the delta terms to the left hand side,
so that the right hand side only contains f(0, t) or other evaluated versions of f. This
can be done by translating the delta terms into evaluations of partial derivatives. Using
[xj]∆if(x, t) = [xi+j]f(x, t) and [xj]f(x, t) = 1

j! f
(j)(0, t), where f(j)(0, t) is the jth derivative

with respect to x, evaluated at x = 0, we can write

∆if(x, t) =
1
xi

(
f(x, t)−

i−1

∑
j=0

xj

j!
f(j)(0, t)

)
.

The functional equation (3.1) can therefore be rewritten in the form(
xkIn − t

k

∑
i=0

xk−iBi

)
f(x, t) = xka− t

k−1

∑
j=0

( k

∑
i=j+1

xk+j−i

j!
Bi

)
f(j)(0, t). (3.2)

The key to the proof is the matrix on the left side. We will first prove the theorem under
the additional assumption that this matrix has the form xkIn− tP for some matrix P such
that [t0x0]P is a non-singular diagonal matrix (Lemma 3). Afterwards, the general case
is reduced to this situation by a perturbation argument. In the proof of Lemma 3, we
will relate eigenvectors of [t0x0]P to eigenvectors of P, using the following fact.

Lemma 1. Let P ∈ K[x][t]n×n such that P0 = [t0]P ∈ Kn×n, and let K = xkIn − tP ∈
K[x][t]n×n, for some k ∈N. Let λ be an eigenvalue of P0, let ω be a primitive k-th root of unity,
and let i ∈ {0, . . . , k − 1}. Then there is a series y(t) = ωiλ1/kt1/k + O(t2/k) ∈ K[[t1/k]]
such that det(K(y(t), t)) = 0. Furthermore, there is a vector v(t) ∈ K[[t1/k]]n with algebraic
coordinates such that v(t)K(y(t), t) = 0 and v(0) is an eigenvector of P0 for λ.

Proof. By definition of the determinant, det(K) = det(xkIn − tP) = det(xkIn − tP0) +

O(t2). The polynomial det(xkIn − tP0) = (−1)ntn det(P0 − xk

t In) ∈ K(t)[x] has the
root ωiλ1/kt1/k. Hence, by the Newton-Puiseux algorithm [17], there is a series y(t) =
ωiλ1/kt1/k + O(t2/k) ∈ K[[t1/k]] such that det(K(y(t), t)) = 0. It follows that the ma-
trix K(y(t), t) ∈ K(y(t), t)n×n is singular, so its left-kernel has a nonzero element v ∈
K(y(t), t)n. Since y(t) is algebraic (because det(K) is a polynomial in x), also the com-
ponents of v are algebraic. After multiplying by a suitable power of t, we may assume
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that the components of v(t) are in K[[t1/k]] and that v(0) is not the zero vector. Then
v(t)K(y(t), t) = 0 implies v(0)(λIn − P0) = 0, which completes the proof.

Secondly, we will need to ensure that a certain matrix is nonsingular.

Lemma 2. Let λ0, . . . , λn−1 ∈ K \ {0} and let ω be a primitive k-th root of unity. For u, v =
0, . . . , nk− 1 define cu,v = (ωu mod kλbu/kc)

bv/ncδbu/kc,v mod n. Then

det((cu,v)
nk−1
u,v=0) = ±

(
∏

0≤i<j<k
(ω j −ωi)

)n n−1

∏
`=0

λ
(k

2)
` .

In particular, this determinant is not zero.

Proof. The expression on the right is non-zero because λ` 6= 0 for all ` and ω is a primi-
tive root of unity. It remains to prove the claimed identity.

We permute the columns of the matrix such that the entry at position (u, v) is

(ωu mod kλbu/kc)
v mod kδbu/kc,bv/kc.

The resulting matrix is block diagonal with n blocks of size k× k. The `-th block is the

Vandermonde matrix ((ωijλ
j
`))

k−1
i,j=0, whose determinant is λ

(k
2)
` ∏i<j(ω

j − ωi). Since the
determinant of a block diagonal matrix is the product of the determinants of its blocks,
we arrive at the desired conclusion.

The idea for the proof of Lemma 3 is to replace x by various algebraic series y(t) in
such a way that the terms f(x, t) in (3.2) disappear and a linear system for the compo-
nents of f(j)(0, t) arises, and then to show that this system has a unique solution.

Lemma 3. Let λ0, . . . , λn−1 ∈ K \ {0} be pairwise distinct, and let E = diag(λ0, . . . , λn−1) ∈
Kn×n. Let a ∈ K[x][t]n, and let P, Q0, . . . , Qk−1 ∈ K[x][t]n×n. Suppose that P = E + O(t)
and Qj = xjE + O(t) for j = 0, . . . , k − 1. If f ∈ K[x][[t]]n and g0, . . . , gk−1 ∈ K[[t]]n are
such that (

xkIn − tP
)

f = xka− t
k−1

∑
j=0

Qjgj, (3.3)

then the components of g0, . . . , gk−1 and f are algebraic over K[x][t].

Proof. By Lemma 1, the polynomial det(xkIn − tP) has nk series roots yij(t) of the form
yij(t) = ωiλ1/k

j t1/k + O(t2/k). For each such root, the matrix yij(t)kIn − tP(yij(t), t) is

singular, and, again by Lemma 1, the left-kernel of yij(t)kIn − tP(yij(t), t) contains a
vector vij(t) = λ−1

j ej + O(t1/k), with algebraic coefficients. Here ej is the jth unit vector.
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For i = 0, . . . , k− 1 and j = 0, . . . , n− 1 we replace x by yij(t) in (3.3) and multiply
with vij(t) on the left. This gives an inhomogeneous linear system with nk equations for
the nk unknown components of g0(t), . . . , gk−1(t) ∈ K[[t]]n, whose coefficient matrix is

v0,0(t)Q0(y0,0(t), t) · · · v0,0(t)Qk−1(y0,0(t), t)
v1,0(t)Q0(y1,0(t), t) · · · v1,0(t)Qk−1(y1,0(t), t)

... . . . ...
vk−1,n−1(t)Q0(yk−1,n−1(t), t) · · · vk−1,n−1(t)Qk−1(yk−1,n−1(t), t)

 .

We are done if we can show that this matrix is invertible, because this implies that the
inhomogeneous linear system for the components of g0, . . . , gk−1 has a unique solution.
The components of its solution vector must be algebraic, because all the series appearing
in the linear system are algebraic. From (3.3), we finally see that the algebraicity of the
components of g0, . . . , gk−1 implies the algebraicity of the components of f.

To see that the matrix above is invertible, we use the assumption that Q`(yij(t), t) =
Eyij(t)` + O(t) = (ωiλ1/k

j )`Et`/k + O(t(`+1)/k) ∈ K[[t1/k]]n×n. Together with ejE = λjej,
where ej is again the jth unit vector, it follows that

vij(t)Q`(yij(t), t) = (ωiλ1/k
j )`ejt`/k + O(t(`+1)/k) ∈ K[[t1/k]]n,

for i = 0, . . . , k− 1, j = 0, . . . , n− 1 and ` = 0, . . . , k− 1. Therefore, for u = 0, . . . , nk− 1
and v = 0, . . . , nk− 1, the entry of the matrix at position (u, v) is

cu,v := (ωu mod kλ1/k
bu/kc)

bv/nctbv/nc/kδbu/kc,v mod n + O(t(bv/nc+1)/k).

By Lemma 2, we have det((cu,v)
nk−1
u,v=0) 6= 0. This completes the proof.

Proof of Theorem 2. We have already argued that existence and uniqueness of a solution
in K[x][[t]]n are evident. To show that its components are algebraic, we bring (3.1)
into a form where Lemma 3 applies. Let ε be a new variable, let λ1, . . . , λn ∈ K \ {0}
be pairwise distinct and set E = ε diag(λ1, . . . , λn). Set ã(x, t) := a(x, t2), B̃i(x, t) :=
tBi(x, t2) (i = 0, . . . , k− 1), and B̃k(x, t) := E + tBk(x, t2), and consider the system

f̃ = ã + t
k

∑
i=0

B̃i∆i f̃.

This system has a unique solution f̃ ∈ K[x, ε][[t]]n, which is related to the solution f of
the original equation (3.1) via f(x, t2) = [ε0]f̃(x, t). We are done if we can show that the
components of f̃ are algebraic, because then so are the components of f.

Indeed, translating the delta terms to partial derivatives, as earlier, gives(
xkIn − t

k

∑
i=0

xk−iB̃i

)
f̃(x, t) = xkã− t

k−1

∑
j=0

( k

∑
i=j+1

xk+j−i

j!
B̃i

)
f̃(j)(0, t).
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For the matrix P = ∑k
i=0 xk−iB̃i ∈ K(ε)[x, t]n×n we have P = E + O(t), and for the matri-

ces Qj = k! ∑k
i=j+1

xk+j−i

j! B̃i ∈ K(ε)[x, t]n×n we have Qj = xjE + O(t) for j = 0, . . . , k− 1.
Therefore, Lemma 3 applies to the perturbed equation above and yields the desired al-
gebraicity result. (The lemma is applied with K replaced by some algebraic closure of
K(ε) and with f̃(j)(0, t)/k! in the role of gj.)

4 Models with more than one restriction

We have seen that inhomogeneous models in a half-space Z≥0 ×Zd−1 always have an
algebraic generating function. More generally, consider walks restricted to Z

d1
≥0 ×Z

d2 .
In this case, the question arises whether some of the d1 constraints are implied by the
others, which has led Bostan et al. [9] to introduce the dimension of a model. Here we
generalize this notion to inhomogeneous walks.

First consider unrestricted models in Zd. Fix an inhomogeneity as in Section 2. Let S
be the union of some disjoint copies of the sets Spq, so that a walk in Zd of length n can
be viewed as a word w over the alphabet S. To any such walk w, we associate the vector
(au)u∈S where au ∈ N is the number of occurrences of u in w. While for unrestricted
homogeneous models, every vector of natural numbers is associated with some walk,
this is not true for inhomogeneous models. For example, for space-inhomogeneous
walks in Z2 with S0 = {↗} and S1 = {↙}, the vector (1, 1) is not associated with a
walk. The next lemma is a characterization of vectors associated with walks.

Lemma 4. Consider a finite automaton and the inhomogeneity defined by it as in Section 2. Let
S be a disjoint union of the sets Spq, and (au)u∈S be a vector of nonnegative integers. Let G be
the multigraph obtained from the automaton by replacing an edge labelled with u by au many
(unlabelled) edges. Then (au)u∈S is associated with a walk if and only if G has an Eulerian path
starting at the initial state q0 and ending at some final state.

Proof. Since S is the union of disjoint copies of the step sets Spq, every step u ∈ S
belongs to exactly one such set. Therefore, any walk w in the model which has (au)u∈S
as associated vector can be translated into a path in G starting at q0, ending at some final
state, and using ∑u∈Spq au times an edge from p to q, for all vertices p and q. This is an
Eulerian path. Conversely, let (q0, q1, . . . , qn) be an Eulerian path in G with qn being a
final state. Then for any two p, q states there are ∑u∈Spq au many indices i ∈ {1, . . . , n}
such that (qi−1, qi) = (p, q). For every i ∈ {1, . . . , n}, assign an arbitrary step u ∈ Sqi−1qi

in such that each step u is chosen exactly au times, and let w be the walk composed of
the selected steps. By definition of the Spq’s, it belongs to the model.

The condition for a graph to have an Eulerian path can be encoded as a system of
linear constraints on the in-degree and out-degrees of the vertices of the graph [6]. In
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our case these are linear equations for the variables au. It can also be encoded into linear
equations that the Eulerian path should start or end at prescribed vertices.

A walk w ends in Z
d1
≥0 ×Z

d2 iff for its associated vector (au)u∈S we have

∑
u=(u1,...,up+q)∈S

auui ≥ 0 for all i = 1, . . . , d1, (4.1)

and it stays entirely in Z
d1
≥0×Z

d2 iff these inequalities hold for all prefixes of w. Extend-

ing Def. 2 of [9], we define the dimension of an inhomogeneous model for Z
d1
≥0 ×Z

d2 as
the smallest δ ∈ N such that there are δ inequalities in (4.1) which imply all the others.
In view of Lemma 4, the dimension of a model can be found by linear programming.

5 Inhomogeneous Lattice Walks in the Quarter Plane

We have no satisfactory theory for inhomogeneous models for the quarter plane. How-
ever, for all time-inhomogeneous and all space-inhomogeneous models with small steps
as in the introduction, we have produced an experimental classification which is avail-
able at http://www.algebra.uni-linz.ac.at/people/mkauers/inhomogeneous/. Up to
symmetry, there are 32993 pairs S0, S1 ⊆ . Removing trivial cases (whose counting
sequence is ultimately constant), zero- and one-dimensional cases (whose generating
function is algebraic by Theorem 1), and homogeneous cases (whose nature is known)
leaves us with 23906 space-inhomogeneous and 25370 time-inhomogeneous cases.

For each of these, we computed the first 10000 terms (modulo the prime 45007) of the
generating function F(1, 1, t) and tried to guess a differential equation. When an equa-
tion was found, we also searched for an algebraic equation. These computations took al-
together about 30 years of computing time. As a result, 3784 space-inhomogeneous mod-
els and 2603 time-inhomogeneous models seem to be D-finite, including 2474 and 1535
seemingly algebraic cases, respectively. For space-inhomogeneous models, the largest
differential equations we found have order 24 and degree 1183, such an equation ap-
pears for S0 = and S1 = . For time-inhomogeneous models, the largest differential
equation we found has order 28 and degree 1256 and appears for S0 = , S1 = .
Very likely further D-finite models could be discovered with more terms.

The techniques of [12] for proving D-finiteness seem to apply only to a very limited
number of cases. We conclude with two examples where they work and invite our
readers to find proofs for further conjecturally D-finite cases.

Example 4. Consider the time-inhomogeneous model in Z2
≥0 with S0 = and S1 = . Let

S0, S1 ∈ Q[x, x−1, y, y−1] be the corresponding Laurent polynomials, and let F0(x, y), F1(x, y) ∈
Q[x, y][[t]] be the power series counting the number of walks of even and odd lengths, respectively.
Then F(x, y) = F0(x, y) + F1(x, y) is the generating function of the model. The functional

http://www.algebra.uni-linz.ac.at/people/mkauers/inhomogeneous/
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equations for F0(x, y) and F1(x, y) are

F0(x, y) = 1 + tS1F1(x, y)− t([y<0]S1)F1(x, 0)− t([x<0]S1)F1(0, y) + t([x<0y<0]S0)F1(0, 0)

F1(x, y) = tS0F0(x, y)− t([y<0]S0)F0(x, 0).

We consider the groups G0 and G1 generated by the rational maps Φ0 : (x, y) 7→ ( 1
x , y) and

Ψ0 : (x, y) 7→ (x, 1
y(x+ 1

x )
), and Φ1 : (x, y) 7→ ( 1

x , y) and Ψ1 : (x, y) 7→ (x, 1
y (x + 1

x )), respec-

tively. These groups act on pairs of rational functions. By construction their generators alter only
one of two of its components, and leave the corresponding step polynomials invariant, see [12] for
details. We multiply the two equations above by xy and take the so-called orbit sum of the first
equation with respect to G1, and of the second one with respect to G0. This eliminates all terms
Fq(x, 0), Fq(0, y) and Fq(0, 0) with q ∈ {0, 1} and leaves us with

∑
g∈G1

sgn(g)g(xyF0(x, y)) = ∑
g∈G1

sgn(g)g(xy) + tS1 ∑
g∈G1

sgn(g)g(xyF1(x, y))

∑
g∈G0

sgn(g)g(xyF1(x, y)) = tS0 ∑
g∈G0

sgn(g)g(xyF0(x, y)),

where sgn(g) = (−1)` when g is a product of ` generators. It is easy to check that replacing y
by 1

y (x + 1
x ) in the second equation gives

∑
g∈G1

sgn(g)g(xyF1(x, y)) = tS0(x,
1
y
(x +

1
x
)) ∑

g∈G1

sgn(g)g(xyF0(x, y)).

From this equation and the first of the two previous two equations we get

∑
g∈G1

sgn(g)g(xyF0(x, y)) =
1

1− t2S0(x, 1
y (x + 1

x ))S1
∑

g∈G1

sgn(g)g(xy)

Extracting the positive part gives

F0(x, y) =
1

xy
[x>0y>0]

1
1− t2S0(x, 1

y (x + 1
x ))S1

∑
g∈G1

sgn(g)g(xy).

This expression implies D-finiteness of F0(x, y), and back-substituting into the earlier equations
and using D-finite closure properties gives the D-finiteness of F1(x, y) and of F(x, y).

Example 5. Consider the space-inhomogeneous model in Z2
≥0 with S0 = and S1 =

studied by D’Arco et al. [15]. Define Spq for p, q ∈ {0, 1} as in Section 2, and let Spq ∈
Q[x, x−1, y, y−1] be the corresponding Laurent polynomials. Write Fq(x, y) for q ∈ {0, 1} for
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the power series that count the number of walks ending at points (i, j) with i + j = q mod 2.
The functional equations for F0(x, y) and F1(x, y) are

F0(x, y) = 1 + tS10F1(x, y)− t([y<0]S10)F1(x, 0)− t([x<0]S10)F1(0, y)

F1(x, y) = tS01F0(x, y)− t([y<0]S01)F0(x, 0)− t([x<0]S01)F0(0, y)

+ tS11F1(x, y)− t([y<0]S11)F1(x, 0)− t([x<0]S11)F1(0, y).

Consider the group G generated by the rational maps Φ : (x, y) 7→ (x, 1
y ) and Ψ : (x, y) 7→

( 1
x , y). Like in the previous example, multiply both equations by xy and take the orbit sum for G.

This eliminates all terms Fq(x, 0) and Fq(0, y) and leaves us with

∑
g∈G

sgn(g)g(xyF0(x, y)) = ∑
g∈G

sgn(g)g(xy) + tS10 ∑
g∈G

sgn(g)g(xyF1(x, y))

∑
g∈G

sgn(g)g(xyF1(x, y)) = tS01 ∑
g∈G

sgn(g)g(xyF0(x, y)) + tS11 ∑
g∈G

sgn(g)g(xyF1(x, y)).

From those equations we deduce

∑
g∈G

sgn(g)g(xyF1(x, y)) =
tS01

1− tS11 − t2S01S10
∑

g∈G
sgn(g)g(xy),

and extracting the positive part gives

F1(x, y) =
1

xy
[x>0y>0]

tS0

1− tS11 − t2S01S10
∑

g∈G
sgn(g)g(xy).

This expression implies D-finiteness of F1(x, y), and back-substituting into the earlier equations
and using D-finite closure properties gives the D-finiteness of F0(x, y) and of the full generating
function F(x, y) = F0(x, y) + F1(x, y).

We were able to guess a differential equation of order 3 with polynomial coefficients
of degree 9 for the generating function F(1, 1, t) in Example 5. For the model in Exam-
ple 4 we could not find any.
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