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Eigenvalues of symmetrized shuffling operators
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Abstract. This paper describes a combinatorial way of obtaining all the eigenvalues
of the symmetrized shuffling operators introduced by Victor Reiner, Franco Saliola
and Volkmar Welker. It allows us to prove their conjecture that these eigenvalues are
integers. This work generalizes the case of the random-to-random Markov chain.

Résumé. Cet article décrit une stratégie combinatoire pour calculer toutes les valeurs
propres des opérateurs de mélange symétrisés introduits par Victor Reiner, Franco
Saliola et Volkmar Welker. Ceci nous permet de prouver leur conjecture affirmant
que ces valeurs propres sont entières. Les travaux présentés ici généralisent le cas du
mélange doublement aléatoire.
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1 Context

The random-to-random shuffle on a sequence of objects (w1, w2, . . . , wn) can be described
as follows: pick any object randomly, with uniform probability, remove it, and place it
back anywhere in the sequence once again randomly. Introduced by Persi Diaconis and
Laurent Saloff-Coste [5], it has drawn attention in the literature on shufflings ever since
[7, 9, 13, 15, 17], in part because the computation of its mixing time proved elusive. The
mixing time is the number of times one must execute a shuffle to get a sequence that is
well shuffled. It was finally computed by Megan Bernstein and Evita Nestoridi [1]. The
key ingredient in their proof was a combinatorial description of the eigenvalues of the
random-to-random Markov chain found by Anton Dieker and Franco Saliola [7] using
representation theory and the following interpretation of the Markov chain. The random-
to-top shuffle consists of taking any object in our sequence (randomly) and reinserting
it at the beginning of the sequence. The top-to-random shuffle is the dual version of
random-to-top and is done by taking the first element in the sequence and inserting
it in the sequence at a random position. The random-to-random shuffle is simply the
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composition of random-to-top and then top-to-random. It is said to be the symmetrized
version of random-to-top.

One can generalize the random-to-random shuffle by replacing the random-to-top
operator by another one moving more than one object at a time. Victor Reiner, Franco
Saliola and Volkmar Welker observed such a family of operators {νk}k∈N that have spe-
cial properties [10]. These operators νk = π>k πk are such that πk follows the move-and-
randomize scheme, which means that one needs to remove k objects randomly, and put
them on top in a random order. Although the eigenvalues of the {πk}k∈N have been
known for a long time [2, 4], this does not give the eigenvalues of the {νk}k∈N. The
challenge lies in the fact that very few properties of a Markov chain are shared with its
symmetrized version.

As said earlier, the operators in {νk}k∈N are of a certain interest not only because they
generalize the random-to-random shuffle, but also for what Reiner, Saliola and Welker
found about them: they commute, and they only have real non-negative eigenvalues.
They also conjectured that all their eigenvalues are integers (up to a rescaling), a state-
ment we confirm in Corollary 18. Furthermore, we show how to explicitly compute all
the eigenvalues of those operators in Theorem 16.

This result has the potential to give good bounds on the mixing time of the Markov
chains associated to {νk}k∈N. Some techniques to bound the mixing time use the eigen-
values [6, 8].

As well, the results presented in this paper give a general framework to study the
eigenvalues of all the symmetrized shuffling operators described by Reiner, Saliola and
Welker [10]. In their paper, they described another infinite family of operators {γk}k∈N

that pairwise commute, and they conjectured that no other pair of symmetrized shuffling
operators commute. The techniques we show here could be used to give a combinatorial
description for the eigenvalues of {γk}k∈N.

The paper is organized as follows. Section 2 describes the operators and section 3
presents the necessary background to compute the eigenvalues. The latter section also
gives the formula for computing the eigenvalues. In subsection 3.6, we explore what
happens if multiple occurrences of the same object appear in the sequence. Finally,
section 4 describes the connections with representation theory. The reader who is curious
about the connections between tableaux and the eigenvalues of the shuffling operators
is invited to jump ahead to section 4 before reading the paper.

2 Description of the operators

Let w = (w1, . . . , wn) be a sequence of objects. The operator νk removes k objects from
w and reinserts them one after the other, so that it does not necessarily preserve the
order of those k objects. We encode the result of that operation as the formal linear
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combination of all possible permutations of w1, . . . , wn one can obtain doing this shuffle.
In that linear combination, the coefficient of a shuffled sequence is the number of ways
of obtaining it after one shuffle.

Example 1. Applying ν1 to the sequence abc means removing one of the three letters and rein-
serting it at one of the three remaining spaces. For example, if one removes the letter a, then abc,
bac and bca can be obtained in one manner each. Doing the same with b and c, one obtains

ν1(abc) = 3 · abc+ 2 · bac+ 2 · acb+ cab+ bca.

Example 2. The operator ν2 acts on the sequence abcd by moving two letters, with letters that
can be moved to the same place. The coefficient of cabd in ν2(abcd) is 4. The pairs of letters to be
moved to obtain cabd are either {a,b}, {a,c}, {b,c} or {c,d}.

The operator ν0 is the identity, since there is only one way to remove no object in the
sequence.

Remark 3. In [10], Reiner, Saliola and Welker denote these operators ν(n−k,1k). In their context,
it is natural to use this notation since they look at symmetrized shuffling operators {νλ}λ`n
indexed by partitions. Here, we only use partitions of the form (n− k, 1k), and we always specify
the value of n, if needed.

The definition of those operators in terms of shuffling is handy for developing some
intuition, but it is hard to write explicitly the matrices of the linear operators from this
description. To solve that problem, one can use the following definition, taken from [10].
Let σ ∈ Sn be a permutation and let noninvi(σ) be the number of increasing sequences
of length i in σ. Then, νk acts on σ by

νk(σ) = ∑
τ∈Sn

noninvn−k(σ
−1τ)τ.

Example 4. The matrix for the linear operator ν1 on sequences of length 3 is



abc acb bac bca cab cba

abc 3 2 2 1 1 0
acb 2 3 1 2 0 1
bac 2 1 3 0 2 1
bca 1 2 0 3 1 2
cab 1 0 2 1 3 2
cba 0 1 1 2 2 3

.

Note that the matrix in Example 4 is not a transition matrix. Since the entries in a
transition matrix are transition probabilities, they always take values between 0 and 1,
and all rows sum to 1. From the operators {νk}k∈N, one can recover a transition matrix
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by dividing the entries of the matrix of νk on sequences of length n by (n
k)

2k!. One can
verify that the matrix in Example 4 has all rows summing to 9. This scaling of the matrix
is what allows us to have integer eigenvalues. Recall that the complex eigenvalues of a
transition matrix of a Markov chain all have modulus smaller than or equal to 1.

3 Eigenvalues

The eigenvalues of the symmetrized shuffling operator νk are obtained recursively, us-
ing the eigenvalues of νk−1. Fortunately, the eigenvalues for ν1, the random-to-random
shuffle, are given by a formula presented in Section 3.4, found by Dieker and Saliola
[7]. This formula is given in terms of statistics on tableaux. Hence, the first part of this
section is dedicated to presenting the combinatorial notions necessary to understand the
computations.

3.1 Partitions, diagrams and tableaux

Given a positive integer n, a partition λ of n is a decreasing list of positive integers
(λ1, . . . , λr) whose sum is n. To each partition λ = (λ1, . . . , λr) ` n, one can associate
a diagram formed by λ1 left-aligned boxes in the first row, λ2 left-aligned boxes in the
second row, and so on, the rows being placed from top to bottom, like in matrices.
Examples of partitions and diagrams are found in Example 5.

Given two diagrams λ and µ such that the boxes of µ are contained in λ, the skew
diagram λ/µ is the set of boxes of λ that do not belong to µ. As pictured in Example 5,
it is not necessarily left-justified.

Given a diagram, one can write positive integers in the boxes and thus obtain a
tableau. A tableau is said to be standard if the numbers in the n boxes are the integers
from 1 up to n and if they are placed in the following way: from left to right and from
top to bottom, the numbers in each row and column are strictly increasing. All standard
tableaux of size 2 and 3 are listed in Example 6.

Example 5. The tuple λ = (4, 3, 2, 1) is a partition of 10 and can be drawn as in the first
picture. The second picture shows a tableau of shape (3, 1, 1), while the third one is the skew
diagram (4, 3, 2, 1)/(3, 1, 1).

, 9 3 3
1
4

, .
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Example 6. The standard tableaux of size 2 and 3 are

1 2 , 1
2

, 1 2 3 , 1 2
3

, 1 3
2

, 1
2
3

.

A statistic on a (skew) diagram that is useful to our computation is its diagonal index.
To each cell in a diagram, one can associate a number by taking its coordinates (i, j), like
in a matrix, and computing the difference j− i (see Example 7). For a (skew) diagram λ,
its diagonal index is the sum of the diagonal indices of its cells and is denoted diag(λ).

Example 7. The diagonal indices of the cells in the following diagrams are written in each cell.
The left diagram has diagonal index 7, while the right one has diagonal index 17.

0 1 2 3 4
−1 0 1 2
−2−1 0 1
−3

, 0 1 2 3 4 5
−1 0 1 2

.

Remark 8. Some texts refer to the diagonal index as the content of a cell. However, the content
of a tableau can also qualify the numbers that fill the cells. To remove ambiguity, we only use the
word content with the latter meaning (defined more explicitly in Section 3.6).

3.2 Schützenberger’s ∆ operator

The strategy we use to compute the eigenvalues is an induction both on the operator’s
index, k, and on the number of objects in our sequences, n. The idea is that it is not
hard to compute the eigenvalues of the matrices for very small values of n. But since the
dimensions of the matrices grow factorially, it is too much to expect that we can compute
the eigenvalues naively. To do such an induction on n, we need a way to find, from a
tableau of size n, the right tableau of size n− 1 to proceed with the induction. This is
what the Schützenberger ∆ operator does [14]. To execute it on a tableau t of size n:

1. We remove the element 1 and replace it with an empty box.

2. While the empty box is not in an outer corner of the tableau, we move it toward
the outside using jeu-de-taquin slides: this means that if (i, j) is the empty box, we
switch it with the box containing the minimum of the boxes at position (i + 1, j)
and (i, j + 1).

3. Once the empty box is in an outer corner, we get a new tableau without the hole
that contains the numbers 2, . . . , n. In order to recover a standard tableau, we re-
place those numbers with 1, . . . , n− 1, preserving the order, and remove the empty
box.
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An example of this process appears in Example 9.

Example 9. Applying the Schützenberger ∆ operator to the standard tableau t of size 7 returns
a standard tableau of size 6.

t = 1 2 5
3 4 7
6

→ • 2 5
3 4 7
6

→ 2 • 5
3 4 7
6

→ 2 4 5
3 • 7
6

→ 2 4 5
3 7 •
6

→ 1 3 4
2 6
5

= ∆(t).

This process allows one to deduce a unique standard tableau of size n − 1 from a
standard tableau of size n.

3.3 Horizontal strips and desarrangement tableaux

A (skew) diagram is a horizontal strip if no two cells lie in the same column.
In a standard tableau of size n, an entry i is an ascent if either i = n or if the box

containing i + 1 is weakly to the north-east of the one containing i. A standard tableau
is a desarrangement tableau if it is empty or if its smallest ascent is even. Many equivalent
definitions exist as well, see for instance [3, 10].

Example 10. The skew diagram (4, 2, 2, 1)/(3, 2, 1) is a horizontal strip, as shown in this dia-
gram on the left, where the cells from the strip are identified by a cross. The ascents in the right
tableau are identified by a shaded background.

×

×
×

, 1 2 3 9
4 6
5 8
7

.

Example 11. Among the tableaux from Example 6, only the second and the fifth are desarrange-
ment tableaux.

Proposition 12 (Proposition 6.25 in [10]). To each standard tableau t, one can associate a
unique desarrangement tableau by applying the Schützenberger ∆ operator until the result is a
desarrangement tableau. If one needs to do it j times, then t/∆j(t) is a horizontal strip of size j.

Using Proposition 12, one can define the type of a standard tableau t as the minimum
number j such that ∆j(t) is a desarrangement tableau.

Example 13. The tableau of Example 10 has type 3 and

∆3(t) = 1 3 6
2 5
4

.

The diagram of the shape of t/∆3(t) is the horizontal strip from Example 10.
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3.4 Eigenvalues of the random-to-random operator

Anton Dieker and Franco Saliola recently described the eigenvalues of the random-to-
random shuffle [7]. This shuffling operator is not only a very natural shuffle and a
special case of the operators we are describing (it is a rescaling of ν1), it also serves as
the base case of our induction for the eigenvalues of {νk}k∈N. It is useful to recall their
description of the eigenvalues:

Theorem 14 (Theorem 5 in [7]). Every eigenvalue of the random-to-random shuffle is of the
form 1

n2 eig(λ/µ), where λ is a partition of n and λ/µ is a horizontal strip. Moreover, eig is the
following combinatorial statistic defined on skew partitions:

eig(λ/µ) =

(
|λ|+ 1

2

)
−
(
|µ|+ 1

2

)
+ diag(λ/µ).

The multiplicity of an eigenvalue 1
n2 ε is

∑
λ/µ is a horizontal strip,

eig(λ/µ)=ε

f λdµ,

where f λ is the number of standard tableaux of shape λ, and dµ is the number of desarrangement
tableaux of shape µ.

Remark 15. Using this theorem, the reader might notice that all the eigenvalues are real and
between 0 and 1. In that context, 1

n2 eig(λ/µ) is not an integer, but rather the eigenvalue of the
random-to-random Markov chain. The integer eigenvalue of ν1 is given by eig(λ/µ).

As well, one can associate a standard tableau with an eigenvalue of the random-
to-random shuffle [12]. This reformulation will be used in Section 3.5 to compute the
eigenvalues for other operators. For a standard tableau t:

• If t is a desarrangement tableau, the eigenvalue associated to t is 0.

• Otherwise, the eigenvalue is ε + n + diag(t/∆(t)), where ε is the eigenvalue asso-
ciated to ∆(t).

Since any standard tableau leads to a desarrangement tableau through multiple itera-
tions of ∆ (by Proposition 12), this process always terminates.

3.5 Main result: Eigenvalues of νk

We are now ready to present our main result. It describes all the eigenvalues of the
operators {νk}k∈N. Using a result from Reiner, Saliola and Welker, the kernel of νk is
associated with the tableaux of type smaller than k (see (4.1), or Theorem VI.9.5 in [10]).
Thus, to all tableaux of type at least k, we must associate a non-zero eigenvalue. The
way we compute this value allows us to show it is a positive integer (Corollary 18).
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Theorem 16. The eigenvalues of νk on CSn are indexed by the standard tableaux of size n. For
such a tableau t, the eigenvalue vk(t) is given by

vk(t) =

{
vk(∆(t)) + (n + 1− k + diag(t/∆(t))) vk−1(∆(t)) if type(t) ≥ k,
0 otherwise.

The tableau t contributes f shape(t) to the multiplicity of the eigenvalue vk(t), where f shape(t) is
the number of standard tableaux of the shape of t.

Note that, replacing k by 1, one can recover the eigenvalues for the random-to-
random operator, presented in Section 3.4.

Example 17. In this example, we compute all the eigenvalues of ν2 as a random walk on S4. Since
the Markov chain has a state space of size 4! = 24, one can still compute its eigenvalues with the
usual algorithms. We did so using SageMath [16], and we therefore know that the eigenvalues
are 0, 4, 20 and 72, with multiplicities 17, 3, 3 and 1, respectively. These values are confirmed by
Theorem 16.
There are ten standard tableaux of size 4.

Standard
tableau

1 2 3 4 1 2 3
4

1 2 4
3

1 3 4
2

1 2
3 4

1 3
2 4

1 2
3
4

1 3
2
4

1 4
2
3

1
2
3
4

Type 4 2 1 0 1 0 2 0 1 0

To find the non-zero eigenvalues of ν2, one needs only to compute vk(t) for the standard tableaux
of type at least 2. There are 3 such tableaux:

v2

(
1 2 3 4

)
= v2

(
1 2 3

)
+ (4 + 1− 2 + 3) · v1

(
1 2 3

)
=
(

v2

(
1 2

)
+ (3 + 1− 2 + 2) · v1

(
1 2

))
+ 6 · v1

(
1 2 3

)
=
((

v2

(
1
)
+ (2 + 1− 2 + 1) · v1

(
1
))

+ 4 · v1

(
1 2

))
+ 6 · 9

=
((

0 + 2 · v1

(
1
))

+ 4 · 4
)
+ 54

= 2 · 1 + 16 + 54 = 72.

v2

(
1 2 3
4

)
= v2

(
1 2
3

)
+ (4 + 1− 2 + 2) · v1

(
1 2
3

)
= 0 + 5 · v1

(
1 2
3

)
= 0 + 5 · 4 = 20.
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v2

 1 2
3
4

 = v2

 1
2
3

+ (4 + 1− 2 + 1) · v1

 1
2
3


= 0 + 4 · v1

 1
2
3


= 4 · 1 = 4.

In the last computation, the second equality comes from the fact that
1
2
3

has type smaller than

2, while the third one has been computed using the result from Section 3.4.

The work presented here allows us to confirm Conjecture I.1.2, found in [10].

Corollary 18. All eigenvalues of the operators {νk}k∈N are (positive) integers.

3.6 Sequences with multiple copies of the same object

Up to now, we viewed our sequences as lists containing objects that are all distinct.
However, those operators also work on sequences with repetitions. For example, it is
common to apply it to a word, and words often have repeated letters. The Markov
chains are defined in the same way, but they have fewer states. For example, the matrix
for ν2 on a sequence of four elements, two of each of the two kinds, is

ν2 =



aabb abab baab abba baba bbaa

aabb 20 16 12 12 8 4
abab 16 14 12 12 10 8
baab 12 12 12 12 12 12
abba 12 12 12 12 12 12
baba 8 10 12 12 14 16
bbaa 4 8 12 12 16 20

.

What we call the content of a sequence is the quantity of each of the objects in the
sequence, placed in decreasing order. It is a partition, and this allows us to compare it
to other partitions.

If λ = (λ1, . . . , λl) and µ = (µ1, . . . , µm) are two partitions of n, we say λ dominates µ,
written λ D µ, if, for all i ∈ {1, 2, . . . , min(l, m)},

λ1 + . . . + λi ≥ µ1 + . . . + µi.

Theorem 19. The non-zero eigenvalues of νk on words of content µ ` n are indexed by the
standard tableaux of size n, type at least k and shape λ D µ. For such a tableau t,

vk(t) = vk(∆(t)) + (n + 1− k + diag(t/∆(t))) vk−1(∆(t)).
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This agrees with Theorem 16, since permutations have content (1, 1, . . . , 1), which is
minimal for the dominance order.

Example 20. The matrix for ν2 on words of content (2, 2), like aabb, has eigenvalues 72, 20 and
0 with multiplicities 1, 1 and 4, respectively. The content of the words being (2, 2), we need to
find the partitions that dominate it. Those are (4), (3, 1) and (2, 2). To get the eigenvalues, we
use Theorem 19 and what we computed in Example 17.

4 How it works: The connection between tableaux and
eigenvalues of shuffling operators

This section is dedicated to explaining briefly the reason we can use tableaux to com-
pute the eigenvalues. Tableaux are frequently used in the representation theory of the
symmetric group.

If we consider the case where there is no repetition in the sequence, then the operators
act on the symmetric group algebra. It is well-known that the simple modules of the
symmetric group are the Specht modules Sλ, indexed by partitions. This way, one can
decompose CSn:

CSn ∼=
⊕
λ`n

f λSλ ∼=
⊕

t a standard tableau

Sshape(t),

where f λ is the number of standard tableaux of shape λ. Hence, there is a bijection
between copies of simple modules and standard tableaux, and one can associate each
standard tableau with a copy of a Specht module. For more explanations, see for example
[11].

Moreover, since Specht modules are simple, Schur’s lemma shows that their mor-
phisms (shufflings, for example) have a single eigenvalue when restricted to a Specht
module. Combined with the remark in the last paragraph, we associate each tableau
with an eigenvalue.

Another useful decomposition of CSn is the decomposition into the permutation mod-
ules {Mλ}λ`n, indexed by partitions:

CSn ∼=
⊕
λ`n

Mλ.

Those modules are not simple, and thus may carry more than one eigenvalue for a given
shuffling operator, yet they have some utility. The basis of Mλ is the set of words of
content λ, i.e. the words containing λ1 occurrences of the first letter, λ2 occurrences of the
second, and so on. This means we can directly work on words to understand the action
of the operators νk. To understand the impact of the Schützenberger ∆ operator, we
compare the effect of νk on Mλ and Mλ−ei (when the only cell in t/∆(t) is in the i-th row).
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Then, taking the restriction to the Specht module Sλ−ei , we get an exact computation of
how the eigenvalues evolve in that process. Finally, this led to Theorem 16 for the non-
zero eigenvalues.

To distinguish when a simple module belongs to the kernel or to another eigenspace
for a given operator νk, we use two observations. The first one concerns specifically
the sequences with repeated elements, for example those with content µ. The reason
we restrict our study to tableaux whose shape dominate µ is given by Young’s rule:
this gives the decomposition of the permutation modules into Specht modules. The
multiplicity of Sλ in Mµ is mλ,µ, the number of semistandard tableaux of shape λ and
content µ:

Mµ ∼=
⊕
λ`n

mλ,µSλ.

Recall that a semistandard tableau is a tableau whose entries are strictly increasing on
the columns and weakly increasing on the rows. It is not hard to see that mλ,µ = 0 when
λ 4 µ. For more details, see for example Chapter 2 in [11].

The second observation we use on the kernel comes from Reiner, Saliola and Welker
and their study of {νk}k∈N and their kernels. They showed that the Schützenberger ∆
operator connected tableaux of size n and type j and tableaux of size n − 1 and type
j − 1, but also eigenspaces of the symmetrized shuffling operators for sequences of n
and n− 1 elements. The trio of authors also explained the construction of the kernel in
terms of tableaux of a given type. They found that the kernel of νk is

ker(νk) ∼=
⊕

t a standard tableau,
type(t)<k

Sshape(t). (4.1)

For more details, see sections VI.9 to VI.11 in [10].
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