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Abstract. We give an explicit combinatorial description of cluster structures in Schu-
bert varieties of the Grassmannian in terms of (target labelings of) Postnikov’s plabic
graphs. This description is a natural generalization of the description given by (Scott
2006) for the Grassmannian and has been believed by experts essentially since (Scott
2006), though the statement was not formally written down until (Muller–Speyer 2016).
To prove this conjecture we use a result of (Leclerc 2016), who used the module cat-
egory of the preprojective algebra to prove that coordinate rings of many Richardson
varieties in the complete flag variety admit cluster structures. We also adapt a con-
struction of (Karpman 2016) to build cluster seeds associated to reduced expressions.
Further, we explicitly describe cluster structures in skew Schubert varieties using plabic
graphs whose boundary vertices need not be labeled in cyclic order.

Résumé. Nous donnons une description combinatoire explicite des structures en amas
des variétés de Schubert des grassmanniennes en termes de graphes plabiques. Cette
description est une généralisation naturelle de la description donnée par (Scott 2006)
pour les grassmanniennes, et correspond à ce qui était attendu par les experts depuis
(Scott 2006), bien que l’énoncé n’ait pas été formellement écrit avant (Muller–Speyer
2016). Nous décrivons aussi explicitement les structures en amas des variétés de Schu-
bert généralisées en utilisant des graphes plabiques dont les sommets ne sont pas
numérotés dans l’ordre cyclique.
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1 Introduction

The main result of this extended abstract is that the coordinate ring of (the affine cone
over) any (open) Schubert variety of the Grassmannian (embedded into projective space
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via the Plücker embedding) admits a cluster algebra structure, which is described explic-
itly in terms of plabic graphs. In the first section, we give some background on Schubert
varieties, state our main result, and discuss some applications. Background material on
cluster algebras and plabic graphs is delayed to Section 2.

Cluster algebras are a class of commutative rings which were introduced by Fomin and
Zelevinsky [1]; they are connected to many fields of mathematics including Teichmüller
theory and quiver representations, and their generators satisfy many nice properties,
including the Laurent phenomenon [1] and positivity theorem [8, 3]. Plabic graphs are certain
planar bicolored graphs which were introduced by Postnikov [12]; plabic graphs (or
rather an equivalent object, namely alternating strand diagrams) were subsequently used
by Scott [15] to show that the coordinate ring of the affine cone over the Grassmannian
in its Plücker embedding admits a cluster algebra structure.

There is a natural plabic graph generalization of Scott’s construction which experts
have believed for some time should give a cluster structure for Schubert varieties (and
more generally, positroid varieties). This construction was stated explicitly as a conjec-
ture in a recent paper of Muller–Speyer [10], who additionally provided some evidence
in [11]. The conjecture can be stated roughly as follows.

Conjecture 1.1. Let G be a reduced plabic graph corresponding to an (open) Schubert (or more
generally an open positroid) variety. Then the target labeling of the faces of G (which we identify
with a collection of Plücker coordinates) together with the dual quiver of G gives rise to a seed for
a cluster structure in the coordinate ring of the open Schubert (or positroid) variety.

Meanwhile, Leclerc [7] constructed a subcategory Cv,w of the module category of the
preprojective algebra that has a cluster structure, to show that the coordinate ring of
each Richardson variety Rv,w of the complete flag variety contains a subalgebra which is
a cluster algebra; when w has a factorization of the form w = xv with `(w) = `(x)+ `(v),
he showed that this subalgebra coincides with the coordinate ring. Because Schubert
varieties are isomorphic to Richardson varieties with the above property, Leclerc’s result
implies that their coordinate rings admit a cluster structure. However, Leclerc’s descrip-
tion of the cluster structure is very different from the plabic graph description and is far
from explicit: e.g. his cluster quiver is defined in terms of morphisms between modules
of the preprojective algebra.

In this paper we prove Conjecture 1.1 for Schubert varieties by relating Leclerc’s
cluster structure to the conjectural one coming from plabic graphs. We also generalize
our result to the setting of skew Schubert varieties; interestingly, these cluster structures for
skew Schubert varieties depart from the one in Conjecture 1.1, since they use generalized
plabic graphs (with boundary vertices which are no longer cyclically labeled).

Once we have proved that the coordinate rings of Schubert and skew Schubert vari-
eties have cluster structures, we obtain a number of results “for free” from the cluster
theory, including the Laurent phenomenon and the positivity theorem for cluster vari-
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ables. We also obtain many combinatorially explicit cluster seeds for each Schubert and
skew Schubert variety. Other applications of our results, including a characterization
of which Schubert varieties exhibit finite type cluster structures, are described in Sec-
tion 1.5.

1.1 Notation for the flag variety

Let GLn denote the general linear group, B the Borel subgroup of lower triangular matri-
ces, B+ the opposite Borel subgroup of upper triangular matrices, and W = Sn the Weyl
group (which in this case is the symmetric group on n letters). W is generated by the
simple reflections si for 1 ≤ i ≤ n − 1, where si is the transposition exchanging i and i + 1,
and it contains a longest element, which we denote by w0, with `(w0) = (n

2). The complete
flag variety Fln is the homogeneous space B ∖GLn. Concretely, each element g of GLn
gives rise to a flag of subspaces {V1 ⊂ V2 ⊂ ⋅ ⋅ ⋅ ⊂ Vn}, where Vi denotes the span of the top
i rows of g. The action of B on the left preserves the flag, so we can identify Fln with the
set of flags {V1 ⊂ V2 ⊂ ⋅ ⋅ ⋅ ⊂ Vn} where dim Vi = i.

Let π ∶ GLn → Fln denote the natural projection π(g) ∶= Bg. The Bruhat decomposition

GLn = ⊔
w∈W

BwB

projects to the Schubert decomposition

Fln = ⊔
w∈W

Cw

where Cw = π(BwB) is the Schubert cell associated to w, isomorphic to C`(w). We also
have the Birkhoff decomposition

GLn = ⊔
w∈W

BwB+,

which projects to the opposite Schubert decomposition

Fln = ⊔
w∈W

Cw

where Cw = π(BwB+) is the opposite Schubert cell associated to w, isomorphic to C`(w0)−`(w).
The intersection

Rv,w ∶= Cv ∩Cw

has been considered by Kazhdan and Lusztig [5] in relation to Kazhdan-Lusztig polyno-
mials. Rv,w is nonempty only if v ≤ w in the Bruhat order of W, and it is then a smooth
irreducible locally closed subset of Cw of dimension `(w)− `(v). SometimesRv,w is called
an open Richardson variety [6] because its closure is a Richardson variety [13]. We have a
stratification of the complete flag variety

Fln = ⊔
v≤w
Rv,w.
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1.2 Notation for the Grassmannian

Fix 1 < k < n. The parabolic subgroup WK = ⟨s1, . . . , sk−1⟩ × ⟨sk+1, sk+2, . . . , sn−1⟩ < W gives
rise to a parabolic subgroup PK = ⊔w∈WK BẇB in GLn, where ẇ is a matrix representative
for w in GLn. The longest element wK of WK has length `(wK) = (k

2)+ (n−k
2 ).

The Grassmannian Grk,n is the homogeneous space PK ∖GLn. We can think of the
Grassmannian Grk,n = PK ∖ GLn more concretely as the set of all k-planes in an n-
dimensional vector space Cn. An element of Grk,n can be viewed as a k × n matrix of
rank k, modulo left multiplication by invertible k × k matrices. That is, two k × n matrices
of rank k represent the same point in Grk,n if and only if they can be obtained from each
other by invertible row operations.

For a positive integer a and w ∈ W, let [a] ∶= [1, a] and w[a] ∶= {w(1), . . . , w(a)}. Let
([n]k ) be the set of all k-element subsets of [n].

Given V ∈ Grk,n represented by a k × n matrix A, for I ∈ ([n]k ) we let ∆I(V) be the
maximal minor of A located in the column set I. The ∆I(V) do not depend on our
choice of matrix A (up to simultaneous rescaling by a nonzero constant), and are called
the Plücker coordinates of V. The Plücker coordinates give an embedding of Grk,n into
projective space of dimension (n

k)− 1.
We have the usual projection πk from the complete flag variety Fln to the Grassman-

nian Grk,n. Let WK
max denote the set of maximal-length coset representatives for WK ∖W.

Rietsch studied the projections of the open Richardson varieties in the complete flag
variety to partial flag varieties [14]. In particular, when v ∈ WK

max, the projection πk is an
isomorphism from Rv,w to πk(Rv,w). We obtain a stratification

Grk,n = ⊔
v≤w

πk(Rv,w)

where (v, w) range over all v ∈ WK
max, w ∈ W, such that v ≤ w. Following work of Post-

nikov [12, 6], the strata πk(Rv,w) are sometimes called open positroid varieties, while their
closures are called positroid varieties. It follows from the definitions (see e.g. [6, Section
6]) that positroid varieties include Schubert varieties in the Grassmannians, which we
now define.

Definition 1.2. Let I ∈ ([n]k ). The Schubert cell ΩI is defined to be the set

{A ∈ Grk,n ∣ the lexicographically minimal nonvanishing Plücker coordinate
of A is ∆I(A)}.

The Schubert variety XI is the closure ΩI of ΩI .

When v ∈ WK
max, πk(Rv,w0) is isomorphic to the Schubert variety Xv−1[k] in the Grass-

mannian, which has dimension `(w0) − `(v). We therefore refer to πk(Rv,w0) as an open
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Schubert variety. More generally, if v ∈ WK
max and w ∈ W has a factorization of the form

w = xv which is length-additive, i.e. where `(w) = `(x) + `(v), then we refer to πk(Rv,w)
(respectively, πk(Rv,w)) as a skew Schubert variety (respectively, open skew Schubert vari-
ety).

Let λ denote a Young diagram contained in a k × (n − k) rectangle. We can identify
λ with its southeast boundary; we think of the boundary as a lattice path L↙λ in the
rectangle from the northeast corner to the southwest corner taking steps west and south.
Labeling the steps of L↙λ from 1 to n, the labels of the south steps give a k-element
subset of [n]. Conversely, each I ∈ ([n]k ) can be identified with a Young diagram, denoted
λ↙(I). (Later we will also need an analogous partition λ↗(I) obtained by reading the
boundary of λ from southwest to northeast.) The map λ↙() allows us to index open and
closed Schubert varieties by Young diagrams, denoting them Xλ and X○

λ respectively.
The dimension of Xλ and X○

λ is ∣λ∣, the number of boxes of λ.

1.3 The main result

We now state the main result. Note that the definitions of plabic graph and trip permu-
tation can be found in Section 2.

We associate with a Young diagram λ a permutation π↙λ : in list notation, this per-
mutation is obtained by first reading the labels of the horizontal steps of L↙λ , and then
reading the labels of the vertical steps of L↙λ . (Moreover any fixed points in positions
1, 2, . . . , n − k are “black" and any fixed points in positions n − k + 1, . . . , n are “white.")

Theorem 1.3. Consider the open Schubert variety X○
λ of Grk,n. Let G be a reduced plabic graph

(with boundary vertices labeled clockwise from 1 to n) with trip permutation π↙λ . Construct the
dual quiver of G and label its vertices by the Plücker coordinates given by the target labeling of
G, see Definition 2.12 and Figure 1. The coordinate ring of (the affine cone over) X○

λ is a cluster
algebra, and this labeled quiver gives a seed for this cluster algebra.

We actually prove something a bit more general than Theorem 1.3.

Theorem 1.4. Consider the open skew Schubert variety πk(Rv,w), where v ∈ WK
max and w has

a length-additive factorization w = xv. Let G be a reduced plabic graph (with boundary vertices
labeled clockwise from 1 to n) with trip permutation vw−1 = x−1, such that boundary lollipops
are white if and only if they are in [k]. Then the coordinate ring of (the affine cone over) the open
skew Schubert variety πk(Rv,w) is a cluster algebra, and G gives rise to a seed as follows: apply
v−1 to the boundary vertices of G and then label the dual quiver using the target labeling.

In the case of Schubert varieties, Theorem 1.3 resolves Conjecture 1.1. Note that
there is another version of the conjecture which uses the source labeling of G instead of
the target labeling [10, Remark 3.5]. Both conjectures make sense more generally for



6 Khrystyna Serhiyenko, Melissa Sherman-Bennett, and Lauren Williams

1 2

3

4

5

6

7

1 2

3

4

5

6

7

235

356357
135 345

456

567167

137157

Figure 1: A plabic graph G for Gr3,7 with trip permutation π↙λ = (2, 4, 6, 7, 1, 3, 5), for
λ = (4, 3, 2), together with the dual quiver of G and the target face labeling.

positroid varieties and arbitrary reduced plabic graphs (whose trip permutations can
be arbitrary decorated permutations). However, the cluster structure that we give in
Theorem 1.4 is different from either of the cluster structures proposed in [10].

Remark 1.5. When πk(Rv,w) is not an open skew Schubert variety, the seeds in Leclerc’s
cluster subalgebra in general do not come from generalized plabic graphs. Indeed, for
v = (2, 5, 1, 4, 3) and w = (5, 3, 4, 2, 1), the unique seed in Leclerc’s cluster subalgebra for
πk(Rv,w) consists of frozen variables and has extended cluster {∆13, ∆23, ∆14, ∆15, ∆45}.
These Plücker coordinates cannot be obtained as the set of face labels of any (generalized)
plabic graph (note that the label 2 occurs only once in the set of Plücker coordinates).

1.4 Outline of the proof

While each open skew Schubert variety πk(Rv,w) (where v = wKv′ ∈ WK
max and w ∈ W has

a length-additive factorization w = xv = xwKv′ into reduced expressions for x, wK, and
v′) corresponds to an equivalence class of plabic graphs, there is one among them which
is particularly nice, which we call the rectangles seed. The first step of our proof is to
give an explicit description of the rectangles seed for each open skew Schubert variety
πk(Rv,w), in terms of v and a Young diagram associated to (v, w).

A construction of Karpman [4] produces a bridge-decomposable plabic graph asso-
ciated to a pair (y, z), where y−1 ∈ WK

max, z is a reduced decomposition for z, and y ≤ z.
The second step of our proof is to show that if we perform her construction for the pair
(wK, xwK) and then relabel boundary vertices of the resulting plabic graph by v−1 to
obtain a graph G, the target labeling of the dual quiver of G gives rise to the rectangles
seed for πk(Rv,w).

In [7], Leclerc produces a cluster seed associated to each pair (v, w), where v ∈ WK
max

and v ≤ w. The third step of our proof is to verify that for the choice (v, w = xwKv′),
Leclerc’s construction gives rise to the rectangles seed. To prove Theorem 1.4 from the
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previous steps, we show that mutations of the plabic graph G (known as “square moves")
coincide with certain mutations of the rectangles seed. Theorem 1.3 is then deduced from
Theorem 1.4.

1.5 Applications of the main result

In this section we sketch some applications of the main result, including ring-theoretic
properties for the coordinate rings of open skew Schubert varieties, canonical bases, and
a classification of the finite type cluster structures we obtain.

Combining Theorem 1.3 and Theorem 1.4 with results of Muller and Speyer [9], [10,
Theorem 3.3], we find that the coordinate rings of open Schubert and skew Schubert va-
rieties (viewed as cluster algebras) are locally acyclic, which implies that they are finitely
generated, normal, locally a complete intersection, and equal to their own upper cluster
algebras.

Combining our results with results of Ford-Serhiyenko [2, Theorem 1.2], we find that
the quivers giving rise to the cluster structures for open Schubert and skew Schubert va-
rieties admit green-to-red sequences, which by Gross-Hacking-Keel-Kontsevich [3] implies
that the cluster algebras have Enough Global Monomials and hence each coordinate ring
has a canonical basis of theta functions, parameterized by the lattice of g-vectors.

In [15], Scott classified the Grassmannians whose coordinate rings have a cluster
algebra of finite type. He showed that in general the cluster algebras have infinite type,
except in the following cases: the coordinate ring of Gr2,n is a cluster algebra of type
An−3, while the coordinate rings of Gr3,6, Gr3,7, and Gr3,8 are cluster algebras of types
D4, E6, and E8, respectively.

It is straightforward to classify for which open skew Schubert varieties πk(Rv,w) the
cluster structure described here is finite type. It depends only on wv−1.

Proposition 1.6. Let v ≤ w, where v ∈ WK
max and w = xv is length-additive. Let λ = λ↗(x[k])

and let λ′ be the Young diagram obtained from λ by removing all boxes that touch the southeast
boundary of λ either along an edge or at the southeast corner. Then the cluster structure on the
coordinate ring of πk(Rv,w) given in Theorem 1.4 is

1. type A if and only if λ′ does not contain a 2× 2 rectangle;

2. type D if and only if λ′ = (i, 2) or its transpose for i ≥ 2;

3. type E6, E7, or E8 if and only if λ′ or its transpose is one of (3, 3), (3, 2, 1), (4, 3), (4, 2, 1),
(3, 3, 1), (5, 3), (5, 2, 1), (4, 4), (4, 2, 2).

In particular, the open Schubert variety X○
λ is of finite type if and only if λ′ is in the above

list.
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2 Background on cluster structures and plabic graphs

2.1 Background on cluster structures

Cluster algebras are a class of rings with a particular combinatorial structure; they were
introduced by Fomin and Zelevinsky in [1].

Definition 2.1. A quiver Q is a directed graph; we will assume that Q has no loops or
2-cycles. Each vertex is designated either mutable or frozen.

Definition 2.2. Let q be a mutable vertex of quiver Q. The quiver mutation µq transforms
Q into a new quiver Q′ = µq(Q) via a sequence of three steps:

1. For each oriented two path r → q → s, add a new arrow r → s (unless r and s are
both frozen, in which case do nothing).

2. Reverse the direction of all arrows incident to the vertex q.

3. Repeatedly remove oriented 2-cycles until unable to do so.

Definition 2.3. Choose M ≥ N positive integers. Let F be an ambient field of rational
functions in N independent variables over C(xN+1, . . . , xM). A labeled seed in F is a
pair (x̃, Q), where x̃ = (x1, . . . , xM) forms a free generating set for F , and Q is a quiver on
vertices 1, 2, . . . , N, N +1, . . . , M, whose vertices 1, 2, . . . , N are mutable, and whose vertices
N + 1, . . . , M are frozen.

We refer to x̃ as the (labeled) extended cluster of a labeled seed (x̃, Q). The variables
{x1, . . . , xN} are called cluster variables, and the variables c = {xN+1, . . . , xM} are called
frozen or coefficient variables. We often view the labeled seed as a quiver Q where each
vertex i is labeled by the corresponding variable xi.

Definition 2.4. Let (x̃, Q) be a labeled seed in F , and let q ∈ {1, . . . , N}. The seed mutation
µq in direction q transforms (x̃, Q) into the labeled seed µq(x̃, Q) = (x̃′, µq(Q)), where
the cluster x̃′ = (x′1, . . . , x′M) is defined as follows: x′j = xj for j ≠ q, whereas x′q ∈ F is
determined by the exchange relation

x′q xq = ∏
q→r

xr +∏
s→q

xs,

where the first product is over all arrows q → r in Q which start at q, and the second
product is over all arrows s → q which end at q.

It is not hard to check that seed mutation is an involution. Note that arrows between
two frozen vertices of a quiver do not affect seed mutation (they do not affect the mutated
quiver or the exchange relation). For that reason, one may omit arrows between two
frozen vertices.
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Definition 2.5. Consider the N-regular tree TN whose edges are labeled by the numbers
1, . . . , N, so that the N edges emanating from each vertex receive different labels. A
cluster pattern is an assignment of a labeled seed Σt = (x̃t, Qt) to every vertex t ∈ TN,

such that the seeds assigned to the endpoints of any edge t
q−−− t′ are obtained from

each other by the seed mutation in direction q. The components of x̃t are written as
x̃t = (x1;t , . . . , xN;t).

Clearly, a cluster pattern is uniquely determined by an arbitrary seed.

Definition 2.6. Given a cluster pattern, we denote

X = ⋃
t∈TN

x̃t = {xi,t ∶ t ∈ TN , 1 ≤ i ≤ N} ,

the union of clusters of all the seeds in the pattern. The elements xi,t ∈ X are called cluster
variables. The cluster algebra A associated with a given pattern is the C[x±1

N+1, . . . , x±1
M ]-

subalgebra of the ambient field F generated by all cluster variables: A = C[c±1][X ]. We
denote A = A(x̃, Q), where (x̃, Q) is any seed in the underlying cluster pattern. In this
generality, A is called a cluster algebra from a quiver, or a skew-symmetric cluster algebra of
geometric type.

2.2 Background on plabic graphs

In this section we review Postnikov’s notion of plabic graphs [12].

Definition 2.7. A plabic (or planar bicolored) graph is an undirected graph G drawn inside
a disk (considered modulo homotopy) with n boundary vertices on the boundary of the
disk, labeled 1, . . . , n in clockwise order, as well as some colored internal vertices. These
internal vertices are strictly inside the disk and are colored in black and white. An
internal vertex of degree one adjacent to a boundary vertex is a lollipop. We will always
assume that no vertices of the same color are adjacent, and that each boundary vertex i
is adjacent to a single internal vertex.

See Figure 1 for an example of a plabic graph.
There is a natural set of local transformations (moves) of plabic graphs, which we

now describe. Note that we will always assume that a plabic graph G has no isolated
components (i.e. every connected component contains at least one boundary vertex). We
will also assume that G is leafless, i.e. if G has an internal vertex of degree 1, then that
vertex must be adjacent to a boundary vertex.

(M1) SQUARE MOVE (Urban renewal). If a plabic graph has a square formed by
four trivalent vertices whose colors alternate, then we can switch the colors of these four
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vertices (and add some degree 2 vertices to preserve the property that no vertices of the
same color are adjacent).

(M2) CONTRACTING/EXPANDING A VERTEX. Any degree 2 internal vertex not
adjacent to the boundary can be deleted, and the two adjacent vertices merged. This
operation can also be reversed. Note that this operation can always be used to change
an arbitrary square face of G into a square face whose four vertices are all trivalent.

(M3) MIDDLE VERTEX INSERTION/REMOVAL. We can always remove or add de-
gree 2 vertices at will, subject to the condition that the graph remains bipartite.

See Figure 2 for depictions of these three moves.

Figure 2: Moves (M1), (M2), (M3).

(R1) PARALLEL EDGE REDUCTION. If a plabic graph contains two trivalent ver-
tices of different colors connected by a pair of parallel edges, then we can remove these
vertices and edges, and glue the remaining pair of edges together.

Figure 3: Parallel edge reduction

Definition 2.8. Two plabic graphs are called move-equivalent if they can be obtained from
each other by moves (M1)-(M3). The move-equivalence class of a given plabic graph G
is the set of all plabic graphs which are move-equivalent to G. A leafless plabic graph
without isolated components is called reduced if there is no graph in its move-equivalence
class to which we can apply (R1).

Definition 2.9. A decorated permutation π∶ is a permutation π ∈ Sn together with a coloring
{i ∣ π(i) = i}→ {black, white}.

Definition 2.10. Given a reduced plabic graph G, a trip T is a directed path which starts
at some boundary vertex i, and follows the “rules of the road": it turns (maximally) right
at a black vertex, and (maximally) left at a white vertex. Note that T will also end at a
boundary vertex j; we then refer to this trip as Ti→j. Setting π(i) = j for each such trip,
we associate a (decorated) trip permutation πG = (π(1), . . . , π(n)) to each reduced plabic
graph G, where a fixed point π(i) = i is colored white (black) if there is a white (black)
lollipop at boundary vertex i.

For example, the trip permutation of the reduced plabic graph in Figure 1 is
(2, 4, 6, 7, 1, 3, 5).
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Remark 2.11. Note that the trip permutation of a plabic graph is preserved by the local
moves (M1)-(M3), but not by (R1). For reduced plabic graphs the converse holds, namely
it follows from [12, Theorem 13.4] that any two reduced plabic graphs with the same trip
permutation are move-equivalent.

Now we use the notion of trips to label each face of G by a Plücker coordinate.
Towards this end, note that every trip will partition the faces of a plabic graph into two
parts: those on the left of the trip, and those on the right of the trip.

Definition 2.12. Let G be a reduced plabic graph with b boundary vertices. For each
one-way trip Ti→j with i ≠ j, we place the label j in every face which is to the left of Ti→j.
If i = j (that is, i is adjacent to a lollipop), we place the label i in all faces if the lollipop
is white and in no faces if the lollipop is black. We then obtain a labeling F(G) of faces
of G by subsets of [b] which we call the target labeling of G. We identify each a-element
subset of [b] with the corresponding Plücker coordinate.

The following statements relate quivers to plabic graphs.

Definition 2.13. Let G be a reduced plabic graph. The dual quiver Q(G) of G is defined
as follows. The vertices of Q(G) are labeled by the faces of G. We say that a vertex of
Q(G) is frozen if the corresponding face is incident to the boundary of the disk, and is
mutable otherwise. For each edge e in G which separates two faces, at least one of which
is mutable, we introduce an arrow connecting the faces; this arrow is oriented so that it
“sees the white endpoint of e to the left and the black endpoint to the right” as it crosses
over e. We then remove oriented 2-cycles from the resulting quiver, one by one, to get
Q(G). See Figure 1.

Lemma 2.14. If G and G′ are related via a square move at a face, then Q(G) and Q(G′) are
related via mutation at the corresponding vertex.
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