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Restricting Schubert classes to
symplectic Grassmannians using self-dual puzzles
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Abstract. Given a Schubert class on Gr(k, V) where V is a symplectic vector space of
dimension 2n, we consider its restriction to the symplectic Grassmannian SpGr(k, V) of
isotropic subspaces. Pragacz gave tableau formulæ for positively computing the expan-
sion of these H∗(Gr(k, V)) classes into Schubert classes of the target when k = n, which
corresponds to expanding Schur polynomials into Q-Schur polynomials. Coşkun de-
scribed an algorithm for their expansion when k ≤ n. We give a puzzle-based formula
for these expansions, while extending them to equivariant cohomology. We make use
of a new observation that usual Grassmannian puzzle pieces are already enough to do
some 2-step Schubert calculus, and apply techniques from quantum integrable systems
(“scattering diagrams”).
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1 Introduction

1.1 Grassmannian duality of puzzles

The Littlewood–Richardson coefficients cν
λµ, where λ, µ, ν are (for now) partitions, satisfy

a number of symmetries, one of which is cν
λµ = cνT

µTλT . One origin of L-R coefficients is as
structure constants in the product in H∗(Gr(k, V)) of Schubert classes on the Grassman-
nian of k-planes in V. In that formulation, the Grassmannian duality homeomorphism
Gr(k, V) ∼= Gr((dim V) − k, V∗), (U ≤ V) 7→ (U⊥ ≤ V∗) induces an isomorphism of
cohomology rings and a correspondence of Schubert bases, giving the symmetry above.
This symmetry is not at all manifest in tableau-based computations of the {cν

λµ}, but it
is in the “puzzle” rule of [6], which replaces partitions by binary strings and is based on
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the puzzle pieces

0
00

1
11

10
01 , their rotations, and the equivariant piece

1 0

10
;

we recall and generalize this rule in Theorem 2 below. Specifically, the dual of a puzzle
is made by flipping it left-right while exchanging all 0↔ 1 (in particular, 10-labels again
become 10s). The duals of the puzzles counted by cν

λµ are exactly those counted by cνT

µTλT .
This prompts the question: what do self-dual puzzles count? One might expect it

is something related to an isomorphism V ∼= V∗ i.e. a bilinear form, and indeed our
main theorems 1A, 1B, and 1C interpret self-dual puzzles as computing the restrictions
of Schubert classes on Gr(k, 2n) to the symplectic Grassmannian SpGr(k, 2n). (We will
address elsewhere the minimal modifications necessary to handle the orthogonal case.)
For k = n, there was already a tableau-based formula for these restrictions1 in [8] which
is less simple to state than Theorem 1A; see also [4]. This is perhaps another effect of
tableaux being less suited to Grassmannian duality than puzzles are.

1.2 Restriction from Gr(n, 2n)

Let V be a vector space over C equipped with a symplectic form, so the Grassmannian
Gr(k, V) of k-planes contains the subscheme

SpGr(k, V) := {L ≤ V : dim L = k, L ≤ L⊥}
where ⊥ means perpendicular with respect to the symplectic form. Then the inclusion
ι : SpGr(k, V) ↪→ Gr(k, V) induces a pullback ι∗ : H∗(Gr(k, V)) → H∗(SpGr(k, V)) in
cohomology. As both cohomology rings possess bases consisting of Schubert classes {Sλ},
one can ask about expanding ι∗(Sλ) in the basis of SpGr(k, V)’s Schubert classes {Sν}.

Let dim V = 2n (necessarily even, since V is symplectic), and for the simplest version
of the theorem assume k = n. Then the Schubert classes on Gr(n, V) are indexed by
the (2n

n ) binary strings with n 0s and n 1s, whereas the Schubert classes on SpGr(n, V)
are indexed by the 2n binary strings of length n (with more detail on this indexing in
Section 2).

Theorem 1A. Let Sλ be a Schubert class on Gr(n, 2n), indexed by a string λ with content in
0n1n, and Sν a Schubert class on SpGr(n, 2n), indexed by a length n binary string. Then the
coefficient of Sν in ι∗(Sλ) is the number of self-dual puzzles with λ on the Northwest side, ν on
the left half of the South side (both λ and ν read left to right), and equivariant pieces only allowed
along the axis of reflection.

1In particular, [8] provides a cohomological interpretation of algebraic results of Stembridge [10] about
expanding Schur functions into Schur P- and Q-functions.



Restricting Schubert classes to symplectic Grassmannians using self-dual puzzles 3

01

10

11

1

01

10

11

1

00

0

10

00

0

01

10

11

1

00

0

Example 1. For λ = 0101, a self-dual puzzle with λ on the

Northwest side has to be of the form
µ

λλ for some µ.

So, it will appear in the usual calculation of S2
0101 ∈

H∗T(Gr(2, 4)), which involves three puzzles. Only one of
these puzzles is self-dual, and its only equivariant piece is
on the centerline. From this we compute ι∗(S0101) = S01 in
H∗(SpGr(2, 4)).

A surprising aspect of Theorem 1A is that equivariant pieces appear in this nonequiv-
ariant calculation, albeit only down the centerline.2 If we allow them elsewhere (self-
dually occurring in pairs), the puzzles compute the generalization of Theorem 1A to the
map ι∗ : H∗T(Gr(n, 2n))→ H∗T(SpGr(n, 2n)) in (torus-)equivariant cohomology, whose co-
efficients now live in the polynomial ring H∗T(pt) ∼= Z[y1, . . . , yn]. We leave this statement
until Theorem 1C in Section 5 because it requires some precision about the locations of
the symplectic Schubert varieties.

1.3 Interlude: puzzles with 10s on the South side

To generalize Theorem 1A to SpGr(k, 2n), not just k = n, we need strings that index its
(n

k)2
k many Schubert classes. We do this using the third edge label, 10: consider strings

ν of length n with (n− k) 10s, the rest a mix of 1s and 0s.
Before considering self-dual puzzles with Southside 10s, we mention a heretofore

unobserved capacity of the puzzle pieces from [6], available once we allow for Southside
10s. It turns out they are already sufficient to compute certain products3 in the T-
equivariant cohomology of 2-step flag manifolds! The only necessary new idea is to
allow the previously internal label 10 to appear on the South side.

Theorem 2. Let 0 ≤ j ≤ k ≤ n, and let λ, µ be 0, 1-strings with content 0j1n−j, 0k1n−k

respectively, defining equivariant Schubert classes Sλ, Sµ on Gr(j, Cn), Gr(k, Cn) respectively.
Let πj, πk be the respective projections of the 2-step flag manifold Fl(j, k; Cn) to those Grass-
mannians. Let ν be a string in the ordered alphabet 0, 10, 1 with content 0j(10)k−j1n−k, defining
a Schubert class Sν in H∗T(Fl(j, k; Cn)). We emphasize that the alphabet order is 0, 10, 1!

Then as in [6], the coefficient of Sν in the product π∗i (Sλ)π
∗
j (Sµ) ∈ H∗T(Fl(j, k; Cn)) is the

sum over puzzles P with boundary labels λ, µ, ν, made from the puzzle pieces in Section 1.1, of
the “fugacities” fug(P) := ∏equivariant pieces ♦ in P(yNE–SW diagonal of ♦ − yNW–SE diagonal of ♦).

2The number of equivariant pieces down the centerline is in fact fixed and equal to the number of 1s
in ν, by a weight conservation argument.

3Note that the general 2-step problem has received a puzzle formula [3], but using many more puzzle
pieces than we use here. The problem of multiplying classes from different Grassmannians was studied
already in [9].
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Example 3. If λ = 101, µ = 100, then their pullbacks
give π∗1(S101) = S10,0,1, π∗2(S100) = S1,0,10, with prod-
uct (y1 − y2)S1,0,10 + S1,10,0 (note: to compare strings
to permutations requires inversion, as in Section 4).

1.4 Restriction from Gr(k, 2n), k < n

Theorem 1B. Let λ be a string with content 0k12n−k, whereas ν is of length n with (n− k) 10s,
the rest a mix of 1s and 0s. Consider the puzzles from Theorem 2, where we allow 10 labels to
appear on the South side.

Then as before, in H∗(SpGr(k, 2n)), the coefficient of Sν in ι∗(Sλ) is the number of self-dual
puzzles with λ on the Northwest side, ν on the left half of the South side (both λ and ν read left
to right), and equivariant pieces only allowed along the axis of reflection.
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Example 4. In the remainder of the paper we
work with the left halves of self-dual puzzles,
since the centerline and right half can be inferred.
The half-puzzles pictured here (really for equiv-
ariant Theorem 1C to come) show ι∗(S110101) =
(y2 − y3)S10,1,0 + S10,1,1 + S1,10,0.

The proof is based on the “quantum integrability” of R-matrices, and closely follows
that of [7] (see also [11]); in particular, following the quantum integrable literature, we
use graph-dual pictures (scattering diagrams) which are more amenable than puzzles to
topological manipulations. The principal new feature is the appearance of K-matrices.
The “reflection equation” RKRK = KRKR (more precisely, eq. (3.4) in Lemma 7) is
standard; however since the approach of [7] requires not just R-matrices but the trivalent
U-matrix, we need here the possibly novel “K-fusion equation” (3.5) in Lemma 7.

2 The groups, flag manifolds, and cohomology rings

We take the Gram matrix of our symplectic form to be antidiagonal; this is so that if B±
are the upper/lower triangular Borel subgroups of GL2n, then B± ∩ Sp2n will be opposed
Borel subgroups of Sp2n.

Consider Gr(k, 2n) = {0 ≤ V ≤ C2n | dim V = k} ∼= GL2n/P where k ≤ n
and P is the parabolic subgroup of block type (k, 2n − k) containing B = B+. Then
PSp2n = P ∩ Sp2n is a parabolic for the Lie subgroup Sp2n and the symplectic Grass-
mannian is SpGr(k, 2n) = {0 ≤ V < C2n | dim V = k, V ≤ V⊥} ∼= Sp2n/PSp2n . Let
T2n := B+ ∩ B− be the diagonal matrices in GL2n, and Tn := Sp2n ∩ T2n. Note that
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(GL2n/P)Tn
= (GL2n/P)T2n

since there exist x ∈ Tn with no repeated eigenvalues. The
following diagram of spaces commutes.

{ν : ∃ a s.t. content(ν) = 0a(10)n−k1k−a} (SpGr(k, 2n))Tn
SpGr(k, 2n)

{λ : content(λ) = 0k12n−k} (Gr(k, 2n))Tn
Gr(k, 2n)

ι̃

∼

ι

coord

The map ι̃ takes a sequence ν first to its double νν where ν is ν reflected and its 0s and
1s are switched; after that, all 10s in νν are turned into 1s, e.g.

0, 10, 1, 0, 10 7→ 0, 10, 1, 0, 10, 10, 1, 0, 10, 1 7→ 0, 1, 1, 0, 1, 1, 1, 0, 1, 1

The bijective map coord takes a 0, 1-sequence λ to the coordinate k-plane that uses the
coordinates in the 0 positions of λ (so, 1, 4, 8 in the above example). Note that coord ◦
ι̃(ν) ∈ SpGr(k, 2n) by the antidiagonality we required of the Gram matrix.

The right-hand square, and the inclusion Tn ↪→ T2n, induce the ring homomorphisms

H∗T2n(Gr(k, 2n)) H∗Tn(Gr(k, 2n)) H∗Tn(SpGr(k, 2n))

H∗T2n(Gr(k, 2n)T2n
) H∗Tn(Gr(k, 2n)Tn

) H∗Tn(SpGr(k, 2n)Tn
)

f1

g1

f2 = ι∗

g2 g3

h1 h2

and since each gi is injective (see e.g. [5]), we can compute along the bottom row, which
is the proof technique used in [7] and Section 5. On each of our flag manifolds, we define
our Schubert classes as associated to the closures of orbits of B− or B− ∩ Sp2n.

3 Scattering diagrams and their tensor calculus

In the statement and proof of Theorem 1B, we work with half-puzzles, i.e., labeled half-
triangles 2n of size 2n, tiled with the triangle and rhombus puzzle pieces described in
Section 1.1, as well as half-rhombus puzzle pieces obtained by cutting the existing self-
dual ones vertically in half. As discussed earlier, a half-puzzle can be considered as half
of a self-dual puzzle with all three sides of length 2n. In our notation, a “rhombus” can
also be made of a ∆ and a ∇ triangle glued together.

To linearize the puzzle pictures and relate them back to the restriction of cohomol-
ogy classes, we consider the puzzle labels {0, 10, 1} as indexing bases for three spaces
C3

G, C3
R, C3

B (Green, Red, Blue). In our scattering diagrams below, each coloured edge
will carry its corresponding vector space.
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1. Take an unlabeled size 2n half-puzzle triangle 2n tiled by rhombi, half-rhombi (on
the East) and triangles (on the South) as before, with assigned “spectral parameters”
y1, . . . , yn,−yn, . . . ,−y1 on the Northwest side.

2.

y1

y2

y3

y4

−y1

−y2

−y3

−y4

y3y2y1 y4

Consider the dual-graph picture of strands, oriented up-
wards. Each rhombus corresponds to a crossing of two
strands, each half-rhombus to a bounce off the East wall
and negates the spectral parameter, and each triangle to
a trivalent vertex with all parameters equal.

We also colour the Northwest-pointing strands green,
Northeast-pointing red, and North-pointing blue.

3. We let a and b denote two spectral parameters from Step
1. We assign the following linear maps

• to each crossing of two strands with left and right parameters a and b, and colours
C and D, a linear map RCD(a− b) : C3

C ⊗C3
D −→ C3

D ⊗C3
C;

• to each wall-bounce of a colour C strand with parameter a bouncing to −a, a map
KC(a) : C3 → C3;

• to each trivalent vertex with incoming blue strand and outgoing green and red
strands, all with parameters a, a map U(a) : C3

B −→ C3
G ⊗C3

R.

Connecting two strands corresponds to composing the corresponding maps, so the
whole 2n corresponds to a linear map Φ : (C3

B)
⊗n −→ (C3

G)
⊗2n.

Definition 5 (The R-, U-, and K-matrices). In terms of the bases of C3
G, C3

R, C3
B indexed by

{0, 10, 1}, the above sparse matrices can be written compactly as follows (where a labeled diagram
corresponds to the coefficient of the map in those basis elements):

RCC(a− b) :

k

j

l

i

=

{
1 if (i, j) = (k, l),
b− a if (i, j, k, l) ∈ {(1, 0, 0, 1), (10, 0, 0, 10), (1, 10, 10, 1)}

where C ∈ {R, G, B} and the two strands are any identical colour

RRG(a− b) :

l

i

k

j

=


a− b if (i, j, k, l) = (0, 1, 1, 0),

1 if (i, j, k, l) ∈
{

04, 14, 021(10), 0(10)12, 0(10)20,
1 021, 12(10)0, (10)1 02, (10)12(10)

}



Restricting Schubert classes to symplectic Grassmannians using self-dual puzzles 7

KR(a) :
i

j

= 1 if (i, j) ∈ {(1, 0), (0, 1)} KB(a) :
i

j

=

{
1 if i = j,
−2a if (i, j) = (1, 0)

U(a) :

i j

k
= 1 if (i, j, k) ∈ {(0, 0, 0), (0, 10, 1), (1, 0, 10), (1, 1, 1), (10, 1, 0)}

The subscripts R, G, B on the maps indicate the colours of the incoming edges (listed counter-
clockwise). For each map, the matrix entries which are not listed are zero.

Note that if we take the corresponding bases with lexicographic ordering, with al-
phabet ordered as {0, 10, 1}, then the matrices for RCC and KB are lower-triangular. See
[11] for these R-matrices and [7, §3] for their representation-theoretic origins.

Definition 6. With the above notation, let P be a half-puzzle with boundary labels λ
ν

, where

λ ∈ 0k12n−k and ν ∈ (10)n−k{0, 1}k. The fugacity fug(P) of P is the product over all puzzle
pieces (dually: vertices) of the entries of the corresponding R-, U-, K-matrices.

In this way, the summation over half-puzzles reproduces the full matrix product, i.e.,

the (λ, ν) matrix entry of Φ = ∑P

{
fug(P) | P is a puzzle with boundary λ

ν

}
.

Lemma 7. The matrices defined in Section 3 satisfy the following identities:

i) The Yang–Baxter equation.

u1

u1

u2

u2

u3

u3

=

u1

u1

u2

u2

u3

u3

u1

u1

u2

u2

u3

u3

=

u1

u1

u2

u2

u3

u3

(3.1)

u1

u1

u2

u2

u3

u3

=

u1

u1

u2

u2

u3

u3

u1

u1

u2

u2

u3

u3

=

u1

u1

u2

u2

u3

u3

(3.2)

For example, the linear map form of the Northwest equation is

(RRG(u2 − u1)⊗ Id) ◦ (Id⊗RRG(u3 − u1)) ◦ (RRR(u3 − u2)⊗ Id)
= (Id⊗RRR(u3 − u2)) ◦ (RRG(u3 − u1)⊗ Id) ◦ (Id⊗RRG(u2 − u1))
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ii) Swapping of two trivalent vertices.

u1 u2 u1 u2

u1u2

=

u2u1 u2
u1

u2 u1

(3.3)

(Id⊗RRG(u1 − u2)⊗ Id) ◦ (U(u1)⊗U(u2)) ◦ RBB(u2 − u1)

= (RGG(u2 − u1)⊗ RRR(u2 − u1)) ◦ (Id⊗RRG(u2 − u1)⊗ Id) ◦ (U(u2)⊗U(u1))

iii) The reflection equation.

u1

−u1

u2

−u2

=

−u2

u2

−u1

u1 u1

−u1

u2

−u2

=

−u2

u2

−u1

u1

(3.4)

In linear map terms, the left equation says

(Id⊗KR(−u2)) ◦ RRG(−u2 − u1) ◦ (Id⊗KR(−u1)) ◦ RRR(−u1 + u2)

= RGG(u2 − u1) ◦ (Id⊗KR(−u1)) ◦ RRG(−u1 − u2) ◦ (Id⊗KR(−u2))

iv) K-fusion.

u1 −u1

u1

u1

−u1

=

−u1

−u1

u1

−u1

(Id⊗KR(u1)) ◦U(u1) ◦ KB(−u1)
=

RGG(−2u1) ◦ (Id⊗KR(−u1)) ◦U(−u1)
(3.5)

4 AJS/Billey formulæ as scattering diagrams

We first discuss the general AJS/Billey formula for restricting an equivariant Schubert
class to a torus-fixed point, and then consider the special cases of types A and C. Let
G be an algebraic group and fix a pinning G ≥ B ≥ T, with WG = NG(T)/T. Let
B− denote the opposite Borel and P ≥ B a parabolic, with Weyl group WP. We recall
that Schubert classes are indexed by WG/WP, which we identify with strings (or signed
strings in type C), on which WG acts by permuting/negating positions: πWP 7→ ω ◦ π−1

(see Proposition 9 for ω). In particular for P = B our indexing is inverse to the usual
convention; this inversion is forced on us by the necessary use for general P of strings-
with-repeats, e.g. binary strings rather than Grassmannian permutations.



Restricting Schubert classes to symplectic Grassmannians using self-dual puzzles 9

Proposition 8. 1. ([1, 2]) For the Schubert class Sπ :=
[
B−πB/B

]
∈ H∗T(G/B),

π, σ ∈ WG, and Q = (q1, . . . , qk) a reduced word in simple reflections with ∏ Q = σ, the
AJS/Billey formula tells us that

Sπ|σ = ∑
R ⊆ Q

∏ R = π

k

∏
i=1

(α̂qi
[qi∈R]qi) · 1 = ∑

R ⊆ Q
∏ R = π

∏
i∈R

βi ∈ H∗T(pt) (4.1)

where βi := q1q2 . . . qi−1 · αqi and the summation is over reduced subwords R of Q.

2. To compute a point restriction Sλ|µ on G/P, where λ, µ ∈WG/WP, we use lifts λ̃, µ̃ ∈WG

such that λ̃ is the shortest length representative of λ, and observe that Sλ|µ = Sλ̃|µ̃.

Below we give a diagrammatic description of the formula from Proposition 8 in the
cases when (G, WG) is (GL2n, S2n) or (Sp2n, Sn n (Z/2Z)n) using the tensor calculus
setting of Section 3. We first introduce some notation.

Consider σ in WG (generated by simple reflections {sG
i }) and a reduced word for σ,

Qσ = (q1, . . . , qk) (where qi = spi for some pi). We can associate to it a wiring diagram
D(Qσ) by assigning the diagrams below to the simple reflections {sG

i : 1 ≤ i ≤ mG − 1}
for (mGL2n , mSp2n) = (2n, n), and to sSp2n

n respectively. Then, a word in simple reflections
corresponds to a concatenation of such diagrams.

sG
i 7→

1

. . . . . .

mGi i + 1

, for 1 ≤ i ≤ mG − 1 and sSp2n
n 7→

1

. . .

n

Each wire in a wiring diagram is also assigned a spectral parameter. For G = GL2n, they
are y1, . . . , y2n along the top (which we need to later specialize to y1, . . . , yn,−yn, . . . ,−y1
as in the maps f1, h1 in Section 2), and for G = Sp2n they are y1, . . . , yn.

In the context of the tensor calculus from Section 3, the wiring diagram D(Qσ) can be
interpreted as a scattering diagram, i.e., giving a map (C3

C)
⊗mG → (C3

C)
⊗mG ; we replace

each crossing with RGG in the GL2n (and C = G) case or with RBB in the Sp2n (and C = B)
case, and replace each bounce with KB which also negates the spectral parameter. For
instance, take G = Sp6 and σ = 312̄, Qσ = (s2, s3, s1), then

D(Qσ) =

y1

y1

y2

−y2

y3

y3

(Id⊗RBB(y3 − y2)) ◦ (Id⊗2 ⊗ KB(−y2)) ◦ (RBB(y3 − y1)⊗ Id) :
(C3

B)
⊗3 → (C3

B)
⊗3

Proposition 9. Let λ, µ be strings in 0, 10, 1 as in Section 2, which we identify with cosets
WG/WP where WG is of type C and P is maximal, or of type A and P is maximal or submaximal.
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Let ωGr = 0 . . . 0 1 . . . 1 ∈ 0k12n−k for G/P = Gr(k, C2n), ωSpGr = 0 . . . 0 10 . . . 10 ∈
0k(10)n−k for G/P = SpGr(k, C2n), or ωFl = 0 . . . 0 10 . . . 10 1 . . . 1 ∈ 0j(10)k−j12n−k for
G/P = Fl(j, k; C2n). Make a wiring diagram as just explained, using a reduced word for
the shortest lift µ̃; interpret it as a scattering diagram map, using the RBB(= RGG) matrix
for crossings and (in type C) KB for bounces. Then Sλ|µ is the (λ, ωG/P) matrix entry of the
resulting product.

The essentially routine rewriting of Proposition 8 to give Proposition 9 will appear
elsewhere. The principal thing one checks is that RBB is the correct R-matrix for three
labels {0, 10, 1}. In view of Proposition 9, for λ, µ, ν ∈WG/WP as above, we denote

ν

λ
µ :=

the (λ, ν) matrix entry for the scattering diagram map
coming from a reduced word for µ̃.

By the proposition, when ν = ωG/P this gives Sλ|µ.

5 Proof of Theorem 1B

The proof of Theorem 2 is very much as in [7, §3] and will appear elsewhere. Theorem 1A
is the k = n special case of Theorem 1B. In fact, we give a more general puzzle rule for
equivariant cohomology in Theorem 1C, which in particular implies Theorem 1B.

Theorem 1C. For every Sλ ∈ H∗Tn(Gr(k, 2n)), where λ ∈ 0k12n−k, and ι∗ as in Section 2

ι∗(Sλ) = ∑
ν∈(10)n−k{0,1}k

(
∑
P

{
fug(P) | P is a puzzle with boundary λ

ν

})
Sν

As explained in Section 2, it suffices to check Theorem 1C’s equality at each Tn-fixed
point σ ∈ (10)n−k{0, 1}k of SpGr(k, 2n). To do so, we first prove several preliminary
results in the language of Section 3.

Lemma 10. For ω = ωSpGr as in Proposition 9 and λ ∈ 0k12n−k, we have λ
ω

= δλ,ωω.

Proof. This is a straightforward consequence of Definition 5, when considering the (λ, ω)
matrix entry of the product of R-, K-, and U-matrices making up the half-puzzle. Alter-
natively, note that this is half of a classical triangular self-dual puzzle with NW, NE, S
boundaries labelled by λ, λ, ωω, and so the result follows from [7, Proposition 4].

Proposition 11. Given σ ∈ (10)n−k{0, 1}k, fixing the Northwest and South boundaries to be
strings of length 2n and n respectively, one has

σ

= ι̃(
σ
)
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Proof. It suffices to consider σ̃ (from Proposition 8) a simple reflection. For the purposes
of illustration, we set n = 4 and demonstrate the equality in the case of an si where
i < n, as well as for sn.

u1

u2

u3

u4

−u1
−u2
−u3
−u4

u2u3u1 u4

(3.3)
=

u1

u4

u2
u3

−u1
−u2
−u3
−u4

u1 u4u3 u2

(3.1)
=

u1

u4

u2

u3

−u1
−u2
−u3
−u4

u1 u4u3 u2

(3.4)
=

u1

u4

u2

u3

−u1

−u4
−u3

−u2

u1 u4u3 u2

(3.1)
=

u1

u4

u2

u3

−u1

−u4

−u3

−u2

u1 u4u3 u2

u1

u2

u3

u4

−u1
−u2
−u3
−u4

u1 u2 u3

u4
−u4

(3.5)
=

u1

u2

u3

−u1
−u2
−u3
−u4
u4

u1 u2 u3 −u4

(3.1)
=

u1

u2

u3

−u1
−u2
−u3−u4

u4

u1 u2 u3 −u4

Lemma 12. a) [7, Proposition 4] Type A. Let σ ∈ 0k12n−k and λ be a string of length 2n:

If ωGr

λ
σ 6= 0 for ωGr as in Proposition 9, then λ consists only of 0s and 1s (no 10s).

b) Type C. Let σ ∈ (10)n−k{0, 1}k and λ be a string of length n: If ωSpGr

λ
σ 6= 0 for ωSpGr

as in Proposition 9, then λ has the same number of 10s as ωSpGr.

Proof. To prove part b), recall that ωSpGr

λ
σ is the (λ, ωSpGr) matrix entry for the com-

position of RBB and KB maps. From Definition 5, we see that both of these maps preserve
the number of 10s in a string, hence so will compositions of these maps.

Proof of Theorem 1C. In H∗T(pt), we have the following equality

λ ωGrι̃(
σ
)

(L10)
= ∑

µ ωSpGr

λ µι̃(
σ
)

(L12a)
=

ωSpGr

λ

ι̃(
σ
)

(P11)
=

λ

ωSpGr
σ

(L12b)
= ∑

ν ν

λ

ωSpGr
σ
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The left side corresponds to ι∗(Sλ)|σ by Proposition 9. In the second and fourth equality,
the strings µ and ν have content 0k12n−k and (10)n−k {0, 1}k respectively, and all other
terms of the sum vanish.
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