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Plabic R-Matrices
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Abstract. Postnikov’s plabic graphs in a disk are used to parametrize totally positive
Grassmannians. In recent years plabic graphs have found numerous applications in
math and physics. One of the key features of the theory is that if a plabic graph is re-
duced, the face weights can be uniquely recovered from boundary measurements. On
surfaces more complicated than a disk this property is lost. In this paper we under-
take a comprehensive study of a certain semi-local transformation of weights for plabic
networks on a cylinder that preserve boundary measurements. We call this a plabic
R-matrix. We show that plabic R-matrices have underlying cluster algebra structure,
generalizing recent work of Inoue-Lam-Pylyavskyy. Special cases of transformations
we consider include geometric R-matrices appearing in Berenstein-Kazhdan theory
of geometric crystals, and also certain transformations appearing in a recent work of
Goncharov-Shen.
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1 Introduction

The relationship between total positivity and networks has been studied extensively [1,
7, 8]. In his groundbreaking paper [18], Postnikov develops a theory of plabic networks
for studying the connection between the totally nonnegative Grassmannian and planar
directed networks in a disk. Plabic graphs have since been found to have many ad-
ditional applications. They have been used by Kodama and Williams to study soliton
solutions to the KP equation [15, 16], by Arkani-Hamed, et. al., to study scattering am-
plitudes for N = 4 supersymmetric Yang-Mills [2, 3, 4], and by Gekhtman, Shapiro, and
Vainshtein to study Poisson geometry [10, 11].

Postnikov defines a set of local moves and reductions so that the boundary mea-
surement map gives a bijection between move-reduction equivalence classes for plabic
networks in a disk and the totally nonnegative Grassmannian. However, there are plabic
networks on a cylinder that are not move-reduction equivalent and yet have the same
boundary measurements. In particular, we define a semi-local transformation on weights
for plabic networks on a cylinder that preserves boundary measurements. We call this
a plabic R-matrix. Plabic R-matrices are different from Postnikov’s moves and reductions
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in that they do not alter the underlying graph. These transformations generalize the ge-
ometric R-matrix [5, 14, 17] and transformations used by Goncharov and Shen to study
Donaldson-Thomas invariants [13].

This paper is organized as follows. In Section 2 we introduce plabic graphs and
directed plabic networks on a cylinder. We explain weights and boundary measure-
ments for these networks. Section 3 begins by defining Postnikov diagrams on a cylin-
der. Using this construction, we introduce a family of plabic networks on a cylinder
called cylindric k-loop plabic networks. We define a transformation called a plabic R-
matrix on face weights for such networks. Our first main result, Theorem 1, shows
that plabic R-matrices preserve boundary measurements, are involutions, give the only
choices of weights that preserve the boundary measurements, and satisfy the braid rela-
tion. Section 4 considers the cluster structure of the plabic R-matrix. We first give a brief
background on cluster algebras from quivers and y-dynamics. Our second main result,
Theorem 2, is that for a cylindric k-loop plabic network the face weighted plabic R-matrix
is realized by the y-dynamics of the dual quiver, under a certain mutation sequence.

This paper is an extended abstract to [6].

2 Directed Plabic Networks on a Cylinder

We will always draw a cylinder as a fundamental domain of its universal cover such that
it is a rectangle with boundary components on the left and right (see Figure 1).

Figure 1: A cylinder, as we will represent them in this paper.

Definition 1. A plabic graph on a cylinder is an undirected planar graph, considered up
to homotopy. We will assume such a graph has n vertices on the boundary, which we
label b1, ..., bn starting from the top of the left boundary component to the bottom and
then from the bottom of the right boundary component to the top. We will call these
boundary vertices, and all other vertices internal vertices. Each boundary vertex in a plabic
graph on a cylinder has degree 1 and each internal vertex is colored black or white.

Definition 2 (Section 2.3 of [12]). A trail in a plabic graph on a cylinder G is a sequence
of vertices v1, ..., vm+1 where v1, vm+1 are boundary vertices on different boundary com-
ponents and for each i, (vi, vi+1) is an undirected edge in G. Note that a trail carries an
orientation; v1, ..., vm+1 is a different trail than vm+1, ..., v1.
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If a plabic graph on a cylinder does not have a trail, then this graph could be embed-
ded in a disk. The theory of plabic graphs on a disk was developed by Postnikov [18],
so we will only consider plabic graphs on a cylinder that have a trail.

Definition 3. A directed plabic graph on a cylinder is a plabic graph with an orientation
on each edge such that the black vertices have exactly one outgoing edge and the white
vertices have exactly one incoming edge. A directed plabic network on a cylinder is a
directed plabic graph on a cylinder with a specified trail from the underlying plabic
graph, a weight t associated to the trail, and a weight y f ∈ R>0 assigned to each face
such that ∏ y f = 1. The orientation of the edges in the trail do not necessarily need to
match the orientation of the trail.

Definition 4. A path in a directed plabic graph or network on a cylinder is a sequence of
vertices v1, ..., vk such that for each i, (vi, vi+1) is a directed edge in the graph.

Definition 5. We now define the weight, wt(P, y, t), of a path P from bi to bj in a directed
plabic network with face weights y f and trail weight t. The path P can be decomposed
into a non-self-intersecting path P̃ from bi to bj and a set of non-self-intersecting closed
cycles C1, ..., Ck. Then wt(P, y, t) = wt(P̃, y, t) + ∑k

i=1 wt(Ci, y, t)
The weight of a closed cycle C with no self-intersections, wt(C, y, t), can be defined

in three cases:

(1) If C encloses a region without boundary components and that region lies to the right
of C, then wt(C, y, t) is the product of the faces in that region.

(2) If C encloses a region without boundary components and that region lies to the left
of C, then wt(C, y, t) is the product of the faces outside that region.

(3) Otherwise, C divides the cylinder into two parts, each containing one boundary
component. In this case, wt(C, y, t) is the product of the faces to the right of C.

There are also three cases for defining the weight of a non-self-intersecting path P̃,
wt(P̃, y, t):

(1) If P̃ begins and ends on the same boundary component, wt(P̃, y, t) is the product of
the faces to the right of P.

(2) For a path P̃ that begins on the same boundary component as the trail and ends on
the other boundary component, draw enough copies of the fundamental domain so
that P̃ can be depicted as a connected curve and there is at least one copy of the trail
that lies completely to the right of P̃. Choose one such copy of the trail and call it
Q. Then wt(P̃, y, t) is t multiplied by the product of the weights of the faces that lie
between P̃ and Q (that is, to the right of P̃ and to the left Q).



4 Sunita Chepuri

(3) For a path P̃ that begins on the boundary component where the trail ends and ends
on the other boundary component, draw enough copies of the fundamental domain
so that P̃ can be depicted as a connected curve and there is at least one copy of the
trail that lies completely to the right of P̃. Choose one such copy of the trail and call
it Q. Then wt(P̃, y, t) is t−1 multiplied by the product of the weights of the faces that
lie between P̃ and Q (that is, to the right of P̃ and to the right Q).

In Cases 2 and 3, wt(P̃, y, t) is well-defined because if we choose two trails that lie
completely to the right of P, the product of the weights of faces between the trails is 1.

Example 1. Suppose we have the following network with face and trail weights:
a
b

c d

1
abcde

e
t

The trail and trail weight appear in white, and the
trail is oriented from right to left.

a
b

c d

1
abcde

e

For the path P shown in blue, or dark gray in print,
(where the upward pointing edge is traversed twice),
P can be decomposed into a path P̃ with 3 edges and
cycle C going around the cylinder. Here, wt(P, y, t) =
wt(P̃, y, t) + wt(C, y, t) = acde

abcde +
de

abcde =
ac+1
abc .

a
b
c

1
abcd

d

a
b
c

1
abcd

d

For the path P shown in blue, or dark gray in print,
P is going in the opposite direction of the trail. So,
wt(P, y, t) = t−1

(
acd2

abcd

)
= d

tb .

Definition 6 (Section 2.1 of [12]). A cut γ is an oriented non-self-intersecting curve from
one boundary component to another, considered up to homotopy. For a path P, the
intersection number, int(P), is the number of times P crosses γ from the right minus the
number where P crosses γ from the left.

For the rest of the paper, we will consider our cylinder to have a fixed cut. We
will always assume the cut is disjoint from the set of vertices of a graph and that it
corresponds to the top and bottom of our rectangle when we draw a cylinder. The cut is
denoted by a directed dashed line.

If P is a path from b to b′ where b, b′ are on the same boundary component, then
CP is the closed loop created from following the path P and then going down along the
boundary from b′ to b. If P is a path from b to b′ where b, b′ are on the different boundary
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components, then CP is the closed loop created from following the path P going down
on the boundary from b′ to the base point of the cut, following the cut (or its reverse),
and then down on the boundary from base point of the cut to b. Note that we create CP
on the cylinder, not the universal cover.

Definition 7 (Section 2.1 of [12]). We can glue together the top and bottom of our rect-
angle, which represents a cylinder, in the plane to form an annulus. Do this such that
going up along the boundary of the rectangle corresponds to going clockwise around
the boundary of the annulus (see Figure 2). Then for a closed curve C, we define its
winding index, wind(C). First, we smooth any corners in C. Then wind(C) is the number
of counterclockwise 360◦ turns the tangent vector makes when we follow C.

Figure 2: Turning a cylinder into an annulus.

Example 2.

Here we have the cylinder depicted as an annulus.
The dashed line is the cut. A path P is shown as a
dotted line. P crosses the cut once from left to right,
so int(P) = −1. The extension of P to CP is shown in
gray. We can see wind(CP) = −3.

Definition 8. Let bi be a source and bj be a sink in a directed plabic network on a cylinder.
Let the face weights be the formal variables y f and the trail weight be the formal variable
t. Then the formal boundary measurement Mform

ij is the formal power series

Mform
ij := ∑

paths P from
bi to bj

(−1)wind(CP)−1ζ int(P)wt(P, y, t).
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Lemma 1 (Section 2.2 of [12]). If N is a directed plabic network on a cylinder, then the formal
power series Mform

ij sum to rational expressions in the variables y f , t and ζ.

Definition 9. The boundary measurements Mij for a directed plabic network on a cylinder
are rational functions in ζ obtained by writing the formal boundary measurements Mform

ij
as rational expressions, and then specializing them by assigning y f the weight of the face
f and t the weight of the trail.

Example 3. Suppose we have the following network where the trail appears in white
and is oriented from left to right:

b1

b2

b3

y1 = 1
2

y2 = 1
3

y3 = 6

t = 1
3

Mform
12 =

ζ

y1
− ζ2

y2
1y2

+
ζ3

y3
1y2

2
− ...

=
ζ

y1

∞

∑
i=0

(
−ζ

y1y2

)i

=
y2ζ

y1y2 + ζ

Mform
13 = −ty3ζ + ty2

3ζ2 − ty3
3ζ3 + ...

= −ty3ζ
∞

∑
i=0

(−y3ζ)i

=
−ty3ζ

1 + y3ζ

Substituting our values for t and the y f ’s, we find M12 = 2ζ
1+6ζ and M13 = −6ζ

1+6ζ .

3 The Plabic R-Matrix

A Postnikov diagram on a cylinder is a set of directed curves, called strands, such that
when we draw the strands on the universal cover of the cylinder they meet the following
conditions:

(1) Each strand begins and ends on the boundary or is infinite.

(2) No three strands intersect at the same point.

(3) All intersections are transverse (the tangent vectors are independent).

(4) There are a finite number of intersections in each fundamental domain.

(5) Along any strand, the strands that cross it alternate crossing from the left and cross-
ing from the right. Similarly, along each boundary component, the strands that touch
the boundary alternate beginning and ending there.
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(6) Strands do not have self-intersections, except in the case where a strand has a loop
around a vertex of degree 1 attached to a boundary vertex.

(7) If two strands intersect at u and v, then one strand is oriented from u to v and one
strand is oriented from v to u.

Postnikov diagrams are considered up to homotopy. We can obtain a plabic graph
from a Postnikov diagram as follows:

(1) Place a black vertex in every face oriented counterclockwise and a white vertex in
every face oriented clockwise.

(2) If two oriented faces share a corner, connect the vertices in these two faces.

Definition 10. A cylindric k-loop plabic graph is a plabic graph on a cylinder that arises
from a Postnikov diagram where exactly k of the strands are loops around the cylinder
with the same orientation.

Cylindric k-loop plabic graphs have k strings of vertices around the cylinder. Those
strings alternate black and white vertices, and the black vertices only have additional
edges on the left of the strand while the white vertices only have additional edges to the
right of the strand (see Figure 3).

plabic graph Postnikov diagram

Figure 3: A cylindric 2-loop plabic graph and its Postnikov diagram.

For a cylindric k-loop plabic graph, any vertices that are not on one of the strings of
vertices defined by the k loops and lie between two of these strings are called interior
vertices. We will assume throughout the rest of this paper that cylindric k-loop plabic
graphs have no interior vertices. This assumption is justified in Section 4 of [6]. We label
the k strings of vertices 1 through k, from left to right.
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Definition 11. The canonical orientation of a cylindric k-loop plabic graph is the orien-
tation where the edges on the strings are oriented up and the other edges are oriented
from left to right.

Suppose we have a cylindric k-loop plabic graph with the canonical orientation. We
will be defining a transformation Tκ, f , which will alter the weights of the faces bordering
strings κ and κ + 1. We begin by fixing 1 ≤ κ < k.

We now choose a trail in our cylindric k-loop plabic graph. Choose an edge (u, v)
from string κ to string κ + 1 such that the edge is directly counter-clockwise from an
edge on string κ around u and directly counter-clockwise from an edge on string κ + 1
around v. Such an edge must exist. Let (w, u) be an edge on string κ. Choose the edge
from string κ − 1 (or the left boundary if κ = 1) to string κ that is directly counter-
clockwise from (w, u) around w. Let P be this edge, followed by (w, u), then (u, v).
From v, go up string κ + 1 and make the sharpest right to string κ + 2 (or the right
boundary if κ = k− 1). Add these two edges to P, then extend P to the left and right
so it is a directed path from the left boundary to the right boundary. Let this path be
our trail with trail weight t. Let the weights of the faces bordering string κ on the left
be a1, a2, ..., a` starting above the trail and going up. In the same way, let the weights
of the faces bordering string κ + 1 on the right be b1, b2, ..., bm and the weights of the
faces between strings κ and κ + 1 be c1, c2, ..., cn−1, cn = 1

a1a2...a`b1b2...bmc1c2...cn−1
. We will

consider all of these indices to be modular. For any set S we’ll define aS := ∏i∈S ai, and
similarly for bS and cS. Let d := a[1,`] b[1,m] for ease of notation.

We will say aj is associated to i if the highest edge on the left string bordering the
face labeled aj also borders the face ci. Similarly, bj is associated to i if the lowest edge
on the right string bordering the face labeled bj also borders the face ci. Let A[i,j] :=
{k | ak is associated to ` ∈ [i, j]} and B[i,j] := {k | bk is associated to ` ∈ [i, j]}. Define

λ̂i(a, b, c) :=

b[1,m] aA[1,i]

(
∑n

j=i c[i,j] +∑i−1
j=1 c[i,j]

)
i = 1,

c[1,i−1] b[1,m] bB[1,i−1]
aA[1,i]

(
∑n

j=i c[i,j] +∑i−1
j=1 c[i,j]

)
i > 1.

Example 4. Consider the network below.

a1

a2

b3

b1

b2

c1

c2

c3

c4

t

In this network, a1 is associated to 3, a2 to 4, b1 to 1, b2
to 2, and b3 to 3.

λ̂1(a, b, c) = b[1,3] aA[1,1]

(
4

∑
j=1

c[1,j] +
0

∑
j=1

c[1,j]

)
= b1b2b3c1 + b1b2b3c1c2 + b1b2b3c1c2c3 +

1
a1a2

λ̂2(a, b, c) = c[1,1] b[1,3] bB[1,1]
aA[1,2]

(
4

∑
j=2

c[2,j] +
1

∑
j=1

c[2,j]

)
= b2

1b2b3c1c2 + b2
1b2b3c1c2c3 +

b1
a1a2

+ b1c1
a1a2
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Definition 12. Suppose we have a cylindric k-loop plabic network with the canonical
orientation, a choice of 1 ≤ κ < k, a trail chosen as above, and face and trail weights as
above. Define Tκ, f to be the transformation on face and trail weights from (a, b, c, t) to
(a′, b′, c′, t) where

a′i =
λ̂j(a, b, c)

λ̂p(a, b, c) bB[p,j−1]

where ai is associated to j, ai−1 is associated to p

b′i =
λ̂q(a, b, c)

λ̂j(a, b, c) aA[j+1,q]

where bi is associated to j, bi+1 is associated to q

c′i =
aA[i,i+1]

bB[i−1,i]
ciλ̂i−1(a, b, c)

λ̂i+1(a, b, c)

We call Tκ, f the face weighted plabic R-matrix.

Theorem 1. Tf has the following properties:

1. It preserves the boundary measurements.

2. It is an involution.

3. (a, b, c, t) and (a′, b′, c′, t) are the only choices of face and trail weights on a fixed cylindric
2-loop plabic network with the canonical orientation that preserve the boundary measure-
ments.

4. It satisfies the braid relation. That is, Tκ, f Tκ+1, f Tκ, f = Tκ+1, f Tκ, f Tκ+1, f for 1 ≤ κ <
k− 1.

Example 5. Continuing Example 4, when we apply T1, f , we get the following face
weights:

a′1 = a1a2b1b2b3c1c2c3+1+c1+c1c2
a2b1b2b3(1+c1+c1c2+c1c2c3)

a′2 = a2(1+c1+c1c2+c1c2c3)
a1a2b1b2b3c1c2c3+1+c1+c1c2

b′1 = b1(a1a2b1b2b3c1c2+a1a2b1b2b3c1c2c3+1+c1)
a1a2b1b2b3c1+a1a2b1b2b3c1c2+a1a2b1b2b3c1c2c3+1

b′2 = b2(a1a2b1b2b3c1c2c3+1+c1+c1c2)
a1a2b1b2b3c1c2+a1a2b1b2b3c1c2c3+1+c1

b′3 = a1a2b1b2b3c1+a1a2b1b2b3c1c2+a1a2b1b2b3c1c2c3+1
a1a2b1b2(a1a2b1b2b3c1c2c3+1+c1+c1c2)

c′1 = a1a2b1b2b3c1(1+c1+c1c2+c1c2c3)
a1a2b1b2b3c1c2+a1a2b1b2b3c1c2c3+1+c1

c′2 = c2(a1a2b1b2b3c1+a1a2b1b2b3c1c2+a1a2b1b2b3c1c2c3+1)
a1a2b1b2b3c1c2c3+1+c1+c1c2

c′3 = c3(a1a2b1b2b3c1c2+a1a2b1b2b3c1c2c3+1+c1)
1+c1+c1c2+c1c2c3

c′4 = a1a2b1b2b3c1c2c3+1+c1+c1c2
c1c2c3(a1a2b1b2b3c1+a1a2b1b2b3c1c2+a1a2b1b2b3c1c2c3+1)
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4 Cluster Structure of Tκ, f

We begin by reviewing some important concepts from the theory of cluster algebras.
A quiver Q is a directed graph with vertices labeled 1, ..., m and no loops or 2-cycles.

If k is a vertex in a quiver Q, a quiver mutation at k, µk(Q) is defined from Q as follows:

(1) for each pair of edges i→ k and k→ j, add a new edge i→ j,

(2) reverse any edges incident to k,

(3) remove any 2-cycles.

In this abstract, we will let a y-seed be a pair (Q, y) where Q is a quiver and y =
(y1, ..., ym) ∈ Rm with m the number of vertices of Q. For a more general definition of a
y-seed, see [9]. If k is a vertex in Q, a y-seed mutation of (Q, y) at k is µk(Q, y) = (Q′, y′)
where Q′ = µk(Q), y′ = (y′1, ..., y′m), and

y′i =


y−1

k i = k,
yi(1 + y−1

k )−#{edges k→i in Q} i 6= k, #{edges k→ i in Q} ≥ 0,
yi(1 + yk)

#{edges i→k in Q} i 6= k, #{edges i→ k in Q} ≥ 0.

Definition 13. The dual quiver of a plabic graph is the quiver with vertices corresponding
to the faces of the plabic graph and edges crossing every bicolored edge of the plabic
graph. We orient the edges of the quiver so that the black vertex is always on the right
and the white vertex is on the left.

Example 6. We have the dual quiver to the network from Examples 4 and 5 below. On
the left, we can see how to draw the quiver from the network. On the right we have the
quiver redrawn more clearly.

a1

a2

b3

b1

b2

c1

c2

c3

c4

5

6

7

8

9

1

2

3

4

If Q is the dual quiver to a cylindric k-loop plabic network with no interior vertices
and 1 ≤ κ < k, the vertices corresponding to the faces between strings κ and κ + 1
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and the arrows between these vertices form a cycle. Label these vertices 1, ..., n going
around the cycle. Let τκ := µ1µ2...µn−2sn−1,nµnµn−1...µ1 where sn−1,n is the operation
that transposes vertices n− 1 and n.

Theorem 2. Let Q be the dual quiver to a cylindric k-loop plabic network with no interior
vertices. If we set the y-variable for each vertex equal to the weight of the corresponding face and
apply τκ, the y-variables we obtain are the same as the face variables with the transformation Tκ, f
applied to them.

Example 7. Let Q be the quiver in Example 6 and let our vector of y-variables be
(c1, c2, c3, c4, a1, a2, b1, b2, b3). If apply τ1, we are mutating at vertex 1, mutating at ver-
tex 2, mutating at vertex 3, mutating at vertex 4, swapping vertices 3 and 4, mutating at
vertex 2, and lastly mutating at vertex 1. When we do this, we end with the quiver Q
and the vector of y-variables (c′1, c′2, c′3, c′4, a′1, a′2, b′1, b′2, b′3) from Example 5.
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