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Abstract. Peterson and Proctor obtained a product formula for the multivariate gen-
erating function of P-partitions on a d-complete poset P in terms of hooks in P. In
this article, we give a skew generalization of Peterson–Proctor’s hook formula, i.e.,
a subtraction-free formula for the generating function of (P \ F)-partitions for a d-
complete poset P and its order filter F. Our proof uses the equivariant K-theory of
Kac–Moody partial flag varieties, and this generalization provides an alternate proof
of Peterson–Proctor’s hook formula.
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1 Introduction

The origin of hook formulas is the Frame–Robinson–Thrall hook formula [1], which
asserts that, for a partition λ, the number f λ of standard tableaux of shape λ is given by

f λ =
|λ|!

∏v∈D(λ) hD(λ)(v)
, (1.1)

where hD(λ)(v) denotes the hook length of the cell v in the Young diagram D(λ). Later
Stanley [13] obtained a hook formula for the univariate generating function of reverse
plane partitions of shape λ with respect to |σ| = ∑v∈D(λ) σ(v) :

∑
σ∈A(D(λ))

q|σ| =
1

∏v∈D(λ)(1− qhD(λ)(v))
, (1.2)

and Gansner [2] gave a multivariate generalization of (1.2). Similar formulas hold for
shifted Young diagrams and rooted trees.

Standard tableaux and reverse plane partitions of shape λ can be regarded as linear
extensions and P-partitions of the poset P = D(λ) respectively. Given an n-element poset
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P, a linear extension of P is an order-preserving bijection from P to {1, 2, . . . , n}, and a
P-partition is an order-reversing map σ from P to N, the set of nonnegative integers. We
denote by A(P) the set of all P-partitions. Using Stanley’s theory of P-partitions, we can
derive (1.1) from (1.2).

Proctor [10, 11] introduced a wide class of posets, called d-complete posets, enjoying
“hook-length property”, as a generalization of Young diagrams, shifted Young diagrams
and rooted trees. Peterson and Proctor obtained the following theorem, which is a far-
reaching generalization of the hook formulas (1.1) and (1.2).

Theorem 1.1. (Peterson–Proctor, see [12]) Let P be a d-complete poset. The multivariate
generating function of P-partitions is given by

∑
σ∈A(P)

zσ =
1

∏v∈P(1− z[HP(v)])
. (1.3)

(Refer to Section 2 for undefined notations.)

However the original proof, based on representation theory, of this theorem is not
yet published, though an outline of their proof is given in [12]. Different proofs are
sketched by Ishikawa–Tagawa [3] (using Schur function identities) and Nakada [7] (using
combinatorics of root systems). Our skew generalization (Theorem 1.2 below) provides
an alternate proof of Theorem 1.1, which is based on equivariant Schubert calculus.

Another direction of generalizing the Frame–Robinson–Thrall hook formula (1.1) is
to consider skew shapes. However one cannot expect a nice product formula for the
number f λ/µ of standard tableaux of skew shape λ/µ in general. Naruse [8] presented
and sketched a proof of a subtraction-free formula for f λ/µ:

f λ/µ = |λ/µ|! ∑
D∈ED(λ)(D(µ))

1
∏v∈D(λ)\D hλ(v)

, (1.4)

where and D runs over all excited diagrams of D(µ) in D(λ). Morales–Pak–Panova [6]
gave a q-analogue of Naruse’s skew hook formula for the univariate generating functions
for P-partitions on P = D(λ) \ D(µ).

The main result of this article is the following skew generalization of Peterson–
Proctor’s hook formula (Theorem 1.1). A subset F of a poset P is called an order filter of
P if x < y in P and x ∈ F imply y ∈ F.

Theorem 1.2. Let P be a connected d-complete poset and F an order filter of P. Then
the multivariate generating function of (P \ F)-partitions, where P \ F is viewed as an
induced subposet of P, is given by

∑
σ∈A(P\F)

zσ = ∑
D∈EP(F)

∏v∈B(D) z[HP(v)]

∏v∈P\D(1− z[HP(v)])
, (1.5)

where D runs over all excited diagrams of F in P. (See Section 2 for undefined notations.)
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If F = ∅, then our main theorem (Theorem 1.2) gives Theorem 1.1. If P = D(λ) and
F = D(µ) are the Young diagrams of partitions λ ⊃ µ, then (1.5) reduces to Morales–
Pak–Panova’s q-hook formula [6, Corollary 6.17] after specializing all variables zi to q,
and then to Naruse’s hook formula (1.4) by the theory of P-partitions.

This article is an extended abstract of [9] and is organized as follows. In Section 2, we
give basic definitions and notations for d-complete posets and excited diagrams/peaks.
In Section 3, we provide Lie theoretical interpretations of the combinatorial notions for
d-complete posets. In Section 4, we give a sketch of the proof of Theorem 1.2 by using
the Billey-type formula and the Chevalley-type formula for the equivariant K-theory of
the Kac–Moody partial flag variety.

2 Basic definitions and notations

We give several definitions concerning d-complete posets and introduce the notion of
excited diagrams and excited peaks.

2.1 Definition of d-complete posets

For an integer k ≥ 3, we denote by dk(1) the poset consisting of 2k − 2 elements
u1, · · · , uk−2, x, y, vk−2, · · · , v1 with covering relations

u1 m u2 m · · ·m uk−2, uk−2 m x m vk−2, uk−2 m y m vk−2, vk−2 m · · ·m v2 m v1.

Note that x and y are incomparable. The poset dk(1) is called the double-tailed diamond.
The Hasse diagram of dk(1) is shown in Figure 1 (a).
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Figure 1: Double-tailed diamond, shape, shifted shape and swivel

Let P be a poset. An interval [v, u] = {x ∈ P : v ≤ x ≤ u} is called a dk-interval if it
is isomorphic to dk(1). Then v and u are called the bottom and top of [v, u] respectively,
and the two incomparable elements of [v, u] are called the sides. A subset I of P is called
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convex if x < y < z in P and x, z ∈ I imply y ∈ I. A convex subset I is called a d−k -convex
set if it is isomorphic to the poset obtained by removing the top element from dk(1).

Definition 2.1. A poset P is d-complete if it satisfies the following three conditions for
every k ≥ 3:

(D1) If I is a d−k -convex set, then there exists an element u such that u covers the maximal
elements of I and I ∪ {u} is a dk-interval.

(D2) If I = [v, u] is a dk-interval and the top u covers u′ in P, then u′ ∈ I.

(D3) There are no d−k -convex sets which differ only in the minimal elements.

It is clear that rooted trees, viewed as posets with their roots being the maximum
elements, are d-complete posets.

Example 2.2. We regard Z2 as a poset by defining (i, j) ≤ (i′, j′) if and only if i ≥ i′ and
j ≥ j′. The following induced subposets of Z2 are d-complete:

D(λ) = {(i, j) ∈ Z2 : i ≥ 1, 1 ≤ j ≤ λi},
S(µ) = {(i, j) ∈ Z2 : i ≥ 1, i ≤ j ≤ µi + i− 1},

e6(1) =
{

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5),
(3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (4, 7), (4, 8)

}
,

where λ is a partition and µ is a strict partition. These posets are called a shape, a shifted
shape and a swivel respectively. Figure 1 (b), (c), (d) illustrate the Hasse diagrams of
D(5, 4, 2, 1), S(5, 4, 2, 1) and e6(1). Sometimes we represent subposets of Z2 as collections
of unit cells like Young diagrams.

A poset P is called connected if the Hasse diagram of P is a connected graph. It is easy
to see that, if P is a d-complete poset, then each connected component of P is d-complete.
Hence, when considering the generating functions of P-partitions, we may assume that
a d-complete poset is connected.

Proposition 2.3. ([10, §3]) If a d-complete poset P is connected, then P has a unique
maximal element.

2.2 Top tree and d-complete coloring

Let P be a poset with a unique maximal element. The top tree Γ of P is an induced
subgraph of the Hasse diagram of P, whose vertex set consists of all elements x ∈ P
such that the order filter generated by x is a chain. We will regard the top tree as a
simply-laced Dynkin diagram. For example, the top trees of Figure 1 (a), (b), (c) and (d)
are of type Dk, A8, D6 and E6 respectively.
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Proposition 2.4. ([11, Proposition 8.6]) Let P be a connected d-complete poset and Γ its
top tree. Let I be a set of colors whose cardinality is the same as Γ. Then a bijective
labeling c : Γ → I can be uniquely extended to a map, called a d-complete coloring,
c : P→ I satisfying the following three conditions:

(C1) If x and y are incomparable, then c(x) 6= c(y).

(C2) If an interval [v, u] is a chain, then the colors c(x) (x ∈ [v, u]) are distinct.

(C3) If [v, u] is a dk-interval then c(v) = c(u).

Example 2.5. The assignments given in Figure 2 are d-complete colorings. In general,
for a shape D(λ) and a shifted shape S(µ) with l(µ) ≥ 2, the maps cD(λ) : D(λ) →
{−(λ′1 − 1), . . . ,−1, 0, 1, . . . , λ1 − 1} and cS(µ) : S(µ)→ {0, 0′, 1, 2, . . . , µ1 − 1} given by

cD(λ)(i, j) = j− i, cS(µ)(i, j) =


j− i if i < j,
0 if i = j and i is odd,
0′ if i = j and i is even.

are d-complete colorings.

0 1 2 3 4
−1 0 1 2
−2−1
−3

(a) D(5, 4, 2, 1)

0 1 2 3 4
0′ 1 2 3

0 1
0′

(b) S(5, 4, 2, 1)

1 2 3 4 5
6 3 4

2 3 6
1 2 3 4 5

(c) e6(1)

Figure 2: d-complete colorings

2.3 Hook monomials

In the rest of this paper, we assume that P is a connected d-complete poset with top tree
Γ, and fix a d-complete coloring c : P→ I, where I is identified with vertex set of Γ. Take
a set of indeterminates z = (zi)i∈I indexed by I.

Given an order filter F of P, we regard P \ F as the induced subposet. For a (P \ F)-
partition σ ∈ A(P \ F), we put

zσ = ∏
v∈P\F

zσ(v)
c(v) ,

and we are interested in the multivariate generating function ∑σ∈A(P\F) zσ of (P \ F)-
partitions.

Definition 2.6. For each element u ∈ P, we define the monomial z[HP(u)], called the
hook monomial of u, inductively as follows:
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(i) If u is not the top of any dk-interval, then we define z[HP(u)] = ∏w≤u zc(w).

(ii) If u is the top of a dk-interval [v, u], then we define

z[HP(u)] =
z[HP(x)] · z[HP(y)]

z[HP(v)]
,

where x and y are the sides of [v, u].

Example 2.7. If P is a shape D(λ) or a shifted shape S(µ), then there is the classical
notion of hooks HD(λ)(u) ⊂ D(λ) and HS(µ)(u) ⊂ S(µ) given by

HD(λ)(i, j) = {(i, l) ∈ D(λ) : l ≥ j} ∪ {(k, j) ∈ D(λ) : k > i},
HS(µ)(i, j) = {(i, l) ∈ S(µ) : l ≥ j} ∪ {(k, j) ∈ S(µ) : k > j} ∪ {(j + 1, l) ∈ S(µ) : l > j}.

Then the hook monomial z[HP(u)] in Definition 2.6 coincides with the product
∏v∈HP(u) zc(v).

2.4 Excited diagrams and excited peaks

In order to formulate a skew hook formula for d-complete posets, we need to gener-
alize the notion of excited diagrams and excited peaks used in [8] and [6] to general
d-complete posets.

For i ∈ I, let Ni be the subset of P consisting of elements x ∈ P whose color c(x) is
adjacent to i in the Dynkin diagram Γ. Note that, if [v, u] is a dk-interval, then [v, u]∩Nc(u)
consists of elements x ∈ [v, u] such that x is covered by u or covers v.

Definition 2.8. Let P be a connected d-complete poset and let F be an order filter of P.

(a) Let D be a subset of P and u ∈ D. We say that u is D-active if there exists an
element v ∈ P \ D such that v < u, [v, u] is a dk-interval and [v, u] ∩ D ∩ Nc(u) = ∅.

(b) Let D be a subset of P and u ∈ D. If u is D-active, then we define αu(D) to be the
subset of P obtained from D by replacing u ∈ D by the bottom element v of the
dk-interval [v, u]. We call this replacement an elementary excitation.

(c) An excited diagram of F in P is a subset of P obtained from F after a sequence
of elementary excitations on active elements. Let EP(F) be the set of all excited
diagrams of F in P.

(d) To an excited diagram D ∈ EP(F) we associate a subset B(D) ⊂ P as follows: If
D = F, then B(F) = ∅. If D is an excited diagram with an active element u, then
we define

B(αu(D)) =
(

B(D) \ ([v, u] ∩ Nc(u))
)
∪ {u},
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where [v, u] is the dk-interval with top element u. We call B(D) the set of excited
peaks of D. (It can be shown that B(D) is a well-defined subset of P \ D.)

Example 2.9. (1) If P = D(5, 3, 2) and F = D(2, 1), then there are five excited diagrams
of F in P.

α(1,2)−−−→ ×

α(2,1)

y α(2,1)

y
×

α(1,2)−−−→ ×
×

α(1,1)−−−→ ×

Here the shaded cells form an exited diagram and a cell with × is an excited peak.

(2) If P = S(5, 3, 2) and F = S(2), then there are four excited diagrams of F in P.

α(1,2)−−−→ × α(2,3)−−−→ ×
×

α(1,1)−−−→ ×

(3) If P = e6(1) and F is the order filter consisting of two elements, then there are four
excited diagrams of F in P.

α(1,2)−−−→ × α(3,4)−−−→ ×
×

α(1,1)−−−→ ×

3 d-Complete posets, Weyl groups and root systems

In this section, we provide connections of combinatorics of d-complete posets with Lie
theory involving Weyl groups and root systems.

3.1 Lie theoretical interpretations

Let P be a connected d-complete poset with top tree Γ, and regard Γ as a (simply-
laced) Dynkin diagram with node set I. We fix an associated root datum (Λ, Λ∗, Π, Π∨)
consisting of a free Z-module Λ (the weight lattice), its dual lattice Λ∗ (the coweight
lattice), a subset Π = {αi : i ∈ I} ⊂ Λ (the set of simple roots), and a subset Π∨ =
{α∨i : i ∈ I} ⊂ Λ∗ (the set of simple coroots) subject to certain conditions. Let W be the
corresponding Weyl group generated by the simple reflections {si : i ∈ I}, l : W → N

the length function and < the Bruhat order on W. Let Φ = WΠ and Φ∨ = WΠ∨ be
the sets of real roots and real coroots respectively. The simple system Π (resp. Π∨)
determines the decomposition of Φ (resp. Φ∨) into the positive system Φ+ (resp. Φ∨+)
and the negative system Φ− (resp. Φ∨−). Then the standard partial ordering > on Φ+
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(resp. Φ∨+) is defined by setting α > β if α− β is a sum of simple roots (resp. simple
coroots).

By using the d-complete coloring c : P → I, we write α(p) = αc(p), α∨(p) = α∨c(p)
and s(p) = sc(p) for each p ∈ P. Take a linear extension and label the elements of
P with p1, · · · , pN (N = #P) so that pi < pj in P implies i < j. Then, for a subset
D = {pi1 , . . . , pir} (i1 < · · · < ir) of P, we define

wD = s(pi1) . . . s(pir) ∈W.

If p = pk ∈ P, then we define

β(pk) = s(p1) · · · s(pk−1)α(pk) ∈ Φ, γ∨(pk) = s(pN) · · · s(pk+1)α
∨(pk) ∈ Φ∨.

It turns out that these elements wD, β(p) and γ∨(p) are independent of the choices of
linear extensions of P.

Let iP be the color of the unique maximal element of P, and λP ∈ Λ the correspond-
ing fundamental weight. Let WλP be the stabilizer of λP in W, which is the maximal
parabolic subgroup corresponding to I \ {iP}. Let WλP be the set of minimum length
coset representatives of W/WλP , viewed as an induced subposet of W with respect to
the Bruhat order.

Then we summarize connections of combinatorics of d-complete posets with Weyl
groups and root systems. Proofs can be found in [10], [12] and [14].

Proposition 3.1. (a) The element wP ∈ W is λP-minuscule, i.e., 〈γ∨(p), λP〉 = 1 for all
p ∈ P, where 〈 , 〉 : Λ∗ ×Λ→ Z is the canonical pairing.

(b) wP is fully commutative, i.e., any reduced expression of w can be obtained from
any other by using only the Coxeter relations of the form st = ts.

(c) The poset P is isomorphic to the order dual of Φ∨+ ∩w−1
P Φ∨− via the correspondence

p 7→ γ∨(p).

(d) Under the identification zi = eαi (i ∈ I), we have z[HP(p)] = eβ(p) for any p ∈ P.

(e) The map F 7→ wF gives a poset isomorphism from the set of all order filters of P
ordered by inclusion to the Bruhat interval [e, wP] in WλP .

(f) If F is an order filter, then wF is λP-minuscule and wFλP = λP −∑p∈F α(p).

3.2 Excited diagrams and Weyl groups

Let ∗ : W ×W → W be the associative product, called the Demazure product, defined
by

si ∗ w =

{
siw if l(siw) = l(w) + 1,
w if l(siw) = l(w)− 1.
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For a fixed linear extension of P and a subset D = {pi1 , · · · , pir} (i1 < · · · < ir) of P, we
define an element w∗D ∈W by putting

w∗D = s(pi1) ∗ s(pi2) ∗ · · · ∗ s(pir).

It follows from Proposition 3.1(b) that the element w∗D is independent of the choices of
linear extensions of P The following proposition is one of the key ingredients of the
proof of Theorem 1.2. See [9, Section 3] for the proof.

Proposition 3.2. Let F be an order filter of a connected d-complete poset P and E ⊂ P.

(a) E is an excited diagram of F in P, i.e., E ∈ EP(F), if and only if #E = #F and
wE = wF.

(b) E is of the form E = D t S for some D ∈ EP(F) and S ⊂ B(D) if and only if
w∗E = wF.

4 Equivariant K-theory and proof of Theorem 1.2

In this section, we use the equivariant K-theory of a thick partial flag variety (see [4] for
example) to give a sketch of the proof of our main theorem (Theorem 1.2).

4.1 Equivariant K-theory of Kac–Moody partial flag varieties

Let P be a d-complete poset with top tree Γ. From a fixed root datum (Λ, Λ∗, Π, Π∨)
associated to the Dynkin diagram Γ, we can construct the Kac–Moody group G over C,
its Borel subgroup B− (corresponding to Φ−) and maximal torus T ⊂ B−. Let iP ∈ I be
the color of the maximum element of P and λP the corresponding fundamental weight.
Let P− ⊃ B− be the parabolic subgroup of G corresponding to J = I \ {iP}. Then we
consider the Kashiwara thick partial flag variety X = G/P−.

Let KT (X ) be the T -equivariant K-theory of X . Then KT (X ) has a commutative
associative KT (pt)-algebra structure. Here the T -equivalent K-theory KT (pt) of a point
is isomorphic to the group algebra Z[Λ] with basis {eλ : λ ∈ Λ}. In the following, we
identify eαi with the indeterminates zi corresponding to the color i ∈ I. Any elements
of KT (X ) is a (possibly infinite) KT (pt)-linear combination of the equivariant Schubert
classes {[Ov] : v ∈WλP}, where [Ov] is the class of the structure sheaf Ov of the Schubert
subvariety Xv and WλP is the set of minimum length coset representatives in W/WλP .

Each w ∈ WλP gives a T -fixed point ew = wP−/P− ∈ X , and the inclusion map ιw :
{ew} → X induces the pull-back ring homomorphism ι∗w : KT (X ) → KT (ew) ∼= Z[Λ],
called the localization map at w. For two elements v, w ∈WλP , we define

ξv|w = ι∗w([Ov]) ∈ Z[Λ].
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Then, by using Proposition 3.1 (d), we can derive the following explicit expression from
the Billey-type formula [4, Proposition 2.10].

Proposition 4.1. For a connected d-complete poset P and its order filter F, we have

ξwF |wP = ∑
E:w∗E=wF

(−1)#E−#F ∏
p∈E

(1− z[HP(p)]) , (4.1)

where the summation is taken over all subsets E ⊂ P satisfying w∗E = wF.

4.2 Equivariant K-theoretical Littlewood–Richardson coefficients

We consider the structure constants for the multiplication in KT (X ) with respect to the
equivariant Schubert classes. For u, v, w ∈W J , we denote by cw

u,v ∈ KT (pt) the structure
constant determined by

[Ou][Ov] = ∑
w∈WλP

cw
u,v[Ow]. (4.2)

Then we have cw
u,v = 0 unless u ≤ w and v ≤ w. It is not difficult to prove the following

proposition.

Proposition 4.2. (a) For v, w ∈WλP , we have cw
v,w = ξv|w.

(b) Let u, v, w ∈WλP and put s = siP ∈WλP . If cw
s,w 6= cu

s,u, then we have

cw
u,w =

1
cw

s,w − cu
s,u

∑
u<x≤w

cx
s,ucw

x,w. (4.3)

By using Proposition 3.1 (c), (e) and (f), we can prove the following explicit formula
from the Chevalley-type formula [5, Theorem 4.8]. (See [9, Section 4] for the proof.)

Proposition 4.3. Let P be a connected d-complete poset and put s = siP . For two order
filters F and F′ of P, we have

cwF′
s,wF =


1− z[F] if F′ = F,
(−1)#(F′\F)−1z[F] if F′ ) F and F′ \ F is an antichain,
0 otherwise,

(4.4)

where z[F] = ∏p∈F zc(p).
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4.3 Outline of the Proof of the Main Theorem

Now we are ready to prove our Main Theorem 1.2. Theorem 1.2 follows from the fol-
lowing two identities:

∑
σ∈A(P\F)

zσ =
ξwF |wP

ξwP |wP

,
ξwF |wP

ξwP |wP

= ∑
D∈EP(F)

∏q∈B(D) z[HP(q)]

∏p∈P\D(1− z[HP(p)])
. (4.5)

We use Proposition 4.3 to prove the first identity of (4.5). We proceed by induction
on #(P \ F). For an order filter F of P, we put

GP/F(z) = ∑
σ∈A(P\F)

zσ, ZP/F(z) =
ξwF |wP

ξwP |wP

.

Since ZP/P(z) = GP/P(z) = 1, it is enough to show that ZP/F(z) and GP/F(z) satisfy the
same recurrence of the form

XP/F(z) =
1

1− z[P \ F] ∑
F′
(−1)#(F′\F)−1XP/F′(z), (4.6)

where F′ runs over all order filters such that F ( F′ ⊂ P and F′ \ F is an antichain.
First we show that GP/F satisfies (4.6). Let M be the set of all maximal elements of

P \ F. For a subset I ⊂ M, let

A(P \ F)I = {σ ∈ A(P \ F) : σ(x) = 0 for all x ∈ I},
A′(P \ F) = {σ ∈ A(P \ F) : σ(x) = 0 for some x ∈ M}.

Then GP/(FtI)(z) = ∑σ∈A(P\F)I
zσ and by using the Inclusion-Exclusion Principle we

have

∑
F′
(−1)#(F′\F)−1GP/F′(z) = ∑

I⊂M, I 6=∅
(−1)#I−1 ∑

σ∈A(P\F)I

zσ = ∑
σ∈A′(P\F)

zσ.

Also it is not difficult to show

∑
σ∈A(P\F)

zσ =
1

1− z[P \ F] ∑
σ∈A′(P\F)

zσ.

Hence GP/F(z) satisfies (4.6). On the other hand, by using Proposition 3.1 (e), Proposi-
tion 4.2 (a) and Proposition 4.3, we can rewrite (4.3) to show that ZP/F(z) satisfies the
recurrence (4.6). Hence we obtain the first identity of (4.5).

The second identity of (4.5) is derived by using Proposition 4.1 and Proposition 3.2
as follows:

ξwF |wP = ∑
D∈EP(F)

∏
p∈D

(1− z[HP(p)]) ∑
S⊂B(D)

(−1)#S ∏
p∈S

(1− z[HP(p)])

= ∑
D∈EP(F)

∏
p∈D

(1− z[HP(p)]) ∏
p∈B(D)

z[HP(p)].
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By dividing the both sides by ξwP |wP = ∏p∈P(1− z[HP(p)]), we obtain the second iden-
tity in (4.5). This completes the proof of Theorem 1.2.
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