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Schubert structure operators
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Abstract. We use operators to reformulate the Andersen-Jantzen-Soergel/Billey for-
mula for the point restrictions of equivariant Schubert classes of the cohomology of
G/B. We introduce new operators whose coefficients compute Schubert structure con-
stants (in a manifestly polynomial, but not positive, way), resulting in a formula much
like and generalizing the positive AJS/Billey formula. Our proof involves Bott-Samelson
manifolds, and in particular, the cohomology basis dual to the homology basis of classes
of sub-Bott-Samelson manifolds.
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1 Introduction and the main theorem
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Fix a complex reductive Lie group G and maximal torus T < G, for example G = GL,(C)
and T the diagonal matrices. Fix opposed Borel subgroups B, B_ with intersection T. This
choice results in a length function £ on W = N(T)/T and a set {«;} of simple roots. The
quotient G/ B is the associated flag manifold and the left T-action on G/B has isolated
fixed points {wB/B : w € W}, where W := N(T)/T is the Weyl group.
In the case that G = GL,(C) and B = upper-triangular matrices, G/B is (uniquely)
G-isomorphic to the set of complete flag manifolds FI(C"). The fixed points N(T)B/B
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2 Rebecca Goldin and Allen Knutson

of the T-action correspond, under that isomorphism, to coordinate flags in FI(C"). In
particular, there are n! such flags, corresponding to elements in the Weyl group W = S,
the symmetric group on 7 letters.

We denote by Hy the T-equivariant cohomology of a point with coefficients in Z,
and recall that Hy is the polynomial ring Sym(T*) over Z in the weight lattice T* :=
Hom(T,C*). The equivariant cohomology H}(G/B) is a free H7-module with a basis
given by Schubert classes (recalled below). Our references for equivariant (co)homology
are [3, 8, 9].

Let Z[d] denote the nil Hecke algebra with Z-basis {9, : w € W}, whose products
are defined by

5 5 . duy if L(vw) = 4(v) + £(w)
Y710 otherwise, ie. if £(vw) < £(v) + L(w).

These {dy} act on the polynomial ring H7 as follows: for each root a with simple reflec-
tion r,, the divided difference operator 0,, := 9, is defined by

Qo+ f = f _(X”ocf

The nil Hecke algebra acts on the first factor in the tensor product H;®zH7, and this
action descends to the quotient Hj ® uyw Hr. This latter ring has a well-defined map
A®u +— Aci(Ly) € Hi(G/B) called the equivariant Borel presentation of H}(G/B),
which is a rational (and for G = GL;, an integral) isomorphism. (Here £, is the Borel-
Weil line bundle G x5 Cﬂ, where Cy is the 1-dimensional representation of B, neither of
which will be using again.)

Since our interest is in cohomology not homology, we privilege codimension over
dimension and define X” := BvB/B C G/B to be an opposite Schubert variety with
equivariant homology class [X?] € HI(G/B). As these {[X"]} form an Hi-basis and
G/ B enjoys equivariant Poincaré duality, we can define the dual basis {S,, € H}(G/B)}
of Schubert classes by (Sy, [X?]) = dwp. Here (,) denotes the Alexander pairing, of
(equivariant) cap-product followed by pushforward to a point. In fact Sy, is the Poincaré
dual to the subvariety B_wB/B.

The nil Hecke algebra Z[0] acts on the basis {S;},cw: in particular, 9y - Sw, = Sww,
for each w € W (since we act on the left factor in the Borel presentation), though we won’t
use this recursion.

The structure constants ci;, € Hy are defined by the relation in H;(G/B)

SuSo =) _c%,Sw (1.1)
w

These polynomials cj;, are known to be positive in the following sense [6]: when written
(uniquely) as a sum of monomials in the simple roots {«;}, each monomial has a non-
negative coefficient. It is a very famous problem to compute these in a manifestly positive
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way, solved in special cases such as u, v € W¥ where G/ P is a Grassmannian or 2-step flag
manifold [7, 5]. Another solved case is u = w, in which case ¢, is computed positively
by the AJS/Billey formula [1, 2] (recalled below) for the point restrictions S|, = ¢5, of
Schubert classes. In this abstract, we prove a formula for the {c%,} in terms of a certain
composition of operators in the nil Hecke algebra, applied to 1. Along the way, we re-
prove the AJS/Billey formula; more specifically, our nonpositive formula reduces to the
positive AJS/Billey formula in the special case u = w.

Theorem 1. Let Q be a reduced word for w. Then

=Y T] (aq [9€P,R] 9 [92P,R] rq> 1

P,RCQ reduced Q
[1P=u, [IR=v

where the exponent “[o|” is 1 if the statement o is true, O if false.

Example. Let Q = 121 so w = ryrary, u = r1, v = rirp all in S3 the Weyl group of GL3.
Then P € {1— —,— —1}, R =12 — as subwords of 121, in our sum

r1r2r

i, = (a1 1 0111) - 14 (r1r2r) - 1=0+1

whereas if we change v to 1,71 so R = — 21, then

C;}fzrrzlﬁ =(rirpry) -1+ (0r1rpagry)-1=1+0;-a2 =0.

Example. Let Q = 12312, so w = rirar3rira = [3421] in one-line notation, and take
u = rorary = [1432], v = ryrpr; = [3214]. Then P = —23 —2and R € {12 —-1—,—-2— 12}
so we have

w
iy = (r1 @orp r3 11 12+ 0111 aprp 13 1 Aprp) - 1

= (a1 +ap) -1+ 91(a1 +an)(ap +a3) - 1
= a1 +ay +01(a +az)an - 1+ 01 (g +an)az -1
=0 +ay + 0+ as.

We now recall the AJS/Billey formula. The T-invariant inclusion i of T-fixed points
into G/ B results in a map in equivariant cohomology:

i*: Hr(G/B) — €P Hr(wB/B) = P Hr (1.2)
weW weW

and i is known to be an injection. The inclusion iy, : wB/B — G/ B induces the projection
to the w-term in this sum, so we may write i* = @y ir,.

Forany v,w € W, the point restriction S, |, € H} is defined by i},(S,), i.e. the image of
Sy under the map i* in (1.2), then projected to the w summand. Since (1.2) is an inclusion,
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each Schubert class Sy, is described fully by the list {i},(S,) : w € W} of these restrictions.
Note that Sy |, # 0 implies uB/B € B_wB/B, i.e. u > w in Bruhat order, and in fact the
converse is also true. This upper triangularity of the support will be useful just below.

In the case u = w, the relation (1.1) and this upper triangularity imply that ¢, = Sy|4.
After choosing Q a reduced word for w, the only choice of reduced word P for u is Q
itself. The formula thus simplifies to

Solw= ), ]I (“q[qem rq) -1,

P Ty ©
which is just a restatement of the AJS/Billey formula.

After describing our geometric proof, we give an algebraic interpretation of Theorem 1
as a coefficient of the product of certain Schubert structure operators. Let H}[0] denote the
smash product of H} with Z[9], the algebra consisting of the free H;-module H} ®z Z[0]
with product given by, for p,q € Hr,

(P®0dy) - (g®0w) = p(dug) ® 0w

and extended linearly. This smash product was first introduced by Kostant and Kumar in
[8]. Since 7, acts on H7(G/B) equivalently to 1 — ad,, we will abuse notation and denote
by 1, € H7}[0] the operator 1 — wd,.
Let
K* := (07 ®@1®1) + (ra®3®1) + (ra®1®dy) + (a7, @33y )

in H}[0] ® Z[d] ® Z[d]. The Schubert structure operators K* braid and commute appro-
priately (in the simply and doubly laced cases; we conjecture but haven’t checked the
remaining G, case), and square to 0. They act on H}(G/B) ® H;(G/B) ® H7(G/B), re-
sulting in another way (in Section 5) to obtain the coefficients cj,. It seems likely that
further analysis of them would give a purely algebraic proof of Theorem 1. As an appli-
cation of Theorem 1, we derive two recursive formulas for structure constants.

2 Ingredients of the proof

Recall that the Bott-Samelson manifold associated to a word Q = Tag Tag, " Ta

’ in simple
reflections is given by

1

BSO = Py, xP Py x"--- x" Py, /B
where P, is the minimal parabolic associated to the simple reflection r;, and the quo-
]

tient results in an equivalence of elements given by (g1,92,...,9¢) ~ (g1b1,b; 'g2bs,
...,b;_ll goby). We denote the resulting equivalence classes with square brackets, i.e.

(g1, 82,---,8¢] € BSC.
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There is an action by T on the left of BS? with 2#Q fixed points; more specifically
the set of sequences (g1,2,...,8¢) € P,Xz.1 X P,Xl.2 X oo X Pa,-/ such that Vj, ¢; € {1,s}
maps bijectively to the fixed point set (BS?)T. In this way we index the fixed points by
subsets L C {1,..., ¢}, but instead of writing “L is the {2,3} subword of (r1,ry,71)” we
will write “L is the subword —rpr1 of (r1,72,71)”, allowing e.g. distinction between the
r1 — — and — — rq subwords. In addition, the inclusion of the fixed points induces a map
in equivariant cohomology

H;(BS®) — P Hj (2.1)
LCQ
which is known to be an injection.

For any subword L = sy, - - - s, of Q, there is a corresponding copy of BS™ obtained as

a submanifold of BS? by

BS" = {[g1,--- g € BSQ | g =1ifj ¢ L}.

The submanifolds BS" are T-invariant, and each BSL := BS!\ U MCL BSM contains a
unique T-fixed point [g1, .. .,g/] € BSY, the one we also corresponded to L.

The equivariant homology classes {[BS’] : L C Q} form a basis of H! (BS?) as a
(free) module over Hi. There exists a dual basis {T}};co of H:(BS?), again defined by
the Hj-valued Alexander pairing (, ); we compute its point restrictions in Lemma 2.

Consider the natural map 7t : BSR — G/B that multiplies the terms, [g1,..., /] —
(I'l;gi)B/B. The image is B-invariant, irreducible, and closed, so necessarily some X®
(but w may not be [TR). However dim BS® = dim X“ if and only if R is a reduced
word, in which case the top homology class of BS® pushes forward to that of X*. The
pushforward sends the homology class of BSR to that of X* in G/B whenever R is a
reduced word for w, and otherwise sends it to 0. These statements are true both for
singular homology and also, since the varieties involved are T-invariant, for equivariant
homology [9, 3].

We are interested in the transpose map in equivariant cohomology, where we have the
dual bases {T}}, {Sw} of H:(BSR), H:(G/B) respectively. Since (71g).([BSR]) = [X¥] in
equivariant homology, the transpose statement is the lemma:

Lemma 1. Let 7t : BS® — G/ B be the product map. Then

m5(Se) = Y Tk

RCQ reduced
[IR=w

Proof. Let [BSt], [X¥] denote the equivariant homology classes, and (, ) denote the per-
fect Hi-valued pairing between HI (M) and H%(M) for M a smooth compact oriented
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T-manifold. Then

<7T*Q(Sw)/ [BSL]>BSQ = <SZU/ (nQ)*([BSL])>G/B
_ { (Sw,[X?]) if Lis reduced, with product v

0 otherwise

1 if Lis reduced, with product w
0 otherwise.

Since the {Tgr} are defined so that (Tg,[BSY]) = &g, we conclude that 75 (Sw)
— ERCQ reduced TR D

=w

We pull back the equation S,Sy = Y ey 3, Sy along g : BS® — G/B and simplify
the right hand side of the equation:

5 (Su) TH(So) = Y iy mo(Sx) = Y Y, Tr= ), IR Tr.  (22)

xeW xeW RCI% %educed RCQ reduced
=x

By expanding the left hand side in a similar fashion, we obtain

mo(Su)mH(Se) = Y, Tk ), Ts= Y, TgrTs.

RCQ reduced SCQ reduced R,5CQ reduced
[IR=u [IS=v TIR=u]S=v

Define b{is to be the structure constants for the multiplication in H%(BS?) in the basis
{T;}, defined by the relationship

TRTs = Y bisT.
JcQ
Thus we have shown
mo(S)TH(S) = Y. Y bireTy. (2.3)
e i

Now we take Q to be reduced with product w and look at the coefficient of Tg in (2.2) and
(2.3):

wo_ Q

Gw= ). bgs (2.4)
R,SCQ reduced
[IR=uJ]S=v

Theorem 2. Let the equivariant intersection numbers bl% be defined as above. Then,
Q _ [9€R,S]5[9¢R,S]
brs =11 <“q 9 rﬂ) 1
q€Q

where the exponent |q € ]| indicates inclusion of the factor only when q € J.
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Theorem 1 then follows directly from Theorem 2 and (2.4).

The proof of Theorem 2 is an inductive argument based on Lemma 2 below; both
proofs will appear elsewhere.

As with Schubert classes, we define the point restriction T}|;, to be the restriction of
T; € H%(BSQ) under the map (2.1) to the fixed point L C Q. These restrictions can be
computed explicitly:

Lemma 2. The equivariant class Ty € Hi(BSQ) has the following restriction to a T-fixed point

meL
0 ] L L.

where the exponent [m € [| indicates inclusion of the factor only when m € J.

In the remainder we present these coefficients in terms of some apparently natural
families of operators, based on reflections and divided difference operators.

3 AJS/Billey operators

In the next two sections we interpret the AJS/Billey formula, and Theorem 1, in terms
of certain operators; our results are that these operators satisfy the various (nil-)Coxeter
relations. We hope someday to run the arguments backward and use the relations to give
an algebraic proof of Theorem 1.

Let H}[W] be the smash product of H; and the group algebra of W, i.e. the free H}-
module with basis W and multiplication wp := (w - p)w. For each w € W, we introduce
an AJS/Billey operator

Joi= Y (Seha)w® 3y € Hy[W]22Z[d] 31)

v<w

so in particular
Jo :=Jr, = (ra®1) + (ary®9y).

Note that these operators are homogeneous of degree 0, where the degrees of «, 7,4, d, are
+1,0, —1 respectively.

Theorem 3. 1. If Q is a reduced word for w, then J» = [1g Jg-

2. If l(w) + £(v) = L(wo), then Ju]o = Jwo, and this fact is essentially equivalent to the
AJS/Billey formula.

3. J2 = 1®1, so in fact any word Q for w suffices in (1), and [y ]y = Juwo for all w, .
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Proof. 1. Let Q be a reduced word for w. Then since Sy|;, is 0 unless v = 1 or v = r,,

g[fq = T X (Solrrg@e, = [ ((rg®1)+ (agrg0,))

Q v=rq Q

- L (e n)erlo = £ £ () ea
RCQ R U RCQ reduced
[IR=v
as [[g 9r = 0 unless R is reduced. The AJS/Billey formula states that

) Hoc [9€R] rq = Solww,

RCQ reduced
[IR=v

from which it follows that

H]q Z )w®av = Jw-

o<w

2. From (1) the equality [ J» = Juwo follows by concatenating words for w and v.
Conversely, the equality implies [, = [ToJq when Q is a reduced word for w, which
in turn implies the AJS/Billey formula by the calculation above.

Ji = ((ra®1) + (ar,®d,))* = ((”oc@l) + (are®9n)) ((ra®1) + (a72®04))
= (101) + (raar,®9y) + (2®3,) + (aryar,®92) = 101
[
Let (G/B)4 denote the diagonal copy of G/B in (G/B)?, which is invariant under the
diagonal T-action on (G/B)?2. The corresponding Poincaré dual class D*° € H3((G/B)?)

of this submanifold can be described explicitly in terms of the Poincaré duals
S € H7(G/B) to the X*. Under the isomorphism

H7((G/B)?) = H7(G/B) ®u: H7(G/B)
we have from [4] the factorization of the diagonal
D" =Y"5,®5" =) 5,®(,S") (3.2)
(% v

Consider its restriction along i, X Id : {wB/B} x G/B — (G/B)?

i X Id)*
D™ = 0@ (30 - §1) 0 T (Sola)©(8y - 1) = - ($195).
% 0

While we won't directly use this suggestive calculation of the S; |, it will inform a similar

operator-theoretic calculation of the ci;, in the next section. Towards that end we rephrase

the equation above using the equivariant Euler class e(T G/B) of the tangent bundle:
(e(TG/B)®1) DY = Y (i x Id), (Ju - (S1®S1)) (3.3)

weW
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4 Schubert structure operators

Analogously to J, € H}[W|®Z[d], we introduce in H}[0]®Z[d]RZ[J] elements
K" := (0,7,®1R1) + (ry®9,®1) 4+ (ra®1®09, ) + (ar,®0,R0dy ),

where r, = (1 — ad,) € H7[9d]. These are homogeneous of degree —1. Note that 1,0, =
alx — _aara.

Lemma 3. (K*)? = 0.

Proof. At the end we use the equality of operators d,a + ad, = 2, derivable from the
twisted Leibniz identity d, - (xy) = (94 - X)y + (ra - X)(0a - y).

(K*)? = (0ura®1®1) ((0are®@1®1) + (ra®0,®1) + (ra®1®0y) + (a1, R0, R0y))
14 ®09,®1) (0472 R1R1) + (14 ®0x®1) + (r2®@1R0y) + (a7, @9, Ry ))
1e®@1®0y) (0472 @1®1) + (1, ®0,®1) + (ry@1®0y) + (a7, ®0,R0y))

(
(
(
(07,29, @3y) ((Bura®@1@1) + (ry®3,®1) + (1 ®129y) + (a7, ®9, @3y ))
(
(
(
(

+ + +

0w 0uTa®@1®1) + (uTa?a @05 ®1) + (0l ’a@1R0s) + (VuTak’a @04 &0y )

Te0aTa @04 ®1) + (rat4 @040 ®1) + (rata®0x®0y) + (rar¢®020,®04)

1000 @1®0y) + (ry7a®0,®0y) + (ra? @1R0,0y) + (Fat?y @0, @040y )

W 00T @0y 00y ) + (AFa T4 ®0004 @0y ) + (47474 @0 @0x0n) + (A7 A73 @003 @050y )
0+ (0,20, ®1) + (0,®1R00y) — (xR0, ®0y) — (9420 @1) + 0+ (180, ®dy) + 0
(02®1®04) + (1004®0s) + 0+ 0 — (10, R0, ®0y) +0+0+0
= —(0,4®0,R0,) + (109,209y) + (180,R0,) — (€0y R0, R0y )
= (2— a0y — 0at)®I,®9, = 0.

I+ + +

]

Theorem 4. The operators K* obey the commutation and (simply- or doubly-laced) braid re-
lations, and as such, we can define K® := []o K7 (for W simply- or doubly-laced) using any
reduced word Q for w.

Proof. The commutation operations are obvious. For braiding, we compute K*KPK* for
the simple roots in SL3.

K*KPK* = (= (3:0101) + (r4®3,®1) + (r,@1®9,) + (a7,®3,@3y))
(— (0p21@1) + (rp@9p@1) + (rp@109dp) + (Bre@dpdp))
(= (0a®1®1) + (ra®0x®1) + (ra®@1R0y) + (474 ®0, 29y ))

)

We group the 43 terms (15 of which vanish by 92 = 0) according to their second and third
tensor factors Using the relations

a,XDC :2—oc8,x 8’313:2—13813 aaﬁ = —1+tx8a+ﬁaa algﬂé = —1+tx8ﬁ+,88/3
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we can write each matrix entry uniquely as ) , 0w, hw € Hf, to compare the two opera-
tors. We left the resulting comparison of > 1000 terms to a computer. The corresponding
B> calculation involved closer to 140, 000 terms. O

We are confident that the K* satisfy the G, braid relation but have not done the com-
putation (having run out of memory at 3M+ terms).
As a result of Theorem 4, we may define operators dj;, € H}[d] by

=) dy,w® 0, Q.
u,u

The successive application of K* for each reflection r, in a reduced word for w then results

in the statement that
]_—I ( [9€R,S] qéR 9] >
q

As these operators applied to 1 are the terms appearing in Theorem 1, we deduce that
K(S10S'esh) =Y ¥ @S ®s°
u,v

which we now manipulate to get a K* analogue of (3.3).

Let D1y € H% ((G/B)?) denote the Poincaré dual of the partial diagonal {(F;, F», F3) €
(G/B)® : F; = K}, and D3 denote that of {(F;, F,, F3) € (G/B)® : F = F3} likewise.
Then Djp3 := Djp N Dy3 is the class of the full diagonal. By two applications of (3.2), we
get

D13 = DN Dy = (Z(Su®5”®1)> (Z(Sv@)l@Sv)) = ZSuSz,@S”@S”
U,

u 0

=Y (ch’vsw> ®S"®S” =) (Su®1®1) ) (clh,®5"®S?)
u,v w

w u,v

Combined with the above equation, we get

Dz = Y _(Su®1®1) K¥(S; ® S'® S, (4.1)

w

a distinct echo of (3.3).
Question. What is a closed form for K“, analogous to that of [ in (3.1)?
5 Recursive formulas for structure constants

Corollary 1. Fix a reflection ry, and let 5 denote rys for s € W. If w < w, then

v = (Qara) -V, + U< u]cg"/v + [o< v]c?ﬁ + [u<ullv<o)a %’5
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where [s < s] indicates 1 if 5 < s, and 0 otherwise (i.e. 5 > s).
Similarly, let s denote sr,. If w < w, then

G = <ul(ap) + [@<o](ap) + [u<ullo<o](diyy-a)

Proof. Suppose w = ryry, - - - Ty, is a reduced word expression for w. Then K¥ = K*K%,
where W = r,w. In particular

Y @S5 @S =K(S1®S'®S!) = <K“Zd;‘;w®as ®at> (S1®S'®Ssh)

u,o s,t

= Z (aarad?tw ® ds ® d¢ + rzxdgw ® 0405 @ 0 + radgw ® 0s @ 0,04

st

The term c¥, ® S* ® S” on the left is obtained as the image of S; ® S! ® S! under those tensors
with terms 9, ® 9, in the second and third positions. Note that d,0; = dy exactly when r,s = s’
and £(s") = 0(s) + 1. If rys = s’ but £(s") # £(s) + 1, then 9,05 = 0. Let o = r,v and u = ryu. By
matching the terms,
0, ® 5" @ S” = (0uradyW ® 0y ® 0y + Tade ,TW ® 0y ® Dy + Tady 51 @ 0y @ 0405
+ 00, A% 5T @ 0407 ® 0407) (S1 ® S' ® S)
= (0urad3, W ® 0y ® 0y + [U < U] 70d2 W ® dy @ 0y + [0 < 0] rody 5T @ 9y @ Iy
+ [ < u][0 < 0] aryd 50 ® 9, ©3,) (512 S @ 8.

We evaluate the expression on the right and isolate the first tensor to obtain

= (Oaradiy@) - 14 [ < u] (rad2 @) - 14 [0 < 0] (radzw) - 1+ [ < u][0 < 0] (ar,diyw) - 1
= (Qured®) -1+ [u < u]cg/v + [0 < v]cz5 + [u < ul[o < v]occ%

A similar proof holds for the second recursion. O

We finish with an example illustrating the use of the first recursive formula.

Example 1. We compute cj, in the S3 case, with u = [312], v = [132] and w = wy = [321]
in 1-line notation. First we use w = rqw. Thenu = riu £ uand v = rv £ v. The three
latter terms in the sum of the first recursion relationship drop out and we obtain

[321] w T 312]
C1312),)132] — Cup = 9171 " Cyp = 9171 - C1312],[132]

We set about to compute ¢%,. Note that 7,71 is a reduced word for @. There is only one
subword for u, mainly 7,71, and one subword for v, mainly r,—. Therefore c¥, = aprory - 1
and we obtain

Cup = 0171827271 - 1 = 91(r1(a2)) = 91(ag +a2) = 1.
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As a check on this result, we consider the recursion with r, instead of 71, so W = ryw =
[231]. Then & = rou = [213] < uand ¥ = rpv = 1 < v. In principle all four terms are
nonzero:

Chvy = 02ra - Chpy 4 €3, + Clog + el .

However u £ @, so the first and third terms ¢?, and cuw’5 vanish. The last term ¢fj; =
[231] [231]

C1213),1 213],[132

nonzero term. This smaller structure constant is easily seen to be 1, for instance by another

application of same inductive formula with r1[231] = [132] < [231]. Note that r1[132] £

[132] which forces two terms in the recursive sum to be 0. We obtain

= 0 because S|313S1 = Sp13)- Thus cfj, = ¥ = c | is the only remaining

231]

132] 132]
C1213],[132]

ez T Cpxy = 0+ 1

= 811’1 - C

where the last two equalities follow from [213] £ [132] and S15135) = Spi32)-
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