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Schubert structure operators
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Abstract. We use operators to reformulate the Andersen-Jantzen-Soergel/Billey for-
mula for the point restrictions of equivariant Schubert classes of the cohomology of
G/B. We introduce new operators whose coefficients compute Schubert structure con-
stants (in a manifestly polynomial, but not positive, way), resulting in a formula much
like and generalizing the positive AJS/Billey formula. Our proof involves Bott-Samelson
manifolds, and in particular, the cohomology basis dual to the homology basis of classes
of sub-Bott-Samelson manifolds.
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1 Introduction and the main theorem

Fix a complex reductive Lie group G and maximal torus T ≤ G, for example G = GLn(C)
and T the diagonal matrices. Fix opposed Borel subgroups B, B− with intersection T. This
choice results in a length function ` on W = N(T)/T and a set {αi} of simple roots. The
quotient G/B is the associated flag manifold and the left T-action on G/B has isolated
fixed points {wB/B : w ∈W}, where W := N(T)/T is the Weyl group.

In the case that G = GLn(C) and B = upper-triangular matrices, G/B is (uniquely)
G-isomorphic to the set of complete flag manifolds Fl(Cn). The fixed points N(T)B/B
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of the T-action correspond, under that isomorphism, to coordinate flags in Fl(Cn). In
particular, there are n! such flags, corresponding to elements in the Weyl group W ∼= Sn,
the symmetric group on n letters.

We denote by H∗T the T-equivariant cohomology of a point with coefficients in Z,
and recall that H∗T is the polynomial ring Sym(T∗) over Z in the weight lattice T∗ :=
Hom(T, C×). The equivariant cohomology H∗T(G/B) is a free H∗T-module with a basis
given by Schubert classes (recalled below). Our references for equivariant (co)homology
are [3, 8, 9].

Let Z[∂] denote the nil Hecke algebra with Z-basis {∂w : w ∈ W}, whose products
are defined by

∂w∂v :=

{
∂wv if `(vw) = `(v) + `(w)

0 otherwise, i.e. if `(vw) < `(v) + `(w).

These {∂w} act on the polynomial ring H∗T as follows: for each root α with simple reflec-
tion rα, the divided difference operator ∂rα := ∂α is defined by

∂α · f :=
f − rα f

α

The nil Hecke algebra acts on the first factor in the tensor product H∗T⊗ZH∗T, and this
action descends to the quotient H∗T ⊗(H∗T)

W H∗T. This latter ring has a well-defined map
λ⊗µ 7→ λc1(Lµ) ∈ H∗T(G/B) called the equivariant Borel presentation of H∗T(G/B),
which is a rational (and for G = GLn, an integral) isomorphism. (Here Lµ is the Borel-
Weil line bundle G ×B Cµ, where Cµ is the 1-dimensional representation of B, neither of
which will be using again.)

Since our interest is in cohomology not homology, we privilege codimension over
dimension and define Xv := BvB/B ⊆ G/B to be an opposite Schubert variety with
equivariant homology class [Xv] ∈ HT

∗ (G/B). As these {[Xv]} form an H∗T-basis and
G/B enjoys equivariant Poincaré duality, we can define the dual basis {Sw ∈ H∗T(G/B)}
of Schubert classes by 〈Sw, [Xv]〉 = δwv. Here 〈, 〉 denotes the Alexander pairing, of
(equivariant) cap-product followed by pushforward to a point. In fact Sw is the Poincaré
dual to the subvariety B−wB/B.

The nil Hecke algebra Z[∂] acts on the basis {Sv}v∈W : in particular, ∂w · Sw0 = Sww0

for each w ∈W (since we act on the left factor in the Borel presentation), though we won’t
use this recursion.

The structure constants cw
uv ∈ H∗T are defined by the relation in H∗T(G/B)

SuSv = ∑
w

cw
uvSw (1.1)

These polynomials cw
uv are known to be positive in the following sense [6]: when written

(uniquely) as a sum of monomials in the simple roots {αi}, each monomial has a non-
negative coefficient. It is a very famous problem to compute these in a manifestly positive
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way, solved in special cases such as u, v ∈WP where G/P is a Grassmannian or 2-step flag
manifold [7, 5]. Another solved case is u = w, in which case cw

wv is computed positively
by the AJS/Billey formula [1, 2] (recalled below) for the point restrictions Sw|v = cv

wv of
Schubert classes. In this abstract, we prove a formula for the {cw

uv} in terms of a certain
composition of operators in the nil Hecke algebra, applied to 1. Along the way, we re-
prove the AJS/Billey formula; more specifically, our nonpositive formula reduces to the
positive AJS/Billey formula in the special case u = w.

Theorem 1. Let Q be a reduced word for w. Then

cw
uv = ∑

P,R⊆Q reduced
∏ P=u, ∏ R=v

∏
Q

(
αq

[q∈P,R] ∂q
[q/∈P,R] rq

)
· 1

where the exponent “[σ]” is 1 if the statement σ is true, 0 if false.

Example. Let Q = 1 2 1 so w = r1r2r1, u = r1, v = r1r2 all in S3 the Weyl group of GL3.
Then P ∈ {1−−,−− 1}, R = 1 2− as subwords of 1 2 1, in our sum

cr1r2r1
r1, r1r2 = (α1r1 r2 ∂1r1) · 1 + (r1 r2 r1) · 1 = 0 + 1

whereas if we change v to r2r1 so R = − 2 1, then

cr1r2r1
r1, r2r1 = (r1 r2 r1) · 1 + (∂1r1 r2 α1r1) · 1 = 1 + ∂1 · α2 = 0.

Example. Let Q = 1 2 3 1 2, so w = r1r2r3r1r2 = [3421] in one-line notation, and take
u = r2r3r2 = [1432], v = r1r2r1 = [3214]. Then P = −23− 2 and R ∈ {12− 1−,−2− 12}
so we have

cw
uv = (r1 α2r2 r3 r1 r2 + ∂1r1 α2r2 r3 r1 α2r2) · 1

= (α1 + α2) · 1 + ∂1(α1 + α2)(α2 + α3) · 1
= α1 + α2 + ∂1(α1 + α2)α2 · 1 + ∂1(α1 + α2)α3 · 1
= α1 + α2 + 0 + α3.

We now recall the AJS/Billey formula. The T-invariant inclusion i of T-fixed points
into G/B results in a map in equivariant cohomology:

i∗ : HT(G/B) −→
⊕

w∈W
H∗T(wB/B) ∼=

⊕
w∈W

H∗T (1.2)

and i is known to be an injection. The inclusion iw : wB/B ↪→ G/B induces the projection
to the w-term in this sum, so we may write i∗ = ⊕w∈W i∗w.

For any v, w ∈W, the point restriction Sv|w ∈ H∗T is defined by i∗w(Sv), i.e. the image of
Sv under the map i∗ in (1.2), then projected to the w summand. Since (1.2) is an inclusion,
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each Schubert class Sv is described fully by the list {i∗w(Sv) : w ∈W} of these restrictions.
Note that Sw|u 6= 0 implies uB/B ∈ B−wB/B, i.e. u ≥ w in Bruhat order, and in fact the
converse is also true. This upper triangularity of the support will be useful just below.

In the case u = w, the relation (1.1) and this upper triangularity imply that cw
uv = Sv|w.

After choosing Q a reduced word for w, the only choice of reduced word P for u is Q
itself. The formula thus simplifies to

Sv|w = ∑
R⊆Q reduced
P=Q, ∏ R=v

∏
Q

(
αq

[q∈R] rq

)
· 1,

which is just a restatement of the AJS/Billey formula.
After describing our geometric proof, we give an algebraic interpretation of Theorem 1

as a coefficient of the product of certain Schubert structure operators. Let H∗T[∂] denote the
smash product of H∗T with Z[∂], the algebra consisting of the free H∗T-module H∗T ⊗Z Z[∂]
with product given by, for p, q ∈ H∗T,

(p⊗ ∂v) · (q⊗ ∂w) = p(∂vq)⊗ ∂v∂w

and extended linearly. This smash product was first introduced by Kostant and Kumar in
[8]. Since rα acts on H∗T(G/B) equivalently to 1− α∂α, we will abuse notation and denote
by rα ∈ H∗T[∂] the operator 1− α∂α.

Let
Kα := (∂αrα⊗1⊗1) + (rα⊗∂α⊗1) + (rα⊗1⊗∂α) + (αrα⊗∂α⊗∂α)

in H∗T[∂]⊗Z[∂]⊗Z[∂]. The Schubert structure operators Kα braid and commute appro-
priately (in the simply and doubly laced cases; we conjecture but haven’t checked the
remaining G2 case), and square to 0. They act on H∗T(G/B)⊗ H∗T(G/B)⊗ H∗T(G/B), re-
sulting in another way (in Section 5) to obtain the coefficients cw

uv. It seems likely that
further analysis of them would give a purely algebraic proof of Theorem 1. As an appli-
cation of Theorem 1, we derive two recursive formulas for structure constants.

2 Ingredients of the proof

Recall that the Bott-Samelson manifold associated to a word Q = rαi1
rαi2
· · · rαi`

in simple
reflections is given by

BSQ = Pαi1
×B Pαi2

×B · · · ×B Pαi`
/B

where Pαij
is the minimal parabolic associated to the simple reflection rij and the quo-

tient results in an equivalence of elements given by (g1, g2, . . . , g`) ∼ (g1b1, b−1
1 g2b2,

. . . , b−1
`−1g`b`). We denote the resulting equivalence classes with square brackets, i.e.

[g1, g2, . . . , g`] ∈ BSQ.
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There is an action by T on the left of BSQ with 2#Q fixed points; more specifically
the set of sequences (g1, g2, . . . , g`) ∈ Pαi1

× Pαi2
× · · · × Pαi`

such that ∀j, gj ∈ {1, sj}
maps bijectively to the fixed point set (BSQ)T. In this way we index the fixed points by
subsets L ⊆ {1, . . . , `}, but instead of writing “L is the {2, 3} subword of (r1, r2, r1)” we
will write “L is the subword −r2r1 of (r1, r2, r1)”, allowing e.g. distinction between the
r1 −− and −− r1 subwords. In addition, the inclusion of the fixed points induces a map
in equivariant cohomology

H∗T(BSQ) −→
⊕
L⊆Q

H∗T (2.1)

which is known to be an injection.
For any subword L = st1 · · · stk of Q, there is a corresponding copy of BSL obtained as

a submanifold of BSQ by

BSL =
{
[g1, · · · , g`] ∈ BSQ | gj = 1 if j 6∈ L

}
.

The submanifolds BSL are T-invariant, and each BSL
◦ := BSL \ ⋃M(L BSM contains a

unique T-fixed point [g1, . . . , g`] ∈ BSL, the one we also corresponded to L.
The equivariant homology classes {[BSL] : L ⊆ Q} form a basis of HT

∗ (BSQ) as a
(free) module over H∗T. There exists a dual basis {TJ}J⊆Q of H∗T(BSQ), again defined by
the H∗T-valued Alexander pairing 〈, 〉; we compute its point restrictions in Lemma 2.

Consider the natural map πR : BSR → G/B that multiplies the terms, [g1, . . . , g`] 7→
(∏i gi)B/B. The image is B-invariant, irreducible, and closed, so necessarily some Xw

(but w may not be ∏ R). However dim BSR = dim Xw if and only if R is a reduced
word, in which case the top homology class of BSR pushes forward to that of Xw. The
pushforward sends the homology class of BSR to that of Xw in G/B whenever R is a
reduced word for w, and otherwise sends it to 0. These statements are true both for
singular homology and also, since the varieties involved are T-invariant, for equivariant
homology [9, 3].

We are interested in the transpose map in equivariant cohomology, where we have the
dual bases {TJ}, {Sw} of H∗T(BSQ), H∗T(G/B) respectively. Since (πQ)∗([BSR]) = [Xw] in
equivariant homology, the transpose statement is the lemma:

Lemma 1. Let πQ : BSQ → G/B be the product map. Then

π∗Q(Sw) = ∑
R⊆Q reduced

∏ R=w

TR.

Proof. Let [BSL], [Xw] denote the equivariant homology classes, and 〈, 〉M denote the per-
fect H∗T-valued pairing between HT

∗ (M) and H∗T(M) for M a smooth compact oriented
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T-manifold. Then

〈π∗Q(Sw), [BSL]〉BSQ = 〈Sw, (πQ)∗([BSL])〉G/B

=

{
〈Sw, [Xv]〉 if L is reduced, with product v
0 otherwise

=

{
1 if L is reduced, with product w
0 otherwise.

Since the {TR} are defined so that 〈TR, [BSL]〉 = δRL, we conclude that π∗Q(Sw)
= ∑ R⊆Q reduced

∏ R=w
TR.

We pull back the equation SuSv = ∑x∈W cx
uvSx along πQ : BSQ → G/B and simplify

the right hand side of the equation:

π∗Q(Su) π∗Q(Sv) = ∑
x∈W

cx
uv π∗Q(Sx) = ∑

x∈W
cx

uv ∑
R⊆Q reduced

∏ R=x

TR = ∑
R⊆Q reduced

c∏ R
uv TR. (2.2)

By expanding the left hand side in a similar fashion, we obtain

π∗Q(Su)π
∗
Q(Sv) = ∑

R⊆Q reduced
∏ R=u

TR ∑
S⊆Q reduced

∏ S=v

TS = ∑
R,S⊆Q reduced
∏ R=u,∏ S=v

TRTS.

Define bJ
RS to be the structure constants for the multiplication in H∗T(BSQ) in the basis

{TJ}, defined by the relationship

TRTS = ∑
J⊂Q

bJ
RSTJ .

Thus we have shown

π∗Q(Su)π
∗
Q(Sv) = ∑

R,S⊆Q reduced
∏ R=u,∏ S=v

∑
J⊂Q

bJ
RSTJ . (2.3)

Now we take Q to be reduced with product w and look at the coefficient of TQ in (2.2) and
(2.3):

cw
uv = ∑

R,S⊂Q reduced
∏ R=u,∏ S=v

bQ
RS. (2.4)

Theorem 2. Let the equivariant intersection numbers bQ
RS be defined as above. Then,

bQ
RS = ∏

q∈Q

(
α
[q∈R,S]
q ∂

[q/∈R,S]
q rq

)
· 1

where the exponent [q ∈ J] indicates inclusion of the factor only when q ∈ J.
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Theorem 1 then follows directly from Theorem 2 and (2.4).
The proof of Theorem 2 is an inductive argument based on Lemma 2 below; both

proofs will appear elsewhere.
As with Schubert classes, we define the point restriction TJ |L to be the restriction of

TJ ∈ H∗T(BSQ) under the map (2.1) to the fixed point L ⊆ Q. These restrictions can be
computed explicitly:

Lemma 2. The equivariant class TJ ∈ H∗T(BSQ) has the following restriction to a T-fixed point
L:

TJ |L =


(

∏
m∈L

α
[m∈J]
m rm

)
· 1 if J ⊆ L

0 if J 6⊆ L.

where the exponent [m ∈ J] indicates inclusion of the factor only when m ∈ J.

In the remainder we present these coefficients in terms of some apparently natural
families of operators, based on reflections and divided difference operators.

3 AJS/Billey operators

In the next two sections we interpret the AJS/Billey formula, and Theorem 1, in terms
of certain operators; our results are that these operators satisfy the various (nil-)Coxeter
relations. We hope someday to run the arguments backward and use the relations to give
an algebraic proof of Theorem 1.

Let H∗T[W] be the smash product of H∗T and the group algebra of W, i.e. the free H∗T-
module with basis W and multiplication wp := (w · p)w. For each w ∈ W, we introduce
an AJS/Billey operator

Jw := ∑
v≤w

(Sv|w)w ⊗ ∂v ∈ H∗T[W]⊗ZZ[∂] (3.1)

so in particular
Jα := Jrα = (rα⊗1) + (αrα⊗∂α).

Note that these operators are homogeneous of degree 0, where the degrees of α, rα, ∂α are
+1, 0,−1 respectively.

Theorem 3. 1. If Q is a reduced word for w, then Jw = ∏Q Jq.

2. If `(w) + `(v) = `(wv), then Jw Jv = Jwv, and this fact is essentially equivalent to the
AJS/Billey formula.

3. J2
α = 1⊗1, so in fact any word Q for w suffices in (1), and Jw Jv = Jwv for all w, v.
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Proof. 1. Let Q be a reduced word for w. Then since Sv|rα is 0 unless v = 1 or v = rα,

∏
Q

Jq = ∏
Q

∑
v≤rq

(Sv|rq)rq⊗∂q = ∏
Q

(
(rq⊗1) + (αqrq⊗∂q)

)
= ∑

R⊆Q

(
∏
Q

α
[q∈R]
q rq

)
⊗∏

R
∂r = ∑

v
∑

R⊆Q reduced
∏ R=v

(
∏
Q

α
[q∈R]
q rq

)
⊗∂v

as ∏R ∂r = 0 unless R is reduced. The AJS/Billey formula states that

∑
R⊆Q reduced

∏ R=v

∏
Q

α
[q∈R]
q rq = Sv|ww,

from which it follows that

∏
Q

Jq = ∑
v≤w

(Sv|w)w⊗∂v = Jw.

2. From (1) the equality Jw Jv = Jwv follows by concatenating words for w and v.
Conversely, the equality implies Jw = ∏Q Jq when Q is a reduced word for w, which
in turn implies the AJS/Billey formula by the calculation above.

3.

J2
α = ((rα⊗1) + (αrα⊗∂α))

2 = ((rα⊗1) + (αrα⊗∂α)) ((rα⊗1) + (αrα⊗∂α))

= (1⊗1) + (rααrα⊗∂α) + (α⊗∂α) + (αrααrα⊗∂2
α) = 1⊗1

Let (G/B)∆ denote the diagonal copy of G/B in (G/B)2, which is invariant under the
diagonal T-action on (G/B)2. The corresponding Poincaré dual class Dw0 ∈ H∗T((G/B)2)
of this submanifold can be described explicitly in terms of the Poincaré duals
Sv ∈ H∗T(G/B) to the Xv. Under the isomorphism

H∗T((G/B)2) ∼= H∗T(G/B)⊗H∗T H∗T(G/B)

we have from [4] the factorization of the diagonal

Dw0 = ∑
v

Sv⊗Sv = ∑
v

Sv⊗(∂v · S1) (3.2)

Consider its restriction along iw × Id : {wB/B} × G/B→ (G/B)2 :

Dw0 = ∑
v

Sv⊗(∂v · S1)
(iw×Id)∗7−−−−−→∑

v
(Sv|w)⊗(∂v · S1) = Jw · (S1⊗S1).

While we won’t directly use this suggestive calculation of the Sv|w, it will inform a similar
operator-theoretic calculation of the cw

uv in the next section. Towards that end we rephrase
the equation above using the equivariant Euler class e(T G/B) of the tangent bundle:

(e(T G/B)⊗1) Dw0 = ∑
w∈W

(iw × Id)∗
(

Jw · (S1⊗S1)
)

(3.3)



Schubert structure operators 9

4 Schubert structure operators

Analogously to Jα ∈ H∗T[W]⊗Z[∂], we introduce in H∗T[∂]⊗Z[∂]⊗Z[∂] elements

Kα := (∂αrα⊗1⊗1) + (rα⊗∂α⊗1) + (rα⊗1⊗∂α) + (αrα⊗∂α⊗∂α),

where rα = (1− α∂α) ∈ H∗T[∂]. These are homogeneous of degree −1. Note that rα∂α =
∂α = −∂αrα.

Lemma 3. (Kα)2 = 0.

Proof. At the end we use the equality of operators ∂αα + α∂α = 2, derivable from the
twisted Leibniz identity ∂α · (xy) = (∂α · x)y + (rα · x)(∂α · y).

(Kα)2 = (∂αrα⊗1⊗1) ((∂αrα⊗1⊗1) + (rα⊗∂α⊗1) + (rα⊗1⊗∂α) + (αrα⊗∂α⊗∂α))

+ (rα⊗∂α⊗1) ((∂αrα⊗1⊗1) + (rα⊗∂α⊗1) + (rα⊗1⊗∂α) + (αrα⊗∂α⊗∂α))

+ (rα⊗1⊗∂α) ((∂αrα⊗1⊗1) + (rα⊗∂α⊗1) + (rα⊗1⊗∂α) + (αrα⊗∂α⊗∂α))

+ (αrα⊗∂α⊗∂α) ((∂αrα⊗1⊗1) + (rα⊗∂α⊗1) + (rα⊗1⊗∂α) + (αrα⊗∂α⊗∂α))

= (∂αrα∂αrα⊗1⊗1) + (∂αrαrα⊗∂α⊗1) + (∂αrαrα⊗1⊗∂α) + (∂αrααrα⊗∂α⊗∂α)

+ (rα∂αrα⊗∂α⊗1) + (rαrα⊗∂α∂α⊗1) + (rαrα⊗∂α⊗∂α) + (rααrα⊗∂α∂α⊗∂α)

+ (rα∂αrα⊗1⊗∂α) + (rαrα⊗∂α⊗∂α) + (rαrα⊗1⊗∂α∂α) + (rααrα⊗∂α⊗∂α∂α)

+ (αrα∂αrα⊗∂α⊗∂α) + (αrαrα⊗∂α∂α⊗∂α) + (αrαrα⊗∂α⊗∂α∂α) + (αrααrα⊗∂α∂α⊗∂α∂α)

= 0 + (∂α⊗∂α⊗1) + (∂α⊗1⊗∂α)− (∂αα⊗∂α⊗∂α)− (∂α⊗∂α⊗1) + 0 + (1⊗∂α⊗∂α) + 0

− (∂α⊗1⊗∂α) + (1⊗∂α⊗∂α) + 0 + 0− (α∂α⊗∂α⊗∂α) + 0 + 0 + 0

= −(∂αα⊗∂α⊗∂α) + (1⊗∂α⊗∂α) + (1⊗∂α⊗∂α)− (α∂α⊗∂α⊗∂α)

= (2− α∂α − ∂αα)⊗∂α⊗∂α = 0.

Theorem 4. The operators Kα obey the commutation and (simply- or doubly-laced) braid re-
lations, and as such, we can define Kw := ∏Q Kq (for W simply- or doubly-laced) using any
reduced word Q for w.

Proof. The commutation operations are obvious. For braiding, we compute KαKβKα for
the simple roots in SL3.

KαKβKα =
(
− (∂α⊗1⊗1) + (rα⊗∂α⊗1) + (rα⊗1⊗∂α) + (αrα⊗∂α⊗∂α)

)(
− (∂β⊗1⊗1) + (rβ⊗∂β⊗1) + (rβ⊗1⊗∂β) + (βrβ⊗∂β⊗∂β)

)(
− (∂α⊗1⊗1) + (rα⊗∂α⊗1) + (rα⊗1⊗∂α) + (αrα⊗∂α⊗∂α)

)
We group the 43 terms (15 of which vanish by ∂2

α = 0) according to their second and third
tensor factors Using the relations

∂αα = 2− α∂α ∂ββ = 2− β∂β ∂αβ = −1 + α∂α + β∂α ∂βα = −1 + α∂β + β∂β
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we can write each matrix entry uniquely as ∑w hw∂w, hw ∈ H∗T, to compare the two opera-
tors. We left the resulting comparison of > 1000 terms to a computer. The corresponding
B2 calculation involved closer to 140, 000 terms.

We are confident that the Kα satisfy the G2 braid relation but have not done the com-
putation (having run out of memory at 3M+ terms).

As a result of Theorem 4, we may define operators dw
uv ∈ H∗T[∂] by

Kw := ∑
u,v

dw
uvw⊗ ∂u ⊗ ∂v.

The successive application of Kα for each reflection rα in a reduced word for w then results
in the statement that

dw
uvw = ∏

Q

(
α
[q∈R,S]
q ∂

[q/∈R,S]
q rq

)
As these operators applied to 1 are the terms appearing in Theorem 1, we deduce that

Kw(S1 ⊗ S1 ⊗ S1) = ∑
u,v

cw
uv ⊗ Su ⊗ Sv

which we now manipulate to get a Kα analogue of (3.3).
Let D12 ∈ H∗T

(
(G/B)3) denote the Poincaré dual of the partial diagonal {(F1, F2, F3) ∈

(G/B)3 : F1 = F2}, and D13 denote that of {(F1, F2, F3) ∈ (G/B)3 : F1 = F3} likewise.
Then D123 := D12 ∩ D13 is the class of the full diagonal. By two applications of (3.2), we
get

D123 = D12 ∩ D23 =

(
∑
u
(Su⊗Su⊗1)

)(
∑
v
(Sv⊗1⊗Sv)

)
= ∑

u,v
SuSv⊗Su⊗Sv

= ∑
u,v

(
∑
w

cw
uvSw

)
⊗Su⊗Sv = ∑

w
(Sw⊗1⊗1)∑

u,v
(cw

uv⊗Su⊗Sv)

Combined with the above equation, we get

D123 = ∑
w
(Sw⊗1⊗1) Kw(S1 ⊗ S1 ⊗ S1), (4.1)

a distinct echo of (3.3).
Question. What is a closed form for Kw, analogous to that of Jw in (3.1)?

5 Recursive formulas for structure constants

Corollary 1. Fix a reflection rα, and let s denote rαs for s ∈W. If w < w, then

cw
uv = (∂αrα) · cw

uv + [u < u]cw
u,v + [v < v]cw

u,v + [u < u][v < v]αcw
u,v
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where [s < s] indicates 1 if s < s, and 0 otherwise (i.e. s > s).
Similarly, let s denote srα. If w < w, then

cw
uv = [u < u]

(
cw

u,v
)

+ [v < v]
(
cw

u,v
)

+ [u < u][v < v]
(
dw

u,v · α
)

Proof. Suppose w = rαrα1 · · · rαk is a reduced word expression for w. Then Kw = KαKw,
where w = rαw. In particular

∑
u,v

cw
uv ⊗ Su ⊗ Sv = Kw(S1 ⊗ S1 ⊗ S1) =

(
Kα ∑

s,t
dw

stw⊗ ∂s ⊗ ∂t

)
(S1 ⊗ S1 ⊗ S1)

= ∑
s,t

(
∂αrαdw

stw⊗ ∂s ⊗ ∂t + rαdw
stw⊗ ∂α∂s ⊗ ∂t + rαdw

stw⊗ ∂s ⊗ ∂α∂t

+ αrαdw
stw⊗ ∂α∂s ⊗ ∂α∂t

)
(S1 ⊗ S1 ⊗ S1)

The term cw
uv ⊗ Su ⊗ Sv on the left is obtained as the image of S1 ⊗ S1 ⊗ S1 under those tensors

with terms ∂u ⊗ ∂v in the second and third positions. Note that ∂α∂s = ∂s′ exactly when rαs = s′

and `(s′) = `(s) + 1. If rαs = s′ but `(s′) 6= `(s) + 1, then ∂α∂s = 0. Let v = rαv and u = rαu. By
matching the terms,

cw
uv ⊗ Su ⊗ Sv =

(
∂αrαdw

uvw⊗ ∂u ⊗ ∂v + rαdw
u,vw⊗ ∂α∂u ⊗ ∂v + rαdw

u,vw⊗ ∂u ⊗ ∂α∂v

+ α∂αdw
u,vw⊗ ∂α∂u ⊗ ∂α∂v

)
(S1 ⊗ S1 ⊗ S1)

=
(
∂αrαdw

uvw⊗ ∂u ⊗ ∂v + [u < u] rαdw
u,vw⊗ ∂u ⊗ ∂v + [v < v] rαdw

u,vw⊗ ∂u ⊗ ∂v

+ [u < u][v < v] αrαdw
u,vw⊗ ∂u ⊗ ∂v

)
(S1 ⊗ S1 ⊗ S1).

We evaluate the expression on the right and isolate the first tensor to obtain

cw
uv = (∂αrαdw

uvw) · 1 + [u < u] (rαdw
u,vw) · 1 + [v < v] (rαdw

u,vw) · 1 + [u < u][v < v] (αrαdw
u,vw) · 1

= (∂αrαdw
uv) · 1 + [u < u]cw

u,v + [v < v]cw
u,v + [u < u][v < v]αcw

u,v.

A similar proof holds for the second recursion.

We finish with an example illustrating the use of the first recursive formula.

Example 1. We compute cw
u,v in the S3 case, with u = [312], v = [132] and w = w0 = [321]

in 1-line notation. First we use w = r1w. Then u = r1u 6< u and v = r1v 6< v. The three
latter terms in the sum of the first recursion relationship drop out and we obtain

c[321]
[312],[132] = cw

uv = ∂1r1 · cw
uv = ∂1r1 · c

[312]
[312],[132]

We set about to compute cw
uv. Note that r2r1 is a reduced word for w. There is only one

subword for u, mainly r2r1, and one subword for v, mainly r2−. Therefore cw
uv = α2r2r1 · 1

and we obtain

cw
uv = ∂1r1α2r2r1 · 1 = ∂1(r1(α2)) = ∂1(α1 + α2) = 1.
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As a check on this result, we consider the recursion with r2 instead of r1, so w = r2w =
[231]. Then u = r2u = [213] < u and v = r2v = 1 ≤ v. In principle all four terms are
nonzero:

cw
uv = ∂2r2 · cw

uv + cw
u,v + cw

u,v + αcw
u,v.

However u 6≤ w, so the first and third terms cw
uv and cw

u,v vanish. The last term cw
u,v =

c[231]
[213],1 = 0 because S[213]S1 = S[213]. Thus cw

uv = cw
u,v = c[231]

[213],[132] is the only remaining
nonzero term. This smaller structure constant is easily seen to be 1, for instance by another
application of same inductive formula with r1[231] = [132] < [231]. Note that r1[132] 6<
[132] which forces two terms in the recursive sum to be 0. We obtain

c[231]
[213],[132] = ∂1r1 · c

[132]
[213],[132] + c[132]

1,[132] = 0 + 1

where the last two equalities follow from [213] 6≤ [132] and S1S[132] = S[132].
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