Séminaire Lotharingien de Combinatoire **82B** (2019) Article #90, 12 pp. Proceedings of the 31st Conference on Formal Power Series and Algebraic Combinatorics (Ljubljana)

Schubert structure operators

Rebecca Goldin 1* and Allen $Knutson^{2\dagger}$

¹George Mason University, Fairfax, VA 22030, USA ²Cornell University, Ithaca, NY 14853, USA

Abstract. We use operators to reformulate the Andersen-Jantzen-Soergel/Billey formula for the point restrictions of equivariant Schubert classes of the cohomology of G/B. We introduce new operators whose coefficients compute Schubert structure constants (in a manifestly polynomial, but not positive, way), resulting in a formula much like and generalizing the positive AJS/Billey formula. Our proof involves Bott-Samelson manifolds, and in particular, the cohomology basis dual to the homology basis of classes of sub-Bott-Samelson manifolds.

Keywords: Schubert calculus, nil Hecke algebra

Contents

1	Introduction and the main theorem	1
2	Ingredients of the proof	4
3	AJS/Billey operators	7
4	Schubert structure operators	9
5	Recursive formulas for structure constants	10

1 Introduction and the main theorem

Fix a complex reductive Lie group *G* and maximal torus $T \le G$, for example $G = GL_n(\mathbb{C})$ and *T* the diagonal matrices. Fix opposed Borel subgroups *B*, *B*₋ with intersection *T*. This choice results in a length function ℓ on W = N(T)/T and a set $\{\alpha_i\}$ of simple roots. The quotient *G*/*B* is the associated **flag manifold** and the left *T*-action on *G*/*B* has isolated fixed points $\{wB/B : w \in W\}$, where W := N(T)/T is the **Weyl group**.

In the case that $G = GL_n(\mathbb{C})$ and B = upper-triangular matrices, G/B is (uniquely) *G*-isomorphic to the set of complete flag manifolds $Fl(\mathbb{C}^n)$. The fixed points N(T)B/B

^{*}rgoldin@gmu.edu

[†]allenk@math.cornell.edu

of the *T*-action correspond, under that isomorphism, to coordinate flags in $Fl(\mathbb{C}^n)$. In particular, there are n! such flags, corresponding to elements in the Weyl group $W \cong S_n$, the symmetric group on n letters.

We denote by H_T^* the *T*-equivariant cohomology of a point with coefficients in \mathbb{Z} , and recall that H_T^* is the polynomial ring $Sym(T^*)$ over \mathbb{Z} in the weight lattice $T^* := Hom(T, \mathbb{C}^{\times})$. The equivariant cohomology $H_T^*(G/B)$ is a free H_T^* -module with a basis given by Schubert classes (recalled below). Our references for equivariant (co)homology are [3, 8, 9].

Let $\mathbb{Z}[\partial]$ denote the **nil Hecke algebra** with \mathbb{Z} -basis { $\partial_w : w \in W$ }, whose products are defined by

$$\partial_{w}\partial_{v} := \begin{cases} \partial_{wv} & \text{if } \ell(vw) = \ell(v) + \ell(w) \\ 0 & \text{otherwise, i.e. if } \ell(vw) < \ell(v) + \ell(w). \end{cases}$$

These $\{\partial_w\}$ act on the polynomial ring H_T^* as follows: for each root α with simple reflection r_{α} , the **divided difference operator** $\partial_{r_{\alpha}} := \partial_{\alpha}$ is defined by

$$\partial_{\alpha} \cdot f := \frac{f - r_{\alpha} f}{\alpha}$$

The nil Hecke algebra acts on the first factor in the tensor product $H_T^* \otimes_{\mathbb{Z}} H_T^*$, and this action descends to the quotient $H_T^* \otimes_{(H_T^*)^W} H_T^*$. This latter ring has a well-defined map $\lambda \otimes \mu \mapsto \lambda c_1(\mathcal{L}_{\mu}) \in H_T^*(G/B)$ called the **equivariant Borel presentation** of $H_T^*(G/B)$, which is a rational (and for $G = GL_n$, an integral) isomorphism. (Here \mathcal{L}_{μ} is the Borel-Weil line bundle $G \times^B \mathbb{C}_{\mu}$, where \mathbb{C}_{μ} is the 1-dimensional representation of B, neither of which will be using again.)

Since our interest is in cohomology not homology, we privilege codimension over dimension and define $X^v := \overline{BvB}/B \subseteq G/B$ to be an **opposite Schubert variety** with equivariant homology class $[X^v] \in H^T_*(G/B)$. As these $\{[X^v]\}$ form an H^*_T -basis and G/B enjoys equivariant Poincaré duality, we can define the dual basis $\{S_w \in H^*_T(G/B)\}$ of **Schubert classes** by $\langle S_w, [X^v] \rangle = \delta_{wv}$. Here \langle , \rangle denotes the Alexander pairing, of (equivariant) cap-product followed by pushforward to a point. In fact S_w is the Poincaré dual to the subvariety $\overline{B_wB}/B$.

The nil Hecke algebra $\mathbb{Z}[\partial]$ acts on the basis $\{S_v\}_{v \in W}$: in particular, $\partial_w \cdot S_{w_0} = S_{ww_0}$ for each $w \in W$ (since we act on the left factor in the Borel presentation), though we won't use this recursion.

The structure constants $c_{uv}^w \in H_T^*$ are defined by the relation in $H_T^*(G/B)$

$$S_u S_v = \sum_w c^w_{uv} S_w \tag{1.1}$$

These polynomials c_{uv}^{w} are known to be positive in the following sense [6]: when written (uniquely) as a sum of monomials in the simple roots { α_i }, each monomial has a non-negative coefficient. It is a very famous problem to compute these in a manifestly positive

way, solved in special cases such as $u, v \in W^P$ where G/P is a Grassmannian or 2-step flag manifold [7, 5]. Another solved case is u = w, in which case c_{wv}^w is computed positively by the AJS/Billey formula [1, 2] (recalled below) for the point restrictions $S_w|_v = c_{wv}^v$ of Schubert classes. In this abstract, we prove a formula for the $\{c_{uv}^w\}$ in terms of a certain composition of operators in the nil Hecke algebra, applied to 1. Along the way, we reprove the AJS/Billey formula; more specifically, our nonpositive formula reduces to the positive AJS/Billey formula in the special case u = w.

Theorem 1. Let Q be a reduced word for w. Then

$$c_{uv}^{w} = \sum_{\substack{P,R \subseteq Q \text{ reduced} \\ \prod P=u, \ \prod R=v}} \prod_{Q} \left(\alpha_q \left[q \in P, R \right] \partial_q \left[q \notin P, R \right] r_q \right) \cdot 1$$

where the exponent " $[\sigma]$ " is 1 if the statement σ is true, 0 if false.

Example. Let Q = 121 so $w = r_1r_2r_1$, $u = r_1$, $v = r_1r_2$ all in S_3 the Weyl group of GL_3 . Then $P \in \{1 - -, -1\}$, R = 12 – as subwords of 121, in our sum

$$c_{r_1, r_1 r_2}^{r_1 r_2 r_1} = (\alpha_1 r_1 r_2 \partial_1 r_1) \cdot 1 + (r_1 r_2 r_1) \cdot 1 = 0 + 1$$

whereas if we change *v* to r_2r_1 so R = -21, then

$$c_{r_1, r_2 r_1}^{r_1 r_2 r_1} = (r_1 r_2 r_1) \cdot 1 + (\partial_1 r_1 r_2 \alpha_1 r_1) \cdot 1 = 1 + \partial_1 \cdot \alpha_2 = 0.$$

Example. Let Q = 12312, so $w = r_1r_2r_3r_1r_2 = [3421]$ in one-line notation, and take $u = r_2r_3r_2 = [1432]$, $v = r_1r_2r_1 = [3214]$. Then P = -23 - 2 and $R \in \{12 - 1 - , -2 - 12\}$ so we have

$$c_{uv}^{w} = (r_1 \,\alpha_2 r_2 \,r_3 \,r_1 \,r_2 + \partial_1 r_1 \,\alpha_2 r_2 \,r_3 \,r_1 \,\alpha_2 r_2) \cdot 1$$

= $(\alpha_1 + \alpha_2) \cdot 1 + \partial_1 (\alpha_1 + \alpha_2) (\alpha_2 + \alpha_3) \cdot 1$
= $\alpha_1 + \alpha_2 + \partial_1 (\alpha_1 + \alpha_2) \alpha_2 \cdot 1 + \partial_1 (\alpha_1 + \alpha_2) \alpha_3 \cdot 1$
= $\alpha_1 + \alpha_2 + 0 + \alpha_3$.

We now recall the AJS/Billey formula. The *T*-invariant inclusion i of *T*-fixed points into *G*/*B* results in a map in equivariant cohomology:

$$i^*: H_T(G/B) \longrightarrow \bigoplus_{w \in W} H_T^*(wB/B) \cong \bigoplus_{w \in W} H_T^*$$
 (1.2)

and *i* is known to be an *injection*. The inclusion $i_w : wB/B \hookrightarrow G/B$ induces the projection to the *w*-term in this sum, so we may write $i^* = \bigoplus_{w \in W} i_w^*$.

For any $v, w \in W$, the **point restriction** $S_v|_w \in H_T^*$ is defined by $i_w^*(S_v)$, i.e. the image of S_v under the map i^* in (1.2), then projected to the *w* summand. Since (1.2) is an inclusion,

each Schubert class S_v is described fully by the list $\{i_w^*(S_v) : w \in W\}$ of these restrictions. Note that $S_w|_u \neq 0$ implies $uB/B \in \overline{B_-wB}/B$, i.e. $u \geq w$ in **Bruhat order**, and in fact the converse is also true. This **upper triangularity of the support** will be useful just below.

In the case u = w, the relation (1.1) and this upper triangularity imply that $c_{uv}^w = S_v|_w$. After choosing Q a reduced word for w, the only choice of reduced word P for u is Q itself. The formula thus simplifies to

$$S_v|_w = \sum_{\substack{R \subseteq Q \text{ reduced} \ P=Q, \prod R=v}} \prod_Q \left(\alpha_q^{[q \in R]} r_q \right) \cdot 1,$$

which is just a restatement of the AJS/Billey formula.

After describing our geometric proof, we give an algebraic interpretation of Theorem 1 as a coefficient of the product of certain *Schubert structure operators*. Let $H_T^*[\partial]$ denote the smash product of H_T^* with $\mathbb{Z}[\partial]$, the algebra consisting of the free H_T^* -module $H_T^* \otimes_{\mathbb{Z}} \mathbb{Z}[\partial]$ with product given by, for $p, q \in H_T^*$,

$$(p \otimes \partial_v) \cdot (q \otimes \partial_w) = p(\partial_v q) \otimes \partial_v \partial_w$$

and extended linearly. This smash product was first introduced by Kostant and Kumar in [8]. Since r_{α} acts on $H_T^*(G/B)$ equivalently to $1 - \alpha \partial_{\alpha}$, we will abuse notation and denote by $r_{\alpha} \in H_T^*[\partial]$ the operator $1 - \alpha \partial_{\alpha}$.

Let

$$K^{\alpha} := (\partial_{\alpha} r_{\alpha} \otimes 1 \otimes 1) + (r_{\alpha} \otimes \partial_{\alpha} \otimes 1) + (r_{\alpha} \otimes 1 \otimes \partial_{\alpha}) + (\alpha r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha})$$

in $H_T^*[\partial] \otimes \mathbb{Z}[\partial] \otimes \mathbb{Z}[\partial]$. The **Schubert structure operators** K^{α} braid and commute appropriately (in the simply and doubly laced cases; we conjecture but haven't checked the remaining G_2 case), and square to 0. They act on $H_T^*(G/B) \otimes H_T^*(G/B) \otimes H_T^*(G/B)$, resulting in another way (in Section 5) to obtain the coefficients c_{uv}^{w} . It seems likely that further analysis of them would give a purely algebraic proof of Theorem 1. As an application of Theorem 1, we derive two recursive formulas for structure constants.

2 Ingredients of the proof

Recall that the **Bott-Samelson manifold** associated to a word $Q = r_{\alpha_{i_1}} r_{\alpha_{i_2}} \cdots r_{\alpha_{i_\ell}}$ in simple reflections is given by

$$BS^{Q} = P_{\alpha_{i_{1}}} \times^{B} P_{\alpha_{i_{2}}} \times^{B} \cdots \times^{B} P_{\alpha_{i_{\ell}}} / B$$

where $P_{\alpha_{i_j}}$ is the minimal parabolic associated to the simple reflection r_{i_j} and the quotient results in an equivalence of elements given by $(g_1, g_2, \ldots, g_\ell) \sim (g_1 b_1, b_1^{-1} g_2 b_2, \ldots, b_{\ell-1}^{-1} g_\ell b_\ell)$. We denote the resulting equivalence classes with square brackets, i.e. $[g_1, g_2, \ldots, g_\ell] \in BS^Q$.

There is an action by *T* on the left of BS^Q with $2^{\#Q}$ fixed points; more specifically the set of sequences $(g_1, g_2, \ldots, g_\ell) \in P_{\alpha_{i_1}} \times P_{\alpha_{i_2}} \times \cdots \times P_{\alpha_{i_\ell}}$ such that $\forall j, g_j \in \{1, s_j\}$ maps bijectively to the fixed point set $(BS^Q)^T$. In this way we index the fixed points by subsets $L \subseteq \{1, \ldots, \ell\}$, but instead of writing "*L* is the $\{2, 3\}$ subword of (r_1, r_2, r_1) " we will write "*L* is the subword $-r_2r_1$ of (r_1, r_2, r_1) ", allowing e.g. distinction between the $r_1 - -$ and $- -r_1$ subwords. In addition, the inclusion of the fixed points induces a map in equivariant cohomology

$$H_T^*(BS^Q) \longrightarrow \bigoplus_{L \subseteq Q} H_T^*$$
 (2.1)

which is known to be an injection.

For any subword $L = s_{t_1} \cdots s_{t_k}$ of Q, there is a corresponding copy of BS^L obtained as a submanifold of BS^Q by

$$BS^L = \left\{ [g_1, \cdots, g_\ell] \in BS^Q \mid g_j = 1 \text{ if } j \notin L \right\}.$$

The submanifolds BS^L are *T*-invariant, and each $BS_{\circ}^L := BS^L \setminus \bigcup_{M \subsetneq L} BS^M$ contains a unique *T*-fixed point $[g_1, \ldots, g_\ell] \in BS^L$, the one we also corresponded to *L*.

The equivariant homology classes $\{[BS^L] : L \subseteq Q\}$ form a basis of $H^T_*(BS^Q)$ as a (free) module over H^*_T . There exists a dual basis $\{T_J\}_{J\subseteq Q}$ of $H^*_T(BS^Q)$, again defined by the H^*_T -valued Alexander pairing \langle , \rangle ; we compute its point restrictions in Lemma 2.

Consider the natural map $\pi_R : BS^R \to G/B$ that multiplies the terms, $[g_1, \ldots, g_\ell] \mapsto (\prod_i g_i)B/B$. The image is *B*-invariant, irreducible, and closed, so necessarily some X^w (but *w* may not be $\prod R$). However dim $BS^R = \dim X^w$ if and only if *R* is a reduced word, in which case the top homology class of BS^R pushes forward to that of X^w . The pushforward sends the homology class of BS^R to that of X^w in G/B whenever *R* is a reduced word for *w*, and otherwise sends it to 0. These statements are true both for singular homology and also, since the varieties involved are *T*-invariant, for equivariant homology [9, 3].

We are interested in the transpose map in equivariant cohomology, where we have the dual bases $\{T_J\}$, $\{S_w\}$ of $H_T^*(BS^Q)$, $H_T^*(G/B)$ respectively. Since $(\pi_Q)_*([BS^R]) = [X^w]$ in equivariant homology, the transpose statement is the lemma:

Lemma 1. Let $\pi_O : BS^Q \to G/B$ be the product map. Then

$$\pi_Q^*(S_w) = \sum_{\substack{R \subseteq Q \ reduced \ \prod R = w}} T_R.$$

Proof. Let $[BS^L]$, $[X^w]$ denote the equivariant homology classes, and \langle, \rangle_M denote the perfect H_T^* -valued pairing between $H_*^T(M)$ and $H_T^*(M)$ for M a smooth compact oriented

T-manifold. Then

$$\langle \pi_{Q}^{*}(S_{w}), [BS^{L}] \rangle_{BS^{Q}} = \langle S_{w}, (\pi_{Q})_{*}([BS^{L}]) \rangle_{G/B}$$

$$= \begin{cases} \langle S_{w}, [X^{v}] \rangle & \text{if } L \text{ is reduced, with product } v \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} 1 & \text{if } L \text{ is reduced, with product } w \\ 0 & \text{otherwise.} \end{cases}$$

Since the $\{T_R\}$ are defined so that $\langle T_R, [BS^L] \rangle = \delta_{RL}$, we conclude that $\pi_Q^*(S_w) = \sum_{\substack{R \subseteq Q \text{ reduced} \\ \prod R = w}} T_R$.

We pull back the equation $S_u S_v = \sum_{x \in W} c_{uv}^x S_x$ along $\pi_Q : BS^Q \to G/B$ and simplify the right hand side of the equation:

$$\pi_Q^*(S_u) \ \pi_Q^*(S_v) = \sum_{x \in W} c_{uv}^x \ \pi_Q^*(S_x) = \sum_{x \in W} c_{uv}^x \ \sum_{\substack{R \subseteq Q \text{ reduced} \\ \prod R = x}} T_R = \sum_{R \subseteq Q \text{ reduced}} c_{uv}^{\prod R} \ T_R.$$
(2.2)

By expanding the left hand side in a similar fashion, we obtain

$$\pi_Q^*(S_u)\pi_Q^*(S_v) = \sum_{\substack{R \subseteq Q \text{ reduced} \\ \prod R = u}} T_R \sum_{\substack{S \subseteq Q \text{ reduced} \\ \prod S = v}} T_S = \sum_{\substack{R,S \subseteq Q \text{ reduced} \\ \prod R = u, \prod S = v}} T_R T_S$$

Define b_{RS}^{J} to be the structure constants for the multiplication in $H_{T}^{*}(BS^{Q})$ in the basis $\{T_{I}\}$, defined by the relationship

$$T_R T_S = \sum_{J \subset Q} b_{RS}^J T_J$$

Thus we have shown

$$\pi_Q^*(S_u)\pi_Q^*(S_v) = \sum_{\substack{R,S \subseteq Q \text{ reduced} \\ \prod R = u, \prod S = v}} \sum_{J \subset Q} b_{RS}^J T_J.$$
(2.3)

Now we take *Q* to be reduced with product *w* and look at the coefficient of T_Q in (2.2) and (2.3):

$$c_{uv}^{w} = \sum_{\substack{R,S \subset Q \text{ reduced} \\ \prod R = u, \prod S = v}} b_{RS}^{Q}.$$
(2.4)

Theorem 2. Let the equivariant intersection numbers b_{RS}^Q be defined as above. Then,

$$b_{RS}^{Q} = \prod_{q \in Q} \left(\alpha_{q}^{[q \in R, S]} \partial_{q}^{[q \notin R, S]} r_{q} \right) \cdot 1$$

where the exponent $[q \in J]$ indicates inclusion of the factor only when $q \in J$.

Theorem 1 then follows directly from Theorem 2 and (2.4).

The proof of Theorem 2 is an inductive argument based on Lemma 2 below; both proofs will appear elsewhere.

As with Schubert classes, we define the point restriction $T_J|_L$ to be the restriction of $T_J \in H_T^*(BS^Q)$ under the map (2.1) to the fixed point $L \subseteq Q$. These restrictions can be computed explicitly:

Lemma 2. The equivariant class $T_J \in H_T^*(BS^Q)$ has the following restriction to a T-fixed point *L*:

$$T_J|_L = \begin{cases} \left(\prod_{m \in L} \alpha_m^{[m \in J]} r_m\right) \cdot 1 & \text{if } J \subseteq L \\ 0 & \text{if } J \not\subseteq L. \end{cases}$$

where the exponent $[m \in J]$ indicates inclusion of the factor only when $m \in J$.

In the remainder we present these coefficients in terms of some apparently natural families of operators, based on reflections and divided difference operators.

3 AJS/Billey operators

In the next two sections we interpret the AJS/Billey formula, and Theorem 1, in terms of certain operators; our results are that these operators satisfy the various (nil-)Coxeter relations. We hope someday to run the arguments backward and use the relations to give an algebraic proof of Theorem 1.

Let $H_T^*[W]$ be the smash product of H_T^* and the group algebra of W, i.e. the free H_T^* module with basis W and multiplication $wp := (w \cdot p)w$. For each $w \in W$, we introduce an **AJS/Billey operator**

$$J_{w} := \sum_{v \le w} (S_{v}|_{w}) w \otimes \partial_{v} \quad \in H_{T}^{*}[W] \otimes_{\mathbb{Z}} \mathbb{Z}[\partial]$$

$$(3.1)$$

so in particular

 $J_{\alpha} := J_{r_{\alpha}} = (r_{\alpha} \otimes 1) + (\alpha r_{\alpha} \otimes \partial_{\alpha}).$

Note that these operators are homogeneous of degree 0, where the degrees of α , r_{α} , ∂_{α} are +1, 0, -1 respectively.

Theorem 3. 1. If Q is a reduced word for w, then $J_w = \prod_Q J_q$.

- 2. If $\ell(w) + \ell(v) = \ell(wv)$, then $J_w J_v = J_{wv}$, and this fact is essentially equivalent to the *AJS/Billey formula*.
- 3. $J_{\alpha}^2 = 1 \otimes 1$, so in fact any word Q for w suffices in (1), and $J_w J_v = J_{wv}$ for all w, v.

Proof. 1. Let *Q* be a reduced word for *w*. Then since $S_v|_{r_\alpha}$ is 0 unless v = 1 or $v = r_\alpha$,

$$\prod_{Q} J_{q} = \prod_{Q} \sum_{v \le r_{q}} (S_{v}|_{r_{q}}) r_{q} \otimes \partial_{q} = \prod_{Q} \left((r_{q} \otimes 1) + (\alpha_{q} r_{q} \otimes \partial_{q}) \right)$$
$$= \sum_{R \subseteq Q} \left(\prod_{Q} \alpha_{q}^{[q \in R]} r_{q} \right) \otimes \prod_{R} \partial_{r} = \sum_{v} \sum_{\substack{R \subseteq Q \text{ reduced} \\ \prod R = v}} \left(\prod_{Q} \alpha_{q}^{[q \in R]} r_{q} \right) \otimes \partial_{v}$$

as $\prod_R \partial_r = 0$ unless *R* is reduced. The AJS/Billey formula states that

$$\sum_{\substack{R \subseteq Q \text{ reduced} \\ \prod R = v}} \prod_{Q} \alpha_q^{[q \in R]} r_q = S_v|_w w,$$

from which it follows that

$$\prod_{Q} J_{q} = \sum_{v \leq w} (S_{v}|_{w}) w \otimes \partial_{v} = J_{w}.$$

2. From (1) the equality $J_w J_v = J_{wv}$ follows by concatenating words for w and v. Conversely, the equality implies $J_w = \prod_Q J_q$ when Q is a reduced word for w, which in turn implies the AJS/Billey formula by the calculation above.

$$J_{\alpha}^{2} = ((r_{\alpha} \otimes 1) + (\alpha r_{\alpha} \otimes \partial_{\alpha}))^{2} = ((r_{\alpha} \otimes 1) + (\alpha r_{\alpha} \otimes \partial_{\alpha})) ((r_{\alpha} \otimes 1) + (\alpha r_{\alpha} \otimes \partial_{\alpha}))$$
$$= (1 \otimes 1) + (r_{\alpha} \alpha r_{\alpha} \otimes \partial_{\alpha}) + (\alpha \otimes \partial_{\alpha}) + (\alpha r_{\alpha} \alpha r_{\alpha} \otimes \partial_{\alpha}^{2}) = 1 \otimes 1$$

Let $(G/B)_{\Delta}$ denote the diagonal copy of G/B in $(G/B)^2$, which is invariant under the diagonal *T*-action on $(G/B)^2$. The corresponding Poincaré dual class $D^{w_0} \in H_T^*((G/B)^2)$ of this submanifold can be described explicitly in terms of the Poincaré duals $S^v \in H_T^*(G/B)$ to the X^v . Under the isomorphism

$$H_T^*((G/B)^2) \cong H_T^*(G/B) \otimes_{H_T^*} H_T^*(G/B)$$

we have from [4] the factorization of the diagonal

$$D^{w_0} = \sum_{v} S_v \otimes S^v \quad = \sum_{v} S_v \otimes (\partial_v \cdot S^1) \tag{3.2}$$

Consider its restriction along $i_w \times Id$: $\{wB/B\} \times G/B \to (G/B)^2$:

$$D^{w_0} = \sum_{v} S_v \otimes (\partial_v \cdot S^1) \xrightarrow{(i_w \times Id)^*} \sum_{v} (S_v|_w) \otimes (\partial_v \cdot S^1) = J_w \cdot (S_1 \otimes S^1).$$

While we won't directly use this suggestive calculation of the $S_v|_w$, it will inform a similar operator-theoretic calculation of the c_{uv}^w in the next section. Towards that end we rephrase the equation above using the equivariant Euler class e(TG/B) of the tangent bundle:

$$(e(TG/B)\otimes 1) \ D^{w_0} = \sum_{w \in W} (i_w \times Id)_* (J_w \cdot (S_1 \otimes S^1))$$
(3.3)

4 Schubert structure operators

Analogously to $J_{\alpha} \in H_T^*[W] \otimes \mathbb{Z}[\partial]$, we introduce in $H_T^*[\partial] \otimes \mathbb{Z}[\partial] \otimes \mathbb{Z}[\partial]$ elements

$$K^{\alpha} := (\partial_{\alpha} r_{\alpha} \otimes 1 \otimes 1) + (r_{\alpha} \otimes \partial_{\alpha} \otimes 1) + (r_{\alpha} \otimes 1 \otimes \partial_{\alpha}) + (\alpha r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}),$$

where $r_{\alpha} = (1 - \alpha \partial_{\alpha}) \in H_T^*[\partial]$. These are homogeneous of degree -1. Note that $r_{\alpha}\partial_{\alpha} = \partial_{\alpha} = -\partial_{\alpha}r_{\alpha}$.

Lemma 3. $(K^{\alpha})^2 = 0.$

Proof. At the end we use the equality of operators $\partial_{\alpha} \alpha + \alpha \partial_{\alpha} = 2$, derivable from the twisted Leibniz identity $\partial_{\alpha} \cdot (xy) = (\partial_{\alpha} \cdot x)y + (r_{\alpha} \cdot x)(\partial_{\alpha} \cdot y)$.

$$(K^{\alpha})^{2} = (\partial_{\alpha}r_{\alpha}\otimes1\otimes1)((\partial_{\alpha}r_{\alpha}\otimes1\otimes1) + (r_{\alpha}\otimes\partial_{\alpha}\otimes1) + (r_{\alpha}\otimes1\otimes\partial_{\alpha}) + (\alpha r_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha})) + (r_{\alpha}\otimes\partial_{\alpha}\otimes1)((\partial_{\alpha}r_{\alpha}\otimes1\otimes1) + (r_{\alpha}\otimes\partial_{\alpha}\otimes1) + (r_{\alpha}\otimes1\otimes\partial_{\alpha}) + (\alpha r_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha})) + (r_{\alpha}\otimes1\otimes\partial_{\alpha})((\partial_{\alpha}r_{\alpha}\otimes1\otimes1) + (r_{\alpha}\otimes\partial_{\alpha}\otimes1) + (r_{\alpha}\otimes1\otimes\partial_{\alpha}) + (\alpha r_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha})) + (\alpha r_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha})((\partial_{\alpha}r_{\alpha}\otimes1\otimes1) + (r_{\alpha}\otimes\partial_{\alpha}\otimes1) + (r_{\alpha}\otimes1\otimes\partial_{\alpha}) + (\alpha r_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha})) = (\partial_{\alpha}r_{\alpha}\partial_{\alpha}r_{\alpha}\otimes1\otimes1) + (\partial_{\alpha}r_{\alpha}r_{\alpha}\otimes\partial_{\alpha}\otimes1) + (\partial_{\alpha}r_{\alpha}r_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha}) + (r_{\alpha}\partial_{\alpha}r_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha}) + (r_{\alpha}r_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha}) + (r_{\alpha}\partial_{\alpha}r_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha}) + (r_{\alpha}\partial_{\alpha}r_{\alpha}\otimes1\otimes\partial_{\alpha}) + (r_{\alpha}r_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha}) + (r_{\alpha}r_{\alpha}\otimes1\otimes\partial_{\alpha}\partial_{\alpha}\otimes\partial_{\alpha}) + (\alpha r_{\alpha}\alpha r_{\alpha}\otimes\partial_{\alpha}\partial_{\alpha}\otimes\partial_{\alpha}) + (\alpha r_{\alpha}\partial_{\alpha}r_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha}) + (\alpha r_{\alpha}r_{\alpha}\otimes\partial_{\alpha}\partial_{\alpha}\otimes\partial_{\alpha}) + (\alpha r_{\alpha}\alpha r_{\alpha}\otimes\partial_{\alpha}\partial_{\alpha}\partial_{\alpha}\otimes\partial_{\alpha}) + (\alpha r_{\alpha}\partial_{\alpha}\sigma_{\alpha}\otimes\partial_{\alpha}) + (\alpha r_{\alpha}r_{\alpha}\otimes\partial_{\alpha}\partial_{\alpha}\otimes\partial_{\alpha}) + (\alpha r_{\alpha}\alpha r_{\alpha}\otimes\partial_{\alpha}\partial_{\alpha}\partial_{\alpha}) + (\alpha r_{\alpha}\partial_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha}) + (\alpha r_{\alpha}r_{\alpha}\otimes\partial_{\alpha}\partial_{\alpha}\otimes\partial_{\alpha}) + (\alpha r_{\alpha}\alpha r_{\alpha}\otimes\partial_{\alpha}\partial_{\alpha}\partial_{\alpha}\otimes\partial_{\alpha}) = 0 + (\partial_{\alpha}\otimes\partial_{\alpha}\otimes1) + (\partial_{\alpha}\otimes1\otimes\partial_{\alpha}) - (\partial_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha}) + (0 + 0 + 0) = -(\partial_{\alpha}\alpha\otimes\partial_{\alpha}\otimes\partial_{\alpha}) + (1\otimes\partial_{\alpha}\otimes\partial_{\alpha}) + (1\otimes\partial_{\alpha}\otimes\partial_{\alpha}) - (\alpha\partial_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha}) = (2 - \alpha\partial_{\alpha} - \partial_{\alpha}\alpha)\otimes\partial_{\alpha}\otimes\partial_{\alpha} = 0.$$

Theorem 4. The operators K^{α} obey the commutation and (simply- or doubly-laced) braid relations, and as such, we can define $K^{w} := \prod_{Q} K^{q}$ (for W simply- or doubly-laced) using any reduced word Q for w.

Proof. The commutation operations are obvious. For braiding, we compute $K^{\alpha}K^{\beta}K^{\alpha}$ for the simple roots in *SL*₃.

$$K^{\alpha}K^{\beta}K^{\alpha} = \left(-\left(\partial_{\alpha}\otimes1\otimes1\right) + \left(r_{\alpha}\otimes\partial_{\alpha}\otimes1\right) + \left(r_{\alpha}\otimes1\otimes\partial_{\alpha}\right) + \left(\alpha r_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha}\right)\right) \\ \left(-\left(\partial_{\beta}\otimes1\otimes1\right) + \left(r_{\beta}\otimes\partial_{\beta}\otimes1\right) + \left(r_{\beta}\otimes1\otimes\partial_{\beta}\right) + \left(\beta r_{\beta}\otimes\partial_{\beta}\otimes\partial_{\beta}\right)\right) \\ \left(-\left(\partial_{\alpha}\otimes1\otimes1\right) + \left(r_{\alpha}\otimes\partial_{\alpha}\otimes1\right) + \left(r_{\alpha}\otimes1\otimes\partial_{\alpha}\right) + \left(\alpha r_{\alpha}\otimes\partial_{\alpha}\otimes\partial_{\alpha}\right)\right)\right)$$

We group the 4^3 terms (15 of which vanish by $\partial_{\alpha}^2 = 0$) according to their second and third tensor factors Using the relations

$$\partial_{\alpha} \alpha = 2 - \alpha \partial_{\alpha} \qquad \partial_{\beta} \beta = 2 - \beta \partial_{\beta} \qquad \partial_{\alpha} \beta = -1 + \alpha \partial_{\alpha} + \beta \partial_{\alpha} \qquad \partial_{\beta} \alpha = -1 + \alpha \partial_{\beta} + \beta \partial_{\beta}$$

we can write each matrix entry uniquely as $\sum_{w} h_w \partial_w$, $h_w \in H_T^*$, to compare the two operators. We left the resulting comparison of > 1000 terms to a computer. The corresponding B_2 calculation involved closer to 140,000 terms.

We are confident that the K^{α} satisfy the G_2 braid relation but have not done the computation (having run out of memory at 3M+ terms).

As a result of Theorem 4, we may define operators $d_{uv}^w \in H_T^*[\partial]$ by

$$K^w := \sum_{u,v} d^w_{uv} w \otimes \partial_u \otimes \partial_v.$$

The successive application of K^{α} for each reflection r_{α} in a reduced word for w then results in the statement that

$$d_{uv}^{w}w = \prod_{Q} \left(\alpha_{q}^{[q \in R,S]} \partial_{q}^{[q \notin R,S]} r_{q} \right)$$

As these operators applied to 1 are the terms appearing in Theorem 1, we deduce that

$$K^w(S_1 \otimes S^1 \otimes S^1) = \sum_{u,v} c^w_{uv} \otimes S^u \otimes S^v$$

which we now manipulate to get a K^{α} analogue of (3.3).

Let $D_{12} \in H_T^*((G/B)^3)$ denote the Poincaré dual of the partial diagonal $\{(F_1, F_2, F_3) \in (G/B)^3 : F_1 = F_2\}$, and D_{13} denote that of $\{(F_1, F_2, F_3) \in (G/B)^3 : F_1 = F_3\}$ likewise. Then $D_{123} := D_{12} \cap D_{13}$ is the class of the full diagonal. By two applications of (3.2), we get

$$D_{123} = D_{12} \cap D_{23} = \left(\sum_{u} (S_u \otimes S^u \otimes 1)\right) \left(\sum_{v} (S_v \otimes 1 \otimes S^v)\right) = \sum_{u,v} S_u S_v \otimes S^u \otimes S^v$$
$$= \sum_{u,v} \left(\sum_{w} c_{uv}^w S_w\right) \otimes S^u \otimes S^v = \sum_{w} (S_w \otimes 1 \otimes 1) \sum_{u,v} (c_{uv}^w \otimes S^u \otimes S^v)$$

Combined with the above equation, we get

$$D_{123} = \sum_{w} (S_w \otimes 1 \otimes 1) \ K^w (S_1 \otimes S^1 \otimes S^1), \tag{4.1}$$

a distinct echo of (3.3).

Question. What is a closed form for K^w , analogous to that of J^w in (3.1)?

5 Recursive formulas for structure constants

Corollary 1. *Fix a reflection* r_{α} *, and let* \overline{s} *denote* $r_{\alpha}s$ *for* $s \in W$ *. If* $\overline{w} < w$ *, then*

$$c_{uv}^{w} = (\partial_{\alpha}r_{\alpha}) \cdot c_{uv}^{\overline{w}} + [\overline{u} < u]c_{\overline{u},v}^{\overline{w}} + [\overline{v} < v]c_{u,\overline{v}}^{\overline{w}} + [\overline{u} < u][\overline{v} < v]\alpha c_{\overline{u},\overline{v}}^{\overline{w}}$$

where
$$[\overline{s} < s]$$
 indicates 1 if $\overline{s} < s$, and 0 otherwise (i.e. $\overline{s} > s$).

Similarly, let \underline{s} denote sr_{α} . If $\underline{w} < w$, then

 $c_{uv}^{w} = [\underline{u} < u] (c_{\underline{u},v}^{\underline{w}}) + [\underline{v} < v] (c_{\overline{u},\underline{v}}^{\underline{w}}) + [\underline{u} < u] [\underline{v} < v] (d_{\underline{u},\underline{v}}^{\underline{w}} \cdot \alpha)$

Proof. Suppose $w = r_{\alpha}r_{\alpha_1}\cdots r_{\alpha_k}$ is a reduced word expression for w. Then $K^w = K^{\alpha}K^{\overline{w}}$, where $\overline{w} = r_{\alpha}w$. In particular

$$\sum_{u,v} c_{uv}^{w} \otimes S^{u} \otimes S^{v} = K^{w}(S_{1} \otimes S^{1} \otimes S^{1}) = \left(K^{\alpha} \sum_{s,t} d_{st}^{\overline{w}} \overline{w} \otimes \partial_{s} \otimes \partial_{t}\right) (S_{1} \otimes S^{1} \otimes S^{1})$$
$$= \sum_{s,t} \left(\partial_{\alpha} r_{\alpha} d_{st}^{\overline{w}} \overline{w} \otimes \partial_{s} \otimes \partial_{t} + r_{\alpha} d_{st}^{\overline{w}} \overline{w} \otimes \partial_{\alpha} \partial_{s} \otimes \partial_{t} + r_{\alpha} d_{st}^{\overline{w}} \overline{w} \otimes \partial_{s} \otimes \partial_{\alpha} \partial_{t}$$
$$+ \alpha r_{\alpha} d_{st}^{\overline{w}} \overline{w} \otimes \partial_{\alpha} \partial_{s} \otimes \partial_{\alpha} \partial_{t} \right) (S_{1} \otimes S^{1} \otimes S^{1})$$

The term $c_{uv}^w \otimes S^u \otimes S^v$ on the left is obtained as the image of $S_1 \otimes S^1 \otimes S^1$ under those tensors with terms $\partial_u \otimes \partial_v$ in the second and third positions. Note that $\partial_\alpha \partial_s = \partial_{s'}$ exactly when $r_\alpha s = s'$ and $\ell(s') = \ell(s) + 1$. If $r_\alpha s = s'$ but $\ell(s') \neq \ell(s) + 1$, then $\partial_\alpha \partial_s = 0$. Let $\overline{v} = r_\alpha v$ and $\overline{u} = r_\alpha u$. By matching the terms,

$$\begin{split} c^{w}_{uv} \otimes S^{u} \otimes S^{v} &= \left(\partial_{\alpha} r_{\alpha} d^{\overline{w}}_{uv} \overline{w} \otimes \partial_{u} \otimes \partial_{v} + r_{\alpha} d^{\overline{w}}_{\overline{u},v} \overline{w} \otimes \partial_{\alpha} \partial_{\overline{u}} \otimes \partial_{v} + r_{\alpha} d^{\overline{w}}_{u,\overline{v}} \overline{w} \otimes \partial_{u} \otimes \partial_{\alpha} \partial_{\overline{v}} \right. \\ &+ \alpha \partial_{\alpha} d^{\overline{w}}_{\overline{u},\overline{v}} \overline{w} \otimes \partial_{\alpha} \partial_{\overline{u}} \otimes \partial_{\alpha} \partial_{\overline{v}}\right) (S_{1} \otimes S^{1} \otimes S^{1}) \\ &= \left(\partial_{\alpha} r_{\alpha} d^{\overline{w}}_{uv} \overline{w} \otimes \partial_{u} \otimes \partial_{v} + [\overline{u} < u] r_{\alpha} d^{\overline{w}}_{\overline{u},v} \overline{w} \otimes \partial_{u} \otimes \partial_{v} + [\overline{v} < v] r_{\alpha} d^{\overline{w}}_{\overline{u},\overline{v}} \overline{w} \otimes \partial_{u} \otimes \partial_{v} \right. \\ &+ \left[\overline{u} < u\right] [\overline{v} < v] \alpha r_{\alpha} d^{\overline{w}}_{\overline{u},\overline{v}} \overline{w} \otimes \partial_{u} \otimes \partial_{v}\right) (S_{1} \otimes S^{1} \otimes S^{1}). \end{split}$$

We evaluate the expression on the right and isolate the first tensor to obtain

$$\begin{split} c_{uv}^{w} &= (\partial_{\alpha} r_{\alpha} d_{uv}^{\overline{w}} \overline{w}) \cdot 1 + [\overline{u} < u] \left(r_{\alpha} d_{\overline{u}, \overline{v}}^{\overline{w}} \overline{w} \right) \cdot 1 + [\overline{v} < v] \left(r_{\alpha} d_{u, \overline{v}}^{\overline{w}} \overline{w} \right) \cdot 1 + [\overline{u} < u] [\overline{v} < v] \left(\alpha r_{\alpha} d_{\overline{u}, \overline{v}}^{\overline{w}} \overline{w} \right) \cdot 1 \\ &= (\partial_{\alpha} r_{\alpha} d_{uv}^{\overline{w}}) \cdot 1 + [\overline{u} < u] c_{\overline{u}, v}^{\overline{w}} + [\overline{v} < v] c_{u, \overline{v}}^{\overline{w}} + [\overline{u} < u] [\overline{v} < v] \alpha c_{\overline{u}, \overline{v}}^{\overline{w}}. \end{split}$$

A similar proof holds for the second recursion.

We finish with an example illustrating the use of the first recursive formula.

Example 1. We compute $c_{u,v}^w$ in the S_3 case, with u = [312], v = [132] and $w = w_0 = [321]$ in 1-line notation. First we use $\overline{w} = r_1 w$. Then $\overline{u} = r_1 u \not\leq u$ and $\overline{v} = r_1 v \not\leq v$. The three latter terms in the sum of the first recursion relationship drop out and we obtain

$$c_{[312],[132]}^{[321]} = c_{uv}^{w} = \partial_1 r_1 \cdot c_{uv}^{\overline{w}} = \partial_1 r_1 \cdot c_{[312],[132]}^{[312]}$$

We set about to compute $c_{uv}^{\overline{w}}$. Note that r_2r_1 is a reduced word for \overline{w} . There is only one subword for u, mainly r_2r_1 , and one subword for v, mainly r_2 . Therefore $c_{uv}^{\overline{w}} = \alpha_2 r_2 r_1 \cdot 1$ and we obtain

$$c_{uv}^{w} = \partial_1 r_1 \alpha_2 r_2 r_1 \cdot 1 = \partial_1 (r_1(\alpha_2)) = \partial_1 (\alpha_1 + \alpha_2) = 1.$$

As a check on this result, we consider the recursion with r_2 instead of r_1 , so $\overline{w} = r_2 w = [231]$. Then $\overline{u} = r_2 u = [213] < u$ and $\overline{v} = r_2 v = 1 \le v$. In principle all four terms are nonzero:

$$c_{uv}^{w} = \partial_2 r_2 \cdot c_{uv}^{\overline{w}} + c_{\overline{u},v}^{\overline{w}} + c_{u,\overline{v}}^{\overline{w}} + \alpha c_{\overline{u},\overline{v}}^{\overline{w}}.$$

However $u \not\leq \overline{w}$, so the first and third terms $c_{uv}^{\overline{w}}$ and $c_{u,\overline{v}}^{\overline{w}}$ vanish. The last term $c_{\overline{u},\overline{v}}^{\overline{w}} = c_{[213],1}^{[231]} = 0$ because $S_{[213]}S_1 = S_{[213]}$. Thus $c_{uv}^{w} = c_{\overline{u},v}^{\overline{w}} = c_{[213],[132]}^{[231]}$ is the only remaining nonzero term. This smaller structure constant is easily seen to be 1, for instance by another application of same inductive formula with $r_1[231] = [132] < [231]$. Note that $r_1[132] \not\leq [132]$ which forces two terms in the recursive sum to be 0. We obtain

$$c^{[231]}_{[213],[132]} = \partial_1 r_1 \cdot c^{[132]}_{[213],[132]} + c^{[132]}_{1,[132]} = 0 + 1$$

where the last two equalities follow from [213] \leq [132] and $S_1S_{[132]} = S_{[132]}$.

References

- H. H. Andersen, J. C. Jantzen, and W. Soergel. *Representations of quantum groups at a pth root of unity and of semisimple groups in characteristic p: independence of p.* Astérisque 220. Soc. Math. France, Paris, 1994.
- [2] S. C. Billey. "Kostant polynomials and the cohomology ring for *G*/*B*". *Duke Math. J.* **96**.1 (1999), pp. 205–224. Link.
- [3] M. Brion. "Poincaré duality and equivariant (co)homology". *Michigan Math. J.* **48** (2000). Dedicated to William Fulton on the occasion of his 60th birthday, pp. 77–92. Link.
- [4] M. Brion. "Lectures on the geometry of flag varieties". Topics in Cohomological Studies of Algebraic Varieties. Ed. by C. Ohn. Birkhäuser, 2005.
- [5] A. S. Buch. "Mutations of puzzles and equivariant cohomology of two-step flag varieties". Ann. of Math. (2) 182.1 (2015), pp. 173–220. Link.
- [6] W. Graham. "Positivity in equivariant Schubert calculus". *Duke Math. J.* **109**.3 (2001), pp. 599–614. Link.
- [7] A. Knutson and T. Tao. "Puzzles and (equivariant) cohomology of Grassmannians". Duke Math. J. 119.2 (2003), pp. 221–260. Link.
- [8] B. Kostant and S. Kumar. "The nil Hecke ring and cohomology of *G*/*P* for a Kac-Moody group *G*". *Adv. in Math.* **62**.3 (1986), pp. 187–237. Link.
- [9] S. Kumar and M. V. Nori. "Positivity of the cup product in cohomology of flag varieties associated to Kac-Moody groups". *Int. Math. Res. Notices* 14 (1998), pp. 757–763. Link.