Schubert structure operators

Rebecca Goldin ${ }^{1 *}$ and Allen Knutson ${ }^{2 \dagger}$
${ }^{1}$ George Mason University, Fairfax, VA 22030, USA
${ }^{2}$ Cornell University, Ithaca, NY 14853, USA

Abstract

We use operators to reformulate the Andersen-Jantzen-Soergel/Billey formula for the point restrictions of equivariant Schubert classes of the cohomology of G / B. We introduce new operators whose coefficients compute Schubert structure constants (in a manifestly polynomial, but not positive, way), resulting in a formula much like and generalizing the positive AJS/Billey formula. Our proof involves Bott-Samelson manifolds, and in particular, the cohomology basis dual to the homology basis of classes of sub-Bott-Samelson manifolds.

Keywords: Schubert calculus, nil Hecke algebra

Contents

1 Introduction and the main theorem 1
2 Ingredients of the proof 4
3 AJS/Billey operators 7
4 Schubert structure operators 9
5 Recursive formulas for structure constants $\mathbf{1 0}$

1 Introduction and the main theorem

Fix a complex reductive Lie group G and maximal torus $T \leq G$, for example $G=G L_{n}(\mathbb{C})$ and T the diagonal matrices. Fix opposed Borel subgroups B, B_{-}with intersection T. This choice results in a length function ℓ on $W=N(T) / T$ and a set $\left\{\alpha_{i}\right\}$ of simple roots. The quotient G / B is the associated flag manifold and the left T-action on G / B has isolated fixed points $\{w B / B: w \in W\}$, where $W:=N(T) / T$ is the Weyl group.

In the case that $G=G L_{n}(\mathbb{C})$ and $B=$ upper-triangular matrices, G / B is (uniquely) G-isomorphic to the set of complete flag manifolds $F l\left(\mathbb{C}^{n}\right)$. The fixed points $N(T) B / B$

[^0]of the T-action correspond, under that isomorphism, to coordinate flags in $F l\left(\mathbb{C}^{n}\right)$. In particular, there are n ! such flags, corresponding to elements in the Weyl group $W \cong S_{n}$, the symmetric group on n letters.

We denote by H_{T}^{*} the T-equivariant cohomology of a point with coefficients in \mathbb{Z}, and recall that H_{T}^{*} is the polynomial ring $\operatorname{Sym}\left(T^{*}\right)$ over \mathbb{Z} in the weight lattice $T^{*}:=$ $\operatorname{Hom}\left(T, \mathbb{C}^{\times}\right)$. The equivariant cohomology $H_{T}^{*}(G / B)$ is a free H_{T}^{*}-module with a basis given by Schubert classes (recalled below). Our references for equivariant (co)homology are $[3,8,9]$.

Let $\mathbb{Z}[\partial]$ denote the nil Hecke algebra with \mathbb{Z}-basis $\left\{\partial_{w}: w \in W\right\}$, whose products are defined by

$$
\partial_{w} \partial_{v}:= \begin{cases}\partial_{w v} & \text { if } \ell(v w)=\ell(v)+\ell(w) \\ 0 & \text { otherwise, i.e. if } \ell(v w)<\ell(v)+\ell(w) .\end{cases}
$$

These $\left\{\partial_{w}\right\}$ act on the polynomial ring H_{T}^{*} as follows: for each root α with simple reflection r_{α}, the divided difference operator $\partial_{r_{\alpha}}:=\partial_{\alpha}$ is defined by

$$
\partial_{\alpha} \cdot f:=\frac{f-r_{\alpha} f}{\alpha}
$$

The nil Hecke algebra acts on the first factor in the tensor product $H_{T}^{*} \otimes_{\mathbb{Z}} H_{T}^{*}$, and this action descends to the quotient $H_{T}^{*} \otimes_{\left(H_{T}^{*}\right)^{W}} H_{T}^{*}$. This latter ring has a well-defined map $\lambda \otimes \mu \mapsto \lambda c_{1}\left(\mathcal{L}_{\mu}\right) \in H_{T}^{*}(G / B)$ called the equivariant Borel presentation of $H_{T}^{*}(G / B)$, which is a rational (and for $G=G L_{n}$, an integral) isomorphism. (Here \mathcal{L}_{μ} is the BorelWeil line bundle $G \times{ }^{B} \mathbb{C}_{\mu}$, where \mathbb{C}_{μ} is the 1-dimensional representation of B, neither of which will be using again.)

Since our interest is in cohomology not homology, we privilege codimension over dimension and define $X^{v}:=\overline{B v B} / B \subseteq G / B$ to be an opposite Schubert variety with equivariant homology class $\left[X^{v}\right] \in H_{*}^{T}(G / B)$. As these $\left\{\left[X^{v}\right]\right\}$ form an H_{T}^{*}-basis and G / B enjoys equivariant Poincaré duality, we can define the dual basis $\left\{S_{w} \in H_{T}^{*}(G / B)\right\}$ of Schubert classes by $\left\langle S_{w},\left[X^{v}\right]\right\rangle=\delta_{w v}$. Here \langle,$\rangle denotes the Alexander pairing, of$ (equivariant) cap-product followed by pushforward to a point. In fact S_{w} is the Poincaré dual to the subvariety $\overline{B_{-} w B} / B$.

The nil Hecke algebra $\mathbb{Z}[\partial]$ acts on the basis $\left\{S_{v}\right\}_{v \in W}$: in particular, $\partial_{w} \cdot S_{w_{0}}=S_{w w_{0}}$ for each $w \in W$ (since we act on the left factor in the Borel presentation), though we won't use this recursion.

The structure constants $c_{u v}^{w} \in H_{T}^{*}$ are defined by the relation in $H_{T}^{*}(G / B)$

$$
\begin{equation*}
S_{u} S_{v}=\sum_{w} c_{u v}^{w} S_{w} \tag{1.1}
\end{equation*}
$$

These polynomials $c_{u v}^{w}$ are known to be positive in the following sense [6]: when written (uniquely) as a sum of monomials in the simple roots $\left\{\alpha_{i}\right\}$, each monomial has a nonnegative coefficient. It is a very famous problem to compute these in a manifestly positive
way, solved in special cases such as $u, v \in W^{P}$ where G / P is a Grassmannian or 2-step flag manifold [7,5]. Another solved case is $u=w$, in which case $c_{w v}^{w}$ is computed positively by the AJS/Billey formula [1, 2] (recalled below) for the point restrictions $\left.S_{w}\right|_{v}=c_{w v}^{v}$ of Schubert classes. In this abstract, we prove a formula for the $\left\{c_{u v}^{w}\right\}$ in terms of a certain composition of operators in the nil Hecke algebra, applied to 1 . Along the way, we reprove the AJS/Billey formula; more specifically, our nonpositive formula reduces to the positive AJS/Billey formula in the special case $u=w$.

Theorem 1. Let Q be a reduced word for w. Then

$$
c_{u v}^{w}=\sum_{\substack{P, R \subseteq Q \text { reduced } \\ \Pi P=u, \Pi R=v}} \prod_{Q}\left(\alpha_{q}{ }^{[q \in P, R]} \partial_{q}[q \notin P, R] r_{q}\right) \cdot 1
$$

where the exponent " $[\sigma]$ " is 1 if the statement σ is true, 0 if false.
Example. Let $Q=121$ so $w=r_{1} r_{2} r_{1}, u=r_{1}, v=r_{1} r_{2}$ all in S_{3} the Weyl group of $G L_{3}$. Then $P \in\{1--,--1\}, R=12-$ as subwords of 121 , in our sum

$$
c_{r_{1}, r_{1} r_{2}}^{r_{1} r_{2} r_{1}}=\left(\alpha_{1} r_{1} r_{2} \partial_{1} r_{1}\right) \cdot 1+\left(r_{1} r_{2} r_{1}\right) \cdot 1=0+1
$$

whereas if we change v to $r_{2} r_{1}$ so $R=-21$, then

$$
c_{r_{1}, r_{2} r_{1} r_{1} r_{1} r_{1}}=\left(r_{1} r_{2} r_{1}\right) \cdot 1+\left(\partial_{1} r_{1} r_{2} \alpha_{1} r_{1}\right) \cdot 1=1+\partial_{1} \cdot \alpha_{2}=0
$$

Example. Let $Q=12312$, so $w=r_{1} r_{2} r_{3} r_{1} r_{2}=[3421]$ in one-line notation, and take $u=r_{2} r_{3} r_{2}=[1432], v=r_{1} r_{2} r_{1}=[3214]$. Then $P=-23-2$ and $R \in\{12-1-,-2-12\}$ so we have

$$
\begin{aligned}
c_{u v}^{w} & =\left(r_{1} \alpha_{2} r_{2} r_{3} r_{1} r_{2}+\partial_{1} r_{1} \alpha_{2} r_{2} r_{3} r_{1} \alpha_{2} r_{2}\right) \cdot 1 \\
& =\left(\alpha_{1}+\alpha_{2}\right) \cdot 1+\partial_{1}\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{2}+\alpha_{3}\right) \cdot 1 \\
& =\alpha_{1}+\alpha_{2}+\partial_{1}\left(\alpha_{1}+\alpha_{2}\right) \alpha_{2} \cdot 1+\partial_{1}\left(\alpha_{1}+\alpha_{2}\right) \alpha_{3} \cdot 1 \\
& =\alpha_{1}+\alpha_{2}+0+\alpha_{3} .
\end{aligned}
$$

We now recall the AJS/Billey formula. The T-invariant inclusion i of T-fixed points into G / B results in a map in equivariant cohomology:

$$
\begin{equation*}
i^{*}: H_{T}(G / B) \longrightarrow \bigoplus_{w \in W} H_{T}^{*}(w B / B) \cong \bigoplus_{w \in W} H_{T}^{*} \tag{1.2}
\end{equation*}
$$

and i is known to be an injection. The inclusion $i_{w}: w B / B \hookrightarrow G / B$ induces the projection to the w-term in this sum, so we may write $i^{*}=\oplus_{w \in W} i_{w}^{*}$.

For any $v, w \in W$, the point restriction $\left.S_{v}\right|_{w} \in H_{T}^{*}$ is defined by $i_{w}^{*}\left(S_{v}\right)$, i.e. the image of S_{v} under the map i^{*} in (1.2), then projected to the w summand. Since (1.2) is an inclusion,
each Schubert class S_{v} is described fully by the list $\left\{i_{w}^{*}\left(S_{v}\right): w \in W\right\}$ of these restrictions. Note that $\left.S_{w}\right|_{u} \neq 0$ implies $u B / B \in \overline{B_{-} w B} / B$, i.e. $u \geq w$ in Bruhat order, and in fact the converse is also true. This upper triangularity of the support will be useful just below.

In the case $u=w$, the relation (1.1) and this upper triangularity imply that $c_{u v}^{w}=\left.S_{v}\right|_{w}$. After choosing Q a reduced word for w, the only choice of reduced word P for u is Q itself. The formula thus simplifies to

$$
\left.S_{v}\right|_{w}=\sum_{\substack{R \subseteq Q \\ P=Q, \Pi R=v}} \prod_{Q}\left(\alpha_{q}{ }^{[q \in R]} r_{q}\right) \cdot 1,
$$

which is just a restatement of the AJS/Billey formula.
After describing our geometric proof, we give an algebraic interpretation of Theorem 1 as a coefficient of the product of certain Schubert structure operators. Let $H_{T}^{*}[\partial]$ denote the smash product of H_{T}^{*} with $\mathbb{Z}[\partial]$, the algebra consisting of the free H_{T}^{*}-module $H_{T}^{*} \otimes_{\mathbb{Z}} \mathbb{Z}[\partial]$ with product given by, for $p, q \in H_{T}^{*}$,

$$
\left(p \otimes \partial_{v}\right) \cdot\left(q \otimes \partial_{w}\right)=p\left(\partial_{v} q\right) \otimes \partial_{v} \partial_{w}
$$

and extended linearly. This smash product was first introduced by Kostant and Kumar in [8]. Since r_{α} acts on $H_{T}^{*}(G / B)$ equivalently to $1-\alpha \partial_{\alpha}$, we will abuse notation and denote by $r_{\alpha} \in H_{T}^{*}[\partial]$ the operator $1-\alpha \partial_{\alpha}$.

Let

$$
K^{\alpha}:=\left(\partial_{\alpha} r_{\alpha} \otimes 1 \otimes 1\right)+\left(r_{\alpha} \otimes \partial_{\alpha} \otimes 1\right)+\left(r_{\alpha} \otimes 1 \otimes \partial_{\alpha}\right)+\left(\alpha r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)
$$

in $H_{T}^{*}[\partial] \otimes \mathbb{Z}[\partial] \otimes \mathbb{Z}[\partial]$. The Schubert structure operators K^{α} braid and commute appropriately (in the simply and doubly laced cases; we conjecture but haven't checked the remaining G_{2} case), and square to 0 . They act on $H_{T}^{*}(G / B) \otimes H_{T}^{*}(G / B) \otimes H_{T}^{*}(G / B)$, resulting in another way (in Section 5) to obtain the coefficients $c_{u v}^{w}$. It seems likely that further analysis of them would give a purely algebraic proof of Theorem 1. As an application of Theorem 1, we derive two recursive formulas for structure constants.

2 Ingredients of the proof

Recall that the Bott-Samelson manifold associated to a word $Q=r_{\alpha_{i_{1}}} r_{{\alpha_{i_{2}}}} \cdots r_{\alpha_{i_{\ell}}}$ in simple reflections is given by

$$
B S^{Q}=P_{\alpha_{i_{1}}} \times{ }^{B} P_{\alpha_{i_{2}}} \times{ }^{B} \cdots \times{ }^{B} P_{\alpha_{i_{\ell}}} / B
$$

where $P_{\alpha_{i j}}$ is the minimal parabolic associated to the simple reflection $r_{i_{j}}$ and the quotient results in an equivalence of elements given by $\left(g_{1}, g_{2}, \ldots, g_{\ell}\right) \sim\left(g_{1} b_{1}, b_{1}^{-1} g_{2} b_{2}\right.$, $\left.\ldots, b_{\ell-1}^{-1} g_{\ell} b_{\ell}\right)$. We denote the resulting equivalence classes with square brackets, i.e. $\left[g_{1}, g_{2}, \ldots, g_{\ell}\right] \in B S^{Q}$.

There is an action by T on the left of $B S^{Q}$ with $2^{\# Q}$ fixed points; more specifically the set of sequences $\left(g_{1}, g_{2}, \ldots, g_{\ell}\right) \in P_{\alpha_{i_{1}}} \times P_{\alpha_{i_{2}}} \times \cdots \times P_{\alpha_{i_{\ell}}}$ such that $\forall j, g_{j} \in\left\{1, s_{j}\right\}$ maps bijectively to the fixed point set $\left(B S^{Q}\right)^{T}$. In this way we index the fixed points by subsets $L \subseteq\{1, \ldots, \ell\}$, but instead of writing " L is the $\{2,3\}$ subword of $\left(r_{1}, r_{2}, r_{1}\right)$ " we will write " L is the subword $-r_{2} r_{1}$ of $\left(r_{1}, r_{2}, r_{1}\right)$ ", allowing e.g. distinction between the $r_{1}--$ and $--r_{1}$ subwords. In addition, the inclusion of the fixed points induces a map in equivariant cohomology

$$
\begin{equation*}
H_{T}^{*}\left(B S^{Q}\right) \longrightarrow \bigoplus_{L \subseteq Q} H_{T}^{*} \tag{2.1}
\end{equation*}
$$

which is known to be an injection.
For any subword $L=s_{t_{1}} \cdots s_{t_{k}}$ of Q, there is a corresponding copy of $B S^{L}$ obtained as a submanifold of $B S^{Q}$ by

$$
B S^{L}=\left\{\left[g_{1}, \cdots, g_{\ell}\right] \in B S^{Q} \mid g_{j}=1 \text { if } j \notin L\right\}
$$

The submanifolds $B S^{L}$ are T-invariant, and each $B S_{\circ}^{L}:=B S^{L} \backslash \bigcup_{M \subseteq L} B S^{M}$ contains a unique T-fixed point $\left[g_{1}, \ldots, g_{\ell}\right] \in B S^{L}$, the one we also corresponded to L.

The equivariant homology classes $\left\{\left[B S^{L}\right]: L \subseteq Q\right\}$ form a basis of $H_{*}^{T}\left(B S^{Q}\right)$ as a (free) module over H_{T}^{*}. There exists a dual basis $\left\{T_{J}\right\}_{J \subseteq Q}$ of $H_{T}^{*}\left(B S^{Q}\right)$, again defined by the H_{T}^{*}-valued Alexander pairing \langle,$\rangle ; we compute its point restrictions in Lemma 2$.

Consider the natural map $\pi_{R}: B S^{R} \rightarrow G / B$ that multiplies the terms, $\left[g_{1}, \ldots, g_{\ell}\right] \mapsto$ $\left(\prod_{i} g_{i}\right) B / B$. The image is B-invariant, irreducible, and closed, so necessarily some X^{w} (but w may not be ΠR). However $\operatorname{dim} B S^{R}=\operatorname{dim} X^{w}$ if and only if R is a reduced word, in which case the top homology class of $B S^{R}$ pushes forward to that of X^{w}. The pushforward sends the homology class of $B S^{R}$ to that of X^{w} in G / B whenever R is a reduced word for w, and otherwise sends it to 0 . These statements are true both for singular homology and also, since the varieties involved are T-invariant, for equivariant homology [9, 3].

We are interested in the transpose map in equivariant cohomology, where we have the dual bases $\left\{T_{J}\right\},\left\{S_{w}\right\}$ of $H_{T}^{*}\left(B S^{Q}\right), H_{T}^{*}(G / B)$ respectively. Since $\left(\pi_{Q}\right)_{*}\left(\left[B S^{R}\right]\right)=\left[X^{w}\right]$ in equivariant homology, the transpose statement is the lemma:

Lemma 1. Let $\pi_{Q}: B S^{Q} \rightarrow G / B$ be the product map. Then

$$
\pi_{Q}^{*}\left(S_{w}\right)=\sum_{\substack{\mathbb{R} \subseteq \text {, reduced } \\ \Pi R=w}} T_{R} .
$$

Proof. Let $\left[B S^{L}\right],\left[X^{w}\right]$ denote the equivariant homology classes, and \langle,\rangle_{M} denote the perfect H_{T}^{*}-valued pairing between $H_{*}^{T}(M)$ and $H_{T}^{*}(M)$ for M a smooth compact oriented

T-manifold. Then

$$
\begin{aligned}
\left\langle\pi_{Q}^{*}\left(S_{w}\right),\left[B S^{L}\right]\right\rangle_{B S Q} & =\left\langle S_{w},\left(\pi_{Q}\right)_{*}\left(\left[B S^{L}\right]\right)\right\rangle_{G / B} \\
& = \begin{cases}\left\langle S_{w},\left[X^{v}\right]\right\rangle & \text { if } L \text { is reduced, with product } v \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } L \text { is reduced, with product } w \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Since the $\left\{T_{R}\right\}$ are defined so that $\left\langle T_{R},\left[B S^{L}\right]\right\rangle=\delta_{R L}$, we conclude that $\pi_{Q}^{*}\left(S_{w}\right)$ $=\sum_{\substack{R \subseteq \mathbb{\text { reduced }} \\ \Pi R=w}} T_{R}$.

We pull back the equation $S_{u} S_{v}=\sum_{x \in W} c_{u v}^{x} S_{x}$ along $\pi_{Q}: B S^{Q} \rightarrow G / B$ and simplify the right hand side of the equation:

$$
\begin{equation*}
\pi_{Q}^{*}\left(S_{u}\right) \pi_{Q}^{*}\left(S_{v}\right)=\sum_{x \in W} c_{u v}^{x} \pi_{Q}^{*}\left(S_{x}\right)=\sum_{x \in W} c_{u v}^{x} \sum_{\substack{R \subseteq Q \text { reduced } \\ \Pi R=x}} T_{R}=\sum_{R \subseteq Q \text { reduced }} c^{\Pi_{u v}^{R}} T_{R} . \tag{2.2}
\end{equation*}
$$

By expanding the left hand side in a similar fashion, we obtain

$$
\pi_{Q}^{*}\left(S_{u}\right) \pi_{Q}^{*}\left(S_{v}\right)=\sum_{\substack{R \subseteq Q \\
\text { reduced } \\
\Pi R=u}} T_{R} \sum_{\substack { S \subseteq Q \\
\begin{subarray}{c}{\text { reduced } \\
\Pi=v{ S \subseteq Q \\
\begin{subarray} { c } { \text { reduced } \\
\Pi = v } }\end{subarray}} T_{S}=\sum_{\substack{R, S \subseteq Q \text { reduced } \\
\Pi R=u, \Pi S=v}} T_{R} T_{S}
$$

Define $b_{R S}^{J}$ to be the structure constants for the multiplication in $H_{T}^{*}\left(B S^{Q}\right)$ in the basis $\left\{T_{J}\right\}$, defined by the relationship

$$
T_{R} T_{S}=\sum_{J \subset Q} b_{R S}^{J} T_{J}
$$

Thus we have shown

$$
\begin{equation*}
\pi_{Q}^{*}\left(S_{u}\right) \pi_{Q}^{*}\left(S_{v}\right)=\sum_{\substack{R, S \subset Q \text { reduced } \\ \Pi R=u, \Pi S=v}} \sum_{J \subset Q} b_{R S}^{J} T_{J} . \tag{2.3}
\end{equation*}
$$

Now we take Q to be reduced with product w and look at the coefficient of T_{Q} in (2.2) and (2.3):

$$
\begin{equation*}
c_{u v}^{w}=\sum_{\substack{R, S C Q \text { reduced } \\ \Pi R=u, \Pi=v}} b_{R S}^{Q} \tag{2.4}
\end{equation*}
$$

Theorem 2. Let the equivariant intersection numbers $b_{R S}^{Q}$ be defined as above. Then,

$$
b_{R S}^{Q}=\prod_{q \in Q}\left(\alpha_{q}^{[q \in R, S]} \partial_{q}^{[q \notin R, S]} r_{q}\right) \cdot 1
$$

where the exponent $[q \in J]$ indicates inclusion of the factor only when $q \in J$.

Theorem 1 then follows directly from Theorem 2 and (2.4).
The proof of Theorem 2 is an inductive argument based on Lemma 2 below; both proofs will appear elsewhere.

As with Schubert classes, we define the point restriction $\left.T_{J}\right|_{L}$ to be the restriction of $T_{J} \in H_{T}^{*}\left(B S^{Q}\right)$ under the map (2.1) to the fixed point $L \subseteq Q$. These restrictions can be computed explicitly:

Lemma 2. The equivariant class $T_{J} \in H_{T}^{*}\left(B S^{Q}\right)$ has the following restriction to a T-fixed point L:

$$
\left.T_{J}\right|_{L}= \begin{cases}\left(\prod_{m \in L} \alpha_{m}^{[m \in J]} r_{m}\right) \cdot 1 & \text { if } J \subseteq L \\ 0 & \text { if } J \nsubseteq L\end{cases}
$$

where the exponent $[m \in J]$ indicates inclusion of the factor only when $m \in J$.
In the remainder we present these coefficients in terms of some apparently natural families of operators, based on reflections and divided difference operators.

3 AJS/Billey operators

In the next two sections we interpret the AJS/Billey formula, and Theorem 1, in terms of certain operators; our results are that these operators satisfy the various (nil-)Coxeter relations. We hope someday to run the arguments backward and use the relations to give an algebraic proof of Theorem 1.

Let $H_{T}^{*}[W]$ be the smash product of H_{T}^{*} and the group algebra of W, i.e. the free H_{T}^{*} module with basis W and multiplication $w p:=(w \cdot p) w$. For each $w \in W$, we introduce an AJS/Billey operator

$$
\begin{equation*}
J_{w}:=\sum_{v \leq w}\left(\left.S_{v}\right|_{w}\right) w \otimes \partial_{v} \quad \in H_{T}^{*}[W] \otimes_{\mathbb{Z}} \mathbb{Z}[\partial] \tag{3.1}
\end{equation*}
$$

so in particular

$$
J_{\alpha}:=J_{r_{\alpha}}=\left(r_{\alpha} \otimes 1\right)+\left(\alpha r_{\alpha} \otimes \partial_{\alpha}\right) .
$$

Note that these operators are homogeneous of degree 0 , where the degrees of $\alpha, r_{\alpha}, \partial_{\alpha}$ are $+1,0,-1$ respectively.

Theorem 3. 1. If Q is a reduced word for w, then $J_{w}=\Pi_{Q} J_{q}$.
2. If $\ell(w)+\ell(v)=\ell(w v)$, then $J_{w} J_{v}=J_{w v}$, and this fact is essentially equivalent to the AJS/Billey formula.
3. $J_{\alpha}^{2}=1 \otimes 1$, so in fact any word Q for w suffices in (1), and $J_{w} J_{v}=J_{w v}$ for all w, v.

Proof. 1. Let Q be a reduced word for w. Then since $\left.S_{v}\right|_{r_{\alpha}}$ is 0 unless $v=1$ or $v=r_{\alpha}$,

$$
\begin{aligned}
\prod_{Q} J_{q} & =\prod_{Q} \sum_{v \leq r_{q}}\left(\left.S_{v}\right|_{r_{q}}\right) r_{q} \otimes \partial_{q}=\prod_{Q}\left(\left(r_{q} \otimes 1\right)+\left(\alpha_{q} r_{q} \otimes \partial_{q}\right)\right) \\
& =\sum_{R \subseteq Q}\left(\prod_{Q} \alpha_{q}^{[q \in R]} r_{q}\right) \otimes \prod_{R} \partial_{r}=\sum_{v} \sum_{\substack{R \subseteq Q \text { reduced } \\
\Pi R=v}}\left(\prod_{Q} \alpha_{q}^{[q \in R]} r_{q}\right) \otimes \partial_{v}
\end{aligned}
$$

as $\prod_{R} \partial_{r}=0$ unless R is reduced. The AJS/Billey formula states that

$$
\sum_{\substack{\text { RธQ reduced } \\ \prod R=v}} \prod_{Q} \alpha_{q}^{[q \in R]} r_{q}=\left.S_{v}\right|_{w} w,
$$

from which it follows that

$$
\prod_{Q} J_{q}=\sum_{v \leq w}\left(\left.S_{v}\right|_{w}\right) w \otimes \partial_{v}=J_{w}
$$

2. From (1) the equality $J_{w} J_{v}=J_{w v}$ follows by concatenating words for w and v. Conversely, the equality implies $J_{w}=\Pi_{Q} J_{q}$ when Q is a reduced word for w, which in turn implies the AJS/Billey formula by the calculation above.
3.

$$
\begin{aligned}
J_{\alpha}^{2} & =\left(\left(r_{\alpha} \otimes 1\right)+\left(\alpha r_{\alpha} \otimes \partial_{\alpha}\right)\right)^{2}=\left(\left(r_{\alpha} \otimes 1\right)+\left(\alpha r_{\alpha} \otimes \partial_{\alpha}\right)\right)\left(\left(r_{\alpha} \otimes 1\right)+\left(\alpha r_{\alpha} \otimes \partial_{\alpha}\right)\right) \\
& =(1 \otimes 1)+\left(r_{\alpha} \alpha r_{\alpha} \otimes \partial_{\alpha}\right)+\left(\alpha \otimes \partial_{\alpha}\right)+\left(\alpha r_{\alpha} \alpha r_{\alpha} \otimes \partial_{\alpha}^{2}\right)=1 \otimes 1
\end{aligned}
$$

Let $(G / B)_{\Delta}$ denote the diagonal copy of G / B in $(G / B)^{2}$, which is invariant under the diagonal T-action on $(G / B)^{2}$. The corresponding Poincaré dual class $D^{w_{0}} \in H_{T}^{*}\left((G / B)^{2}\right)$ of this submanifold can be described explicitly in terms of the Poincaré duals $S^{v} \in H_{T}^{*}(G / B)$ to the X^{v}. Under the isomorphism

$$
H_{T}^{*}\left((G / B)^{2}\right) \cong H_{T}^{*}(G / B) \otimes_{H_{T}^{*}} H_{T}^{*}(G / B)
$$

we have from [4] the factorization of the diagonal

$$
\begin{equation*}
D^{w_{0}}=\sum_{v} S_{v} \otimes S^{v}=\sum_{v} S_{v} \otimes\left(\partial_{v} \cdot S^{1}\right) \tag{3.2}
\end{equation*}
$$

Consider its restriction along $i_{w} \times I d:\{w B / B\} \times G / B \rightarrow(G / B)^{2}:$

$$
D^{w_{0}}=\sum_{v} S_{v} \otimes\left(\partial_{v} \cdot S^{1}\right) \stackrel{\left(i_{w} \times I d\right)^{*}}{\longrightarrow} \sum_{v}\left(\left.S_{v}\right|_{w}\right) \otimes\left(\partial_{v} \cdot S^{1}\right)=J_{w} \cdot\left(S_{1} \otimes S^{1}\right) .
$$

While we won't directly use this suggestive calculation of the $\left.S_{v}\right|_{w}$, it will inform a similar operator-theoretic calculation of the $c_{u v}^{w}$ in the next section. Towards that end we rephrase the equation above using the equivariant Euler class $e(T G / B)$ of the tangent bundle:

$$
\begin{equation*}
(e(T G / B) \otimes 1) D^{w_{0}}=\sum_{w \in W}\left(i_{w} \times I d\right)_{*}\left(J_{w} \cdot\left(S_{1} \otimes S^{1}\right)\right) \tag{3.3}
\end{equation*}
$$

4 Schubert structure operators

Analogously to $J_{\alpha} \in H_{T}^{*}[W] \otimes \mathbb{Z}[\partial]$, we introduce in $H_{T}^{*}[\partial] \otimes \mathbb{Z}[\partial] \otimes \mathbb{Z}[\partial]$ elements

$$
K^{\alpha}:=\left(\partial_{\alpha} r_{\alpha} \otimes 1 \otimes 1\right)+\left(r_{\alpha} \otimes \partial_{\alpha} \otimes 1\right)+\left(r_{\alpha} \otimes 1 \otimes \partial_{\alpha}\right)+\left(\alpha r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)
$$

where $r_{\alpha}=\left(1-\alpha \partial_{\alpha}\right) \in H_{T}^{*}[\partial]$. These are homogeneous of degree -1 . Note that $r_{\alpha} \partial_{\alpha}=$ $\partial_{\alpha}=-\partial_{\alpha} r_{\alpha}$.
Lemma 3. $\left(K^{\alpha}\right)^{2}=0$.
Proof. At the end we use the equality of operators $\partial_{\alpha} \alpha+\alpha \partial_{\alpha}=2$, derivable from the twisted Leibniz identity $\partial_{\alpha} \cdot(x y)=\left(\partial_{\alpha} \cdot x\right) y+\left(r_{\alpha} \cdot x\right)\left(\partial_{\alpha} \cdot y\right)$.

$$
\begin{aligned}
\left(K^{\alpha}\right)^{2} & =\left(\partial_{\alpha} r_{\alpha} \otimes 1 \otimes 1\right)\left(\left(\partial_{\alpha} r_{\alpha} \otimes 1 \otimes 1\right)+\left(r_{\alpha} \otimes \partial_{\alpha} \otimes 1\right)+\left(r_{\alpha} \otimes 1 \otimes \partial_{\alpha}\right)+\left(\alpha r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)\right) \\
& +\left(r_{\alpha} \otimes \partial_{\alpha} \otimes 1\right)\left(\left(\partial_{\alpha} r_{\alpha} \otimes 1 \otimes 1\right)+\left(r_{\alpha} \otimes \partial_{\alpha} \otimes 1\right)+\left(r_{\alpha} \otimes 1 \otimes \partial_{\alpha}\right)+\left(\alpha r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)\right) \\
& +\left(r_{\alpha} \otimes 1 \otimes \partial_{\alpha}\right)\left(\left(\partial_{\alpha} r_{\alpha} \otimes 1 \otimes 1\right)+\left(r_{\alpha} \otimes \partial_{\alpha} \otimes 1\right)+\left(r_{\alpha} \otimes 1 \otimes \partial_{\alpha}\right)+\left(\alpha r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)\right) \\
& +\left(\alpha r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)\left(\left(\partial_{\alpha} r_{\alpha} \otimes 1 \otimes 1\right)+\left(r_{\alpha} \otimes \partial_{\alpha} \otimes 1\right)+\left(r_{\alpha} \otimes 1 \otimes \partial_{\alpha}\right)+\left(\alpha r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)\right) \\
& =\left(\partial_{\alpha} r_{\alpha} \partial_{\alpha} r_{\alpha} \otimes 1 \otimes 1\right)+\left(\partial_{\alpha} r_{\alpha} r_{\alpha} \otimes \partial_{\alpha} \otimes 1\right)+\left(\partial_{\alpha} r_{\alpha} r_{\alpha} \otimes 1 \otimes \partial_{\alpha}\right)+\left(\partial_{\alpha} r_{\alpha} \alpha r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right) \\
& +\left(r_{\alpha} \partial_{\alpha} r_{\alpha} \otimes \partial_{\alpha} \otimes 1\right)+\left(r_{\alpha} r_{\alpha} \otimes \partial_{\alpha} \partial_{\alpha} \otimes 1\right)+\left(r_{\alpha} r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)+\left(r_{\alpha} \alpha r_{\alpha} \otimes \partial_{\alpha} \partial_{\alpha} \otimes \partial_{\alpha}\right) \\
& +\left(r_{\alpha} \partial_{\alpha} r_{\alpha} \otimes 1 \otimes \partial_{\alpha}\right)+\left(r_{\alpha} r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)+\left(r_{\alpha} r_{\alpha} \otimes 1 \otimes \partial_{\alpha} \partial_{\alpha}\right)+\left(r_{\alpha} \alpha r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha} \partial_{\alpha}\right) \\
& +\left(\alpha r_{\alpha} \partial_{\alpha} r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)+\left(\alpha r_{\alpha} r_{\alpha} \otimes \partial_{\alpha} \partial_{\alpha} \otimes \partial_{\alpha}\right)+\left(\alpha r_{\alpha} r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha} \partial_{\alpha}\right)+\left(\alpha r_{\alpha} \alpha r_{\alpha} \otimes \partial_{\alpha} \partial_{\alpha} \otimes \partial_{\alpha} \partial_{\alpha}\right) \\
& =0+\left(\partial_{\alpha} \otimes \partial_{\alpha} \otimes 1\right)+\left(\partial_{\alpha} \otimes 1 \otimes \partial_{\alpha}\right)-\left(\partial_{\alpha} \alpha \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)-\left(\partial_{\alpha} \otimes \partial_{\alpha} \otimes 1\right)+0+\left(1 \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)+0 \\
& -\left(\partial_{\alpha} \otimes 1 \otimes \partial_{\alpha}\right)+\left(1 \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)+0+0-\left(\alpha \partial_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)+0+0+0 \\
& =-\left(\partial_{\alpha} \alpha \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)+\left(1 \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)+\left(1 \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)-\left(\alpha \partial_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right) \\
& =\left(2-\alpha \partial_{\alpha}-\partial_{\alpha} \alpha\right) \otimes \partial_{\alpha} \otimes \partial_{\alpha}=0 .
\end{aligned}
$$

Theorem 4. The operators K^{α} obey the commutation and (simply- or doubly-laced) braid relations, and as such, we can define $K^{w}:=\prod_{Q} K^{q}$ (for W simply- or doubly-laced) using any reduced word Q for w.

Proof. The commutation operations are obvious. For braiding, we compute $K^{\alpha} K^{\beta} K^{\alpha}$ for the simple roots in S_{3}.

$$
\begin{aligned}
K^{\alpha} K^{\beta} K^{\alpha}= & \left(-\left(\partial_{\alpha} \otimes 1 \otimes 1\right)+\left(r_{\alpha} \otimes \partial_{\alpha} \otimes 1\right)+\left(r_{\alpha} \otimes 1 \otimes \partial_{\alpha}\right)+\left(\alpha r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)\right) \\
& \left(-\left(\partial_{\beta} \otimes 1 \otimes 1\right)+\left(r_{\beta} \otimes \partial_{\beta} \otimes 1\right)+\left(r_{\beta} \otimes 1 \otimes \partial_{\beta}\right)+\left(\beta r_{\beta} \otimes \partial_{\beta} \otimes \partial_{\beta}\right)\right) \\
& \left(-\left(\partial_{\alpha} \otimes 1 \otimes 1\right)+\left(r_{\alpha} \otimes \partial_{\alpha} \otimes 1\right)+\left(r_{\alpha} \otimes 1 \otimes \partial_{\alpha}\right)+\left(\alpha r_{\alpha} \otimes \partial_{\alpha} \otimes \partial_{\alpha}\right)\right)
\end{aligned}
$$

We group the 4^{3} terms (15 of which vanish by $\partial_{\alpha}^{2}=0$) according to their second and third tensor factors Using the relations

$$
\partial_{\alpha} \alpha=2-\alpha \partial_{\alpha} \quad \partial_{\beta} \beta=2-\beta \partial_{\beta} \quad \partial_{\alpha} \beta=-1+\alpha \partial_{\alpha}+\beta \partial_{\alpha} \quad \partial_{\beta} \alpha=-1+\alpha \partial_{\beta}+\beta \partial_{\beta}
$$

we can write each matrix entry uniquely as $\sum_{w} h_{w} \partial_{w}, h_{w} \in H_{T}^{*}$, to compare the two operators. We left the resulting comparison of >1000 terms to a computer. The corresponding B_{2} calculation involved closer to 140,000 terms.

We are confident that the K^{α} satisfy the G_{2} braid relation but have not done the computation (having run out of memory at $3 M+$ terms).

As a result of Theorem 4, we may define operators $d_{u v}^{w} \in H_{T}^{*}[\partial]$ by

$$
K^{w}:=\sum_{u, v} d_{u v}^{w} w \otimes \partial_{u} \otimes \partial_{v}
$$

The successive application of K^{α} for each reflection r_{α} in a reduced word for w then results in the statement that

$$
d_{u v}^{w} w=\prod_{Q}\left(\alpha_{q}^{[q \in R, S]} \partial_{q}^{[q \notin R, S]} r_{q}\right)
$$

As these operators applied to 1 are the terms appearing in Theorem 1, we deduce that

$$
K^{w}\left(S_{1} \otimes S^{1} \otimes S^{1}\right)=\sum_{u, v} c_{u v}^{w} \otimes S^{u} \otimes S^{v}
$$

which we now manipulate to get a K^{α} analogue of (3.3).
Let $D_{12} \in H_{T}^{*}\left((G / B)^{3}\right)$ denote the Poincaré dual of the partial diagonal $\left\{\left(F_{1}, F_{2}, F_{3}\right) \in\right.$ $\left.(G / B)^{3}: F_{1}=F_{2}\right\}$, and D_{13} denote that of $\left\{\left(F_{1}, F_{2}, F_{3}\right) \in(G / B)^{3}: F_{1}=F_{3}\right\}$ likewise. Then $D_{123}:=D_{12} \cap D_{13}$ is the class of the full diagonal. By two applications of (3.2), we get

$$
\begin{aligned}
D_{123} & =D_{12} \cap D_{23}=\left(\sum_{u}\left(S_{u} \otimes S^{u} \otimes 1\right)\right)\left(\sum_{v}\left(S_{v} \otimes 1 \otimes S^{v}\right)\right)=\sum_{u, v} S_{u} S_{v} \otimes S^{u} \otimes S^{v} \\
& =\sum_{u, v}\left(\sum_{w} c_{u v}^{w} S_{w}\right) \otimes S^{u} \otimes S^{v}=\sum_{w}\left(S_{w} \otimes 1 \otimes 1\right) \sum_{u, v}\left(c_{u v}^{w} \otimes S^{u} \otimes S^{v}\right)
\end{aligned}
$$

Combined with the above equation, we get

$$
\begin{equation*}
D_{123}=\sum_{w}\left(S_{w} \otimes 1 \otimes 1\right) K^{w}\left(S_{1} \otimes S^{1} \otimes S^{1}\right) \tag{4.1}
\end{equation*}
$$

a distinct echo of (3.3).
Question. What is a closed form for K^{w}, analogous to that of J^{w} in (3.1)?

5 Recursive formulas for structure constants

Corollary 1. Fix a reflection r_{α}, and let \bar{s} denote $r_{\alpha} s$ for $s \in W$. If $\bar{w}<w$, then

$$
c_{u v}^{w}=\left(\partial_{\alpha} r_{\alpha}\right) \cdot c_{u v}^{\bar{w}}+[\bar{u}<u] c_{\bar{u}, v}^{\bar{w}}+[\bar{v}<v] c_{u, \bar{v}}^{\bar{v}}+[\bar{u}<u][\bar{v}<v] \alpha c_{\bar{u}, \bar{v}}^{\bar{w}}
$$

where $[\bar{s}<s]$ indicates 1 if $\bar{s}<s$, and 0 otherwise (i.e. $\bar{s}>s$).
Similarly, let \underline{s} denote $s r_{\alpha}$. If $\underline{w}<w$, then

$$
c_{u v}^{w}=[\underline{u}<u]\left(c_{\underline{u}, v}^{w}\right)+[\underline{v}<v]\left(c_{\underline{u}, \underline{v}}^{w}\right)+[\underline{u}<u][\underline{v}<v]\left(d_{\underline{u}, \underline{v}}^{w} \cdot \alpha\right)
$$

Proof. Suppose $w=r_{\alpha} r_{\alpha_{1}} \cdots r_{\alpha_{k}}$ is a reduced word expression for w. Then $K^{w}=K^{\alpha} K^{\bar{w}}$, where $\bar{w}=r_{\alpha} w$. In particular

$$
\begin{aligned}
\sum_{u, v} c_{u v}^{w} \otimes S^{u} \otimes S^{v}= & K^{w}\left(S_{1} \otimes S^{1} \otimes S^{1}\right)=\left(K^{\alpha} \sum_{s, t} d_{s t}^{\bar{w}} \bar{w} \otimes \partial_{s} \otimes \partial_{t}\right)\left(S_{1} \otimes S^{1} \otimes S^{1}\right) \\
= & \sum_{s, t}\left(\partial_{\alpha} r_{\alpha} d_{s t}^{\bar{w}} \overline{\bar{w}} \otimes \partial_{s} \otimes \partial_{t}+r_{\alpha} d_{s t}^{\bar{w}} \overline{\bar{w}} \otimes \partial_{\alpha} \partial_{s} \otimes \partial_{t}+r_{\alpha} d_{s t}^{\bar{w}} \bar{w} \otimes \partial_{s} \otimes \partial_{\alpha} \partial_{t}\right. \\
& \left.\quad \alpha r_{\alpha} d_{s t}^{\bar{w}} \bar{w} \otimes \partial_{\alpha} \partial_{s} \otimes \partial_{\alpha} \partial_{t}\right)\left(S_{1} \otimes S^{1} \otimes S^{1}\right)
\end{aligned}
$$

The term $c_{u v}^{w} \otimes S^{u} \otimes S^{v}$ on the left is obtained as the image of $S_{1} \otimes S^{1} \otimes S^{1}$ under those tensors with terms $\partial_{u} \otimes \partial_{v}$ in the second and third positions. Note that $\partial_{\alpha} \partial_{s}=\partial_{s^{\prime}}$ exactly when $r_{\alpha} s=s^{\prime}$ and $\ell\left(s^{\prime}\right)=\ell(s)+1$. If $r_{\alpha} s=s^{\prime}$ but $\ell\left(s^{\prime}\right) \neq \ell(s)+1$, then $\partial_{\alpha} \partial_{s}=0$. Let $\bar{v}=r_{\alpha} v$ and $\bar{u}=r_{\alpha} u$. By matching the terms,

$$
\begin{aligned}
c_{u v}^{w} \otimes S^{u} \otimes S^{v}= & \left(\partial_{\alpha} r_{\alpha} d_{u v}^{\bar{w}} \overline{\bar{w}} \otimes \partial_{u} \otimes \partial_{v}+r_{\alpha} d_{\bar{u}, v}^{\bar{w}} \overline{\bar{w}} \otimes \partial_{\alpha} \partial_{\bar{u}} \otimes \partial_{v}+r_{\alpha} d_{u, \bar{v}}^{\bar{w}} \overline{\bar{w}} \otimes \partial_{u} \otimes \partial_{\alpha} \partial_{\bar{v}}\right. \\
& \left.+\alpha \partial_{\alpha} d \overline{\bar{w}}, \bar{v} \bar{w} \otimes \partial_{\alpha} \partial_{\bar{u}} \otimes \partial_{\alpha} \partial_{\bar{v}}\right)\left(S_{1} \otimes S^{1} \otimes S^{1}\right) \\
=(& \partial_{\alpha} r_{\alpha} d_{u v}^{\bar{w}} \bar{w} \otimes \partial_{u} \otimes \partial_{v}+[\bar{u}<u] r_{\alpha} d_{\bar{u}, v}^{\bar{w}} \bar{w} \otimes \partial_{u} \otimes \partial_{v}+[\bar{v}<v] r_{\alpha} d_{u, \bar{v}}^{\bar{w}} \bar{w} \otimes \partial_{u} \otimes \partial_{v} \\
& \left.+[\bar{u}<u][\bar{v}<v] \alpha r_{\alpha} d \overline{\bar{w}}, \bar{v} \bar{w} \otimes \partial_{u} \otimes \partial_{v}\right)\left(S_{1} \otimes S^{1} \otimes S^{1}\right) .
\end{aligned}
$$

We evaluate the expression on the right and isolate the first tensor to obtain

$$
\left.\begin{array}{rl}
c_{u v}^{w} & =\left(\partial_{\alpha} r_{\alpha} d_{u v}^{\bar{w}} \overline{\bar{w}}\right) \cdot 1+[\bar{u}<u]\left(r_{\alpha} d \overline{\bar{w}}, \bar{v}\right) \cdot 1+[\bar{v}<v]\left(r_{\alpha} d_{u, \bar{v}}^{\bar{w}} \bar{w}\right) \cdot 1+[\bar{u}<u][\bar{v}<v]\left(\alpha r_{\alpha} d_{\bar{w}, \bar{v}}^{\bar{w}} \overline{\bar{w}}\right) \cdot 1 \\
& =\left(\partial_{\alpha} r_{\alpha} d_{u v}^{\bar{w}}\right) \cdot 1+[\bar{u}<u] c_{\bar{u}}^{\bar{w}}, v
\end{array}\right][\bar{v}<v] c_{u, \bar{v}}^{\bar{v}}+[\bar{u}<u][\bar{v}<v] \alpha c_{\bar{u}, \bar{v}}^{\bar{v}} . \quad .
$$

A similar proof holds for the second recursion.
We finish with an example illustrating the use of the first recursive formula.
Example 1. We compute $c_{u, v}^{w}$ in the S_{3} case, with $u=[312], v=[132]$ and $w=w_{0}=[321]$ in 1-line notation. First we use $\bar{w}=r_{1} w$. Then $\bar{u}=r_{1} u \nless u$ and $\bar{v}=r_{1} v \nless v$. The three latter terms in the sum of the first recursion relationship drop out and we obtain

$$
c_{[312],[132]}^{[321]}=c_{u v}^{w}=\partial_{1} r_{1} \cdot c_{u v}^{\bar{w}}=\partial_{1} r_{1} \cdot c_{[312],[132]}^{[312]}
$$

We set about to compute $c_{u v}^{\bar{w}}$. Note that $r_{2} r_{1}$ is a reduced word for \bar{w}. There is only one subword for u, mainly $r_{2} r_{1}$, and one subword for v, mainly $r_{2}-$. Therefore $c_{u v}^{\bar{w}}=\alpha_{2} r_{2} r_{1} \cdot 1$ and we obtain

$$
c_{u v}^{w}=\partial_{1} r_{1} \alpha_{2} r_{2} r_{1} \cdot 1=\partial_{1}\left(r_{1}\left(\alpha_{2}\right)\right)=\partial_{1}\left(\alpha_{1}+\alpha_{2}\right)=1 .
$$

As a check on this result, we consider the recursion with r_{2} instead of r_{1}, so $\bar{w}=r_{2} w=$ [231]. Then $\bar{u}=r_{2} u=[213]<u$ and $\bar{v}=r_{2} v=1 \leq v$. In principle all four terms are nonzero:

$$
c_{u v}^{w}=\partial_{2} r_{2} \cdot c_{u v}^{\bar{w}}+c_{\bar{u}, v}^{\bar{w}}+c_{u, \bar{v}}^{\bar{w}}+\alpha c_{\bar{u}, \bar{v}}^{\bar{v}} .
$$

However $u \not \leq \bar{w}$, so the first and third terms $c_{u v}^{\bar{w}}$ and $c_{u, \bar{v}}^{\bar{w}}$ vanish. The last term $c_{\bar{u}, \bar{v}}^{\bar{w}}=$ $c_{[213], 1}^{[231]}=0$ because $S_{[213]} S_{1}=S_{[213]}$. Thus $c_{u v}^{w}=c_{\bar{u}, v}^{\bar{w}}=c_{[213],[132]}^{[231]}$ is the only remaining nonzero term. This smaller structure constant is easily seen to be 1, for instance by another application of same inductive formula with $r_{1}[231]=[132]<[231]$. Note that $r_{1}[132] \nless$ [132] which forces two terms in the recursive sum to be 0 . We obtain

$$
c_{[213],[132]}^{[231]}=\partial_{1} r_{1} \cdot c_{[213],[132]}^{[132]}+c_{1,[132]}^{[132]}=0+1
$$

where the last two equalities follow from $[213] \not \leq[132]$ and $S_{1} S_{[132]}=S_{[132]}$.

References

[1] H. H. Andersen, J. C. Jantzen, and W. Soergel. Representations of quantum groups at a pth root of unity and of semisimple groups in characteristic p: independence of p. Astérisque 220. Soc. Math. France, Paris, 1994.
[2] S. C. Billey. "Kostant polynomials and the cohomology ring for G/B". Duke Math. J. 96.1 (1999), pp. 205-224. Link.
[3] M. Brion. "Poincaré duality and equivariant (co)homology". Michigan Math. J. 48 (2000). Dedicated to William Fulton on the occasion of his 60th birthday, pp. 77-92. Link.
[4] M. Brion. "Lectures on the geometry of flag varieties". Topics in Cohomological Studies of Algebraic Varieties. Ed. by C. Ohn. Birkhäuser, 2005.
[5] A. S. Buch. "Mutations of puzzles and equivariant cohomology of two-step flag varieties". Ann. of Math. (2) 182.1 (2015), pp. 173-220. Link.
[6] W. Graham. "Positivity in equivariant Schubert calculus". Duke Math. J. 109.3 (2001), pp. 599614. Link.
[7] A. Knutson and T. Tao. "Puzzles and (equivariant) cohomology of Grassmannians". Duke Math. J. 119.2 (2003), pp. 221-260. Link.
[8] B. Kostant and S. Kumar. "The nil Hecke ring and cohomology of G/P for a Kac-Moody group G". Adv. in Math. 62.3 (1986), pp. 187-237. Link.
[9] S. Kumar and M. V. Nori. "Positivity of the cup product in cohomology of flag varieties associated to Kac-Moody groups". Int. Math. Res. Notices 14 (1998), pp. 757-763. Link.

[^0]: *rgoldin@gmu.edu
 \dagger allenk@math.cornell.edu

