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Möbius inversion as Duality for Hopf Monoids
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Abstract. We study a large class of Hopf monoids which come equipped with a poset
that is compatible with the Hopf structure. In these cases, we can understand duality
in terms of Möbius inversion, and . We use this to give uniform proofs for cofree-
ness and calculations of primitives for graphs, set partitions, matroids, and scheduling
problems. Moreover, we find that the Möbius function defines an important inner
product for these Hopf monoids.
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1 Introduction

The study of Hopf algebras in combinatorics revolves around forming an algebraic struc-
ture of combinatorial families that encodes a "merging" operation and a "breaking" op-
eration, and then using structure theorems to better understand the operations. In the
last few years, Hopf structures have been found for many families.

A common approach to proving results has come from using posets and Möbius
inversion to construct a new basis which behaves more nicely with respect to the Hopf
structure. The standard example comes from quasisymmetric function theory, where we
have the relationship between the Gessel fundamental basis Fα and the monomial basis
Mα by Mα = ∑α≤β µ(α, β)Fβ.

In other contexts, Aguiar and Sottile [3] define a new basis for the Hopf algebra of
permutations using Möbius inversion in the weak order of the symmetric group. In
matroids, Crapo and Schmitt [5], define a basis for matroids using Möbius inversion
in the weak order of matroids. In all these examples, the new basis allows for a quick
calculation of the primitives and proofs of cofreeness.

We give a general framework for when this approach works. In order to make the
connection to posets more explicit, we move away from Hopf algebras to Hopf monoids
in the category of poset species. Then, we define a coadjoint Hopf monoid (H, m, ∆) as
a poset Hopf monoid in which the comultiplication is part of a Galois connection. This
means that for every I = S t T, we have a second multiplication map

�S,T : H[S]×H[T]→ H[I],
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which satisfies
∆S,T(x) ≤ (y1, y2) ⇐⇒ x ≤ y1 � y2.

Our main theorem is that the map

x 7→ ω∗x =

(
∑
x≤y

µ(x, y)y

)∗
gives an isomorphism between the monoid (H,�) and the dual monoid (H, ∆∗).

In many examples of interest, this � map is much simpler than the comultiplication
map. This gives us a new approach for studying primitives and cofreeness. We apply this
to graphs, symmetric functions, matroids, and scheduling problems, providing unified
proofs of known results and new applications.

2 Poset Hopf Monoids

2.1 Poset Background

In this paper, every poset will be a locally finite. That is, we have that every interval
[x, y] = {z | x ≤ z ≤ y} is finite. This allow us to apply Rota’s theory of Möbius
functions [7]. Recursively, for a poset P, define

µP(x, y) =

 1 if x = y
− ∑

x≤z<y
µP(x, z) otherwise

In this context, we have the Möbius inversion theorem which tells us that for two func-
tions to a field, f , g : P→ k we have

f (x) = ∑
x≤y

g(y) ⇐⇒ g(x) = ∑
x≤y

µ(x, y) f (y).

The main tool we use is the theory of Galois connections. If P and Q are two posets,
then a pair of order-preserving maps f : P → Q and g : Q → P is a Galois connection,
denoted by f a g, if for all x ∈ P and y ∈ Q

f (x) ≤Q y ⇐⇒ x ≤P g(y).

The main utility of Galois connections comes from the following result due to Rota.

Lemma 2.1. [7] If P, Q are posets with x ∈ P and b ∈ Q and f a g is a Galois connection then,

∑
x≤y

f (y)=b

µP(x, y) = ∑
a≤b

g(a)=x

µQ(a, b).
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2.2 Poset Hopf Monoids

The traditional approach to "merging" and "breaking" operations on a combinatorial
family is to form a Hopf algebra. However, since a Hopf algebra by definition is a
vector space where the multiplication and comultiplication map generally output linear
combinations of elements, it is not clear what it might mean for a Hopf algebra to be
compatible with a poset. For this reason, we need to pass to Hopf monoids.

A poset species F is a functor from the category of finite sets with bijections to the
category of posets with poset morphisms. This means that for each finite set I we have a
poset F[I] and for each bijection I → J we have an order-preserving bijection F[I]→ F[J].
Notice that this gives us an order-preserving action of SI = Aut[I] on F[I]. We typically
think of elements in F[I] as labelled combinatorial objects and the maps F[I] → F[J] as
relabellings.

A poset monoid (M, m) is a poset species M equipped with a unital, associative,
and order-preserving map mS,T : H[S] × H[T] → H[I], and a poset comonoid (C, ∆)
is a poset species C equipped with a counital, coassociative, and order-preserving map
∆S,T : H[I]→ H[S]×H[T]. A poset Hopf monoid (H, m, ∆) is a monoid and a comonoid
satisfying some additional axioms.

For a more in-depth study, see [1] or [2].

Example 2.2. An example that we will carry throughout this paper is given by simple graphs.
Define

G[I] = {Simple graphs on vertex set I}.
This forms a poset species where we use the relation G ≤ H when E(H) ⊂ E(G). Notice that
this relation is the opposite of the usual relation; this convention will make the other examples
simpler.

We have structure maps

mS,T(H1, H2) = H1 t H2 and ∆S,T(G) = (G|S, G|T),

where t is the disjoint union of graphs and G|S is G restricted to vertex set S. These operations
are order-preserving. Thus, this is a poset Hopf monoid.

2.3 Linearization and the Inverted Basis

Let k be a field of characteristic 0. Given a poset P, we can define its linearization kP to
be the free vector space over k on the set P. We define the inverted basis for kP to be

ωx = ∑
x≤y

µ(x, y) · y for x ∈ P.

By Möbius inversion, this is a basis and x = ∑x≤y ωy.
A quick application of Rota’s lemma on Galois connections gives the following.
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Lemma 2.3. Let P and Q be posets with a Galois connection f a g. Let ωP
x be the inverted basis

for x ∈ P and ωQ
y be the inverted basis for y ∈ Q. Then,

f (ωP
x ) = ∑

y∈g−1(x)

ωQ
y

Many poset theoretic properties can be extended to poset Hopf monoids. For exam-
ple, we can define the linearization of a poset Hopf monoid by H[I] = kH[I]. This comes
equipped with the basis given by elements of the poset H[I]. We call this the canonical
basis. We can define the inverted basis by the procedure above. Notice that we get a
vector space Hopf structure on the linearization given by mS,T : H[S]⊗H[T]→ H[I] and
∆S,T : H[I]→ H[S]⊗H[T].

Now that we have linearized Hopf monoids, we can define the dual by taking H∗[I] =
Hom(H[I], k). Since duality is a contravariant functor, this turns a monoid into a
comonoid and vice-versa. If x ∈ H[I], we let x∗ denote the indicator function of x.
For linearized Hopf monoids, we have the following descriptions of the dual maps,

m∗S,T(x∗) = ∑
mS,T(x1,x2)=x

x1 ⊗ x2 and ∆∗S,T(x∗1 , x∗2) = ∑
x : ∆(x)=x1⊗x2

x

Any bilinear form 〈−,−〉I : H[I] ⊗ H[I] → k, gives a (not necessarily Hopf) map
H[I]→ H∗[I], by x 7→ 〈x,−〉.

Example 2.4. For graphs, the inverted basis is given by

ωG = ∑
G≤H

(−1)|E(G)−E(H)|H.

3 Möbius inversion as Duality

3.1 Adjoint and Coadjoint Hopf monoids

Many of the Hopf monoids that appear in the study of combinatorics have a structure
that is much stronger than just being a poset Hopf monoid. In particular, the multipli-
cation or comultiplication map is part of a Galois connection.

Definition 3.1. A coadjoint comonoid is a poset comonoid equipped with a family of maps
�S,T such that ∆S,T a �S,T is a Galois connection for all S, T. We denote �S,T(x⊗ y) by x�y
where the set partition is left implicit.

An adjoint monoid is a poset monoid equipped with a family of maps∇S,T such that∇S,T a
mS,T is a Galois connection for all S, T.

A self-adjoint Hopf monoid is one that is both adjoint and coadjoint with ∆S,T a mS,T.
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Example 3.2. The Hopf monoid of graphs is self-adjoint. That is we have

∆S,T(G) ≤ (H1, H2) ⇐⇒ G ≤ H1 t H2.

In this abstract, we focus on the story where the comultiplication is part of a Galois
connection; although, everything here can be dualized.

Some simple calculations using the comonoid axioms and the Galois connection
∆S,T a �S,T gives us the following proposition.

Proposition 3.3. Let C be a coadjoint comonoid. Then poset species C equipped with � is a
monoid.

The main theorem of our paper tells us that for coadjoint Hopf monoids, the �-map
gives us a better description of the dual.

Theorem 3.4. Let C be a coadjoint monoid. Then its dual C∗ is isomorphic to the monoid M =
(C,�) by the map φ : M→ C∗ given by x 7→ ω∗x . This means that ∆∗S,T(ω

∗
x1

, ω∗x2
) = ω∗x1�x2

.

We also have the dual theorem.

Theorem 3.5. Let M be a adjoint monoid, then its dual M is isomorphic to the comonoid C =
(M,∇) by the map φ : C→ M given by

x 7→ (ωx)∗,

where ωx = ∑y≤x µ(y, x)y.

If H is a self-adjoint Hopf monoid, then the previous two theorems seem to imply
that H is self-dual; however, this is not the case because the two maps given in the
theorems are not the same species morphism. With a little work, we can still prove that
H is self-dual.

Corollary 3.6. A linearized self-adjoint Hopf monoid H is self-dual.

Example 3.7. This gives us a proof that the Hopf monoid of graphs is self-dual.

A very interesting consequence of this theorem is that for a coadjoint comonoid C
the non-degenerate bilinear form 〈−,−〉I : C[I]⊗ C[I]→ k given by

〈x, ωy〉 = δx,y,

for a canonical basis element x and an inverted basis element ωy, is the form that gives
the duality C ∼= C∗. On the inverted basis it takes the form

〈ωx, ωy〉 = µ(x, y).
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On the canonical basis, it takes the form,

〈x, y〉 = ζ(y, x)

which is the zeta function that is 1 if y ≤ x and 0 otherwise. The change-of-basis sends
the zeta function to the Möbius function. This suggests a connection to convolution in
the incidence algebra.

This also gives us the following corollary regarding linearization.

Corollary 3.8. If C is a linearized coadjoint poset Hopf monoid, then C∗ is a linearized poset
monoid. Dually, if M is a linearized adjoint poset Hopf monoid, then M∗ is a linearized poset
comonoid.

This means that for these special monoids and comonoids, we can study their duals
without having to pass to their linearization.

3.2 Primitives

Just as in the theory of algebras, a fruitful approach to comonoids is to look at the
simplest elements - those that do not break into other elements. With this in mind, we
say that an element of x ∈ H[I] is primitive if for any I = St T with S and T non-trivial,
we have ∆S,T(x) = 0.

Say that an element x ∈ H[I] is �-irreducible if there is no non-trivial I = S t T and
x1 ∈ H[S] and x2 ∈ H[T] with x = x1 � x2. Then, our main theorem gives

Theorem 3.9. Let H be a coadjoint Hopf monoid. Then a basis for the primitives in H[I] is given
by {ωx : x is �-irreducible}.

Example 3.10. For the Hopf monoid of graphs, the primitives are given by ωG for �-irreducible
graphs. Since � is given by union, the �-irreducibles are the connected graphs.

3.3 Freeness

Another useful concept in algebra is that of freeness. A free monoid is a monoid where
every element x ∈ H[I] has a unique factorization into indecomposable elements. That
is, there is a unique ordered set partition S1 t · · · t Sk and indecomposable elements
xi ∈ H[Si] such that x = mS1,S2,··· ,Sk(x1, x2, · · · , xk). The dual notion is a cofree comonoid
which, roughly, is a comonoid where every element is a word of primitives and the
comultiplication is deconcatenation. For a rigorous introduction see [2].

Just as freeness is useful for constructing algebraic maps, cofreeness is useful for con-
structing coalgebraic maps; however, it is in general not easy to prove that a comonoid
is cofree due to the fact that primitives are usually complicated linear combinations of
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objects. In our case, we have a nice description of the dual multiplication by the � map.
A standard theorem tells us that the comonoid is cofree if and only if its dual monoid is
free. This gives us

Theorem 3.11. A coadjoint comonoid C is cofree if and only if every element has a unique
�-factorization.

3.4 Fock Functor

Most of the literature concerns Hopf algebras, not Hopf monoids. We show that the
Fock functor allows us to transfer our method to Hopf algebras.

The (first) Fock functor F is a functor from the category of Hopf monoids to the
category of Hopf algebras given by

F (H) =
⊕
n∈N

H[{1, 2, . . . , n}]Sn

where the subscript denotes that we are passing to the Sn-coinvariants where the action
is the relabelling action of the species.

If we denote the Hopf monoid by H then we will denote the image of the Fock functor
by the notation H. Let [x] ∈ H denote the equivalence class of x ∈ H[{1, 2, · · · , n}] under
the relabelling action. The multiplication and comultiplication of H is given by

m([x], [y]) = [x · y], and ∆([x]) = ∑
StT={1,···n}

[∆S,T(x)]

The linearized basis of H[I] is mapped onto a basis of Hn for |I| = n. We call this the
linearized basis of H. This basis has a poset structure given by [x] ≤ [y] if there are
representatives x′ ∈ [x] and y′ ∈ [y] such that x′ ≤ y′ in H[{1, 2, · · · , n}].

In terms of primitives, the Fock functor behave very nicely. Recall that the primitives
of a Hopf algebra H are those elements x such that ∆(x) = x⊗ 1 + 1⊗ x

Theorem 3.12. Let H be a Hopf algebra that is the image of a Hopf monoid H under the Fock
functor. Then space of primitives of Hn is the image of the space of primitives of H[{1, · · · , n}]
under the relabelling action. Further if H is a coadjoint Hopf monoid, then the space of primitives
of H has a basis given by {[ωx] | x indecomposable with respect to �}.

Example 3.13. The Hopf monoid of graphs G has a poset structure on G[I] by edge-inclusion.
This induces a poset structure on the Hopf algebra Gr unlabelled graphs which is [G1] ≤ [G2] if
there exists a labelling such that G1 ≤ G2 in the Hopf monoid poset.

We have seen that the graphs that are �-indecomposable are the graphs which are connected.
Let [G] be such a graph, then the following is a primitive of Gr

[ωG] = ∑
G′≤G

(−1)|E(G)−E(G′)|[G′].
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where the sum is not over equivalence classes but over elements in the poset of G[I]

Something curious occurs here. In order to study the primitives of a Hopf algebra
using Möbius inversion, we need use the poset of the Hopf monoid. This is

[ωx] = ∑
x≤y

µ(x, y)[y].

This is not using the poset of the Hopf algebra. This further justifies the need for Hopf
monoids.

4 Examples

There are many examples of adjoint/coadjoint Hopf monoids. We choose a small subset
based on the amount of background knowledge needed.

4.1 Set Partitions

A partition of I is an unordered collection of non-empty subsets π = {π1, π2, · · · , πk}
that are mutually disjoint such that I = π1 t π2 t · · · t πk. These sets πi are called the
parts of π. We say that π ≤ τ if τ refines π, that is each part of τ is fully contained in
some part of π. This relation gives the set of partitions of I the structure of a lattice.

If π is a partition if S and τ is a partition of T with S ∩ T = ∅, define their union
π ∪ τ to be the partition with parts {π1, · · · , πk, τ1, · · · , τ`}. If π is a partition of I and
S ⊂ I, define the restriction π|S to be the partition {π1 ∩ S, π2 ∩ S, · · · , πk ∩ S} where we
remove the empty sets that appear in these intersections.

Definition 4.1. The poset Hopf monoid of set partitions is the Hopf monoid on the poset
species

Par[I] = Lattice of partitions of I

with structure maps

mS,T(π, τ) = π ∪ τ and ∆S,T(π) = (π|S, π|T)

It is not hard to see that

(π|S, π|T) ≤ (τ1, τ2) ⇐⇒ π ≤ τ1 ∪ τ2.

So partitions forms a self-adjoint Hopf monoid. By Theorem 3.9 the space of primitives
is spanned by the inverted basis elements indexed by indecomposable partitions. Let πI
denote the partition with one part I, which is the only indecomposable of Par[I]. Then
the primitives are of the form
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ωπI = ∑
τ∈Par[I]

µ(πI , τ)τ

Applying the first Fock functor to this Hopf monoid gives us a Hopf algebra of set
partitions up to relabelling. This is the same as the Hopf algebra of integer partitions
Par =

⊕
n Parn where the vector space Parn is spanned by the integer partitions of n.

The poset structure induced on the basis of integer partitions is the refinement of integer
partitions. For a given set partition π, let λ(π) denote its underlying integer partition
which is given by the size of the parts. By our results in the Fock functor section, a basis
primitives of Par is given by

ω(n) = ∑
τ∈Par[I]

µ(πI , τ)λ(τ).

A result of Marcelo Aguiar and Federico Ardila [1] gives an isomorphism between
the Hopf algebra of partitions Par and the Hopf algebra of symmetric functions Λ given
by

(n) 7→ n! hn,

where (n) is the integer partition of n with one part and hn is the homogeneous basis of
Λ.

We can combine this isomorphism with our description of primitives of Hopf alge-
bras by Möbius inversion to get a description of the primitives of Λ. We get a basis of
the primitives of Λ given by

ωhn = ∑
τ∈Par[I]

µ(πI , τ)

(
∏

i
|λ(τ)i|!

)
hλ(τ)

Since this is a graded basis for the space of primitives, standard symmetric function
theory says that these ωhn coincide with the power sums pn up to a factor. This recovers
a classical result by Doubilet [6] that expresses the power sum functions in terms of the
homogeneous functions using Möbius inversion over the lattice of set partitions. Notice
that we did not have to guess that the lattice of set partitions was the important lattice
in this Möbius inversion. Everything came from general machinery. Since the Möbius
function for the partition lattice is known, we can use this to get explicit descriptions of
the primitives.

This same story holds for most other variants of symmetric functions such as NSYM,
QSYM, NCSYM, and NCQSYM, by studying the appropriate Hopf monoid.

4.2 Matroids

A Hopf algebraic result which inspired the study of coadjoint Hopf monoids is Crapo
and Schmitt’s calculations of primitives for matroids [5].
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Define the poset species of matroids by

Mat[I] = {Matroids on ground set I},

where we say that M ≤ N if every basis of M is a basis of N. This is known as the weak
order of matroids (of the same rank). We can define structure maps by

mS,T(M1, M2) = M1 ⊕M2 and ∆S,T(M) = (M|S, M/S).

These maps are order-preserving and thus matroids form a poset Hopf monoid. Crapo
and Schmitt proved (in a different language) that this is a coadjoint Hopf monoid with
� being the free product of matroids. Then, they used some linear algebraic methods to
prove that there is a basis of the primitives by �-indecomposables. Furthermore, they
proved that matroids have a unique �-factorization, and then used special properties of
matroids to prove that this means that the comonoid of matroids is cofree.

Our method replaces matroid-specific arguments by general poset-theoretic facts.

4.3 Scheduling Problems

We now use the methods of this paper to study the Hopf algebra of scheduling problems.
Scheduling problems were first defined by Caroline Klivans and Felix Breuer [4] without
the Hopf structure.

Scheduling problems on an index set I are defined to be boolean formulas up to
logical equivalence using the symbols ∧,∨,=, 6=,¬ with atoms of the form xi ≤ xj for
i, j ∈ I. Then, a solution of a scheduling problem is an assignment of each xi to a positive
integer such that the statement is true in the usual order of integers. Geometrically, we
can assign to each scheduling problem the collection of cones of the braid arrangement
on which the problem is true. In order to study the solutions of scheduling problems,
we can define a Hopf monoid of scheduling problems as follows.

Definition 4.2. The species of scheduling problems Sch is given by

Sch[I] = {All scheduling problems on variables xi for i ∈ I}.

Given a bijection f : I → J, we define Sch[ f ] to be the natural relabeling map of the subscripts.

Define structure maps by

mS,T(φ, ψ) = φ ∧ ψ and ∆S,T(φ) = φ|S ⊗ φ/S,

where φ|S is obtained by setting every variable in the complement of S to ∞ with the
convention that ∞ < ∞ is true, and φ/S is obtained by setting every variable in S to −∞
with the convention that −∞ < −∞.
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Example 4.3. Given a graph G with vertex set I, we build a scheduling problem by

φG =
∧

(i,j)∈E(G)

xi 6= xj.

Then, solutions of this problem correspond to proper colorings of the graph G.
If we have two graphs H1 and H2 on vertex sets S and T, respectively, we can directly see

φH1 · φH2 = φH1tH2 .

Moreover,

∆S,T(φG) =

{
φG|S ⊗ φG|T if G|S and G|T are edge-disjoint subgraphs
False⊗ False else.

We can add a poset structure to this species to obtain a poset Hopf monoid. Say that
φ ≤ ψ if whenever φ is true, then so is ψ. That is, if φ =⇒ ψ. Geometrically, φ ≤ ψ if
the support of the cones of φ is contained in the support of the cones of ψ.

Proposition 4.4. The poset species Sch equipped with the multiplication and comultiplication
maps defined above forms a coadjoint poset Hopf monoid with the free product �S,T given by

φ1 � φ2 = φ1 ∧ φ2 ∧
∧

i∈S,j∈T

xi < xj.

The irreducible problems are those that can not be written as a free product of other
problems.

Proposition 4.5. If X � I is an ordered set partition, let φ(X) be the scheduling problem associ-
ated to X. Then, the primitives of Sch[I] have a basis given by {ωφ; | φ is �-indecomposable}.

In the full version of the paper we give a geometric description of these primitives.

5 Conclusion

The approach outlined in the last few examples extends to a large amount of other
examples. These include QSYM, NSYM, weak order of permutations, hypergraphs, gen-
eralized permutahedra, nestohedra, simplicial complexes, and representations of towers
of groups.

The full version of this paper will include a more detailed study of these examples
as well as: applications to antipode calculations, Cartier–Milnore–Moore type theorems,
a classification of self-adjoint Hopf monoids, applications to polynomial invariants from
character theory, and connections to incidence Hopf algebras.
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