
Séminaire Lotharingien de Combinatoire 82B (2019) Proceedings of the 31st Conference on Formal Power
Article #92, 12 pp. Series and Algebraic Combinatorics (Ljubljana)

On enumerating factorizations in reflection groups
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Abstract. We describe an approach, via Malle’s permutation Ψ on the set of irreducible
characters Irr(W), that gives a uniform derivation of the Chapuy-Stump formula for
the enumeration of reflection factorizations of the Coxeter element. It also recovers
its weighted generalization by delMas, Reiner, and Hameister, and further produces
structural results for factorization formulas of arbitrary regular elements.

Résumé. Nous décrivons une approche, via la permutation de Malle Ψ sur l’ensemble
des caractères irréductibles Irr(W), qui donne une dérivation uniforme de la for-
mule de Chapuy-Stump pour l’énumération des factorisations de l’élément Coxeter
en réflexions. Il récupère également sa généralisation pondérée par delMas, Reiner et
Hameister et produit en outre des résultats structurels pour des formules de factorisa-
tion d’éléments réguliers arbitraires.

Keywords: Frobenius lemma, Hecke algebras, Malle’s permutation

1 Introduction

A famous theorem of Cayley states that there are nn−2 vertex-labeled trees on n vertices.
The same number, as Hurwitz knew already by the end of the 19th century, enumerates
the set of shortest length factorizations t1 · · · tn−1 = (12 · · · n) ∈ Sn of the long cycle
into transpositions ti. A natural generalization of this problem, is to enumerate such
factorizations of arbitrary length.

It took almost a hundred years for the community to return to this question, but
by the end of the 80’s Jackson [12, Corol. 4.2] had computed an explicit answer. If
FACSn(t) denotes the exponential generating function for the number of arbitrary length
factorizations of the long cycle in transpositions (see (3.1)), then Jackson’s result can be
reinterpreted as follows:

FACSn(t) =
et(n

2)

n!
(
1− e−tn)n−1. (1.1)

As it often happens with some of the most fascinating properties of the symmetric
group, the previous statements are special cases of more general theorems that hold for

∗douvr001@irif.fr. The author was partially supported by the European Research Council, grant ERC-
2016- STG 716083 “CombiTop”.

mailto:douvr001@irif.fr


2 Theo Douvropoulos

a bigger class of reflection groups W. A natural analog of the long cycle is the Coxeter
element c ∈ W, while transpositions are replaced by reflections. Then, if W is well-
generated and of rank n, R denotes its set of reflections, and h is the order of c, Bessis
[2, Prop. 7.6] proved the following enumeration:

#
{
(t1, · · · , tn) ∈ Rn | t1 · · · tn = c

}
=

hnn!
|W| . (1.2)

The W-analog of Jackson’s formula (1.1) regarding arbitrary length factorizations was
discovered (and proved) by Chapuy and Stump [8] soon after. If FACW(t) denotes the
corresponding exponential generating function, they showed that

FACW(t) =
et|R|

|W|
(
1− e−th)n. (1.3)

The reduced case (1.2), which can easily be derived by calculating the leading term of
FACW(t), has a long history and appears in connection to many a mathematical endeav-
our. It originated in singularity theory, in combinatorics it appeared as the number of
maximal chains in the noncrossing lattice NC(W), and more importantly it was essential
in Bessis’ proof of the K(π, 1)-conjecture [2].

Apart from the Weyl group case [16], neither (1.3) nor (1.2) were well understood.
Although the statements are uniform for all well-generated groups, the proofs of Bessis
and Chapuy-Stump have relied on the Shephard-Todd classification (a common misfor-
tune for theorems regarding reflection groups, but also a driving reason for why the
theory is as evolved as it is). Our main contribution is a case-free proof (Corollary 3.8)
and generalization of them (Theorems 3.6 and 5.5) which in fact, in terms of Bessis’ work
[2], completes the first uniform proof of the dual braid presentation of B(W) for real W.

2 Complex reflection groups and regular elements

Given a complex vector space V ∼= Cn, we call a finite subgroup W ≤ GL(V) a complex
reflection group if it is generated by unitary reflections. These are C-linear maps t whose
fixed spaces Vt := ker(t− id) are hyperplanes (i.e. codim(Vt) = 1). We further say that
W is irreducible if it has no stable linear subspaces apart from V and {0}.

Shephard and Todd classified irreducible complex reflection groups into an infinite
3-parameter family G(r, p, n) and 34 exceptional cases indexed G4 to G37. In what fol-
lows we will silently assume that our reflection groups W are in fact irreducible. This
simplifies the argument but imposes no serious restrictions on our results, see [10, § 5.1].

We denote byR the set of reflections of W and we write A for the associated arrange-
ment of fixed hyperplanes. For such a hyperplane H, let WH be its pointwise stabilizer.
It consists of the identity and the reflections that fix H. Furthermore, because unitary
reflections are semisimple, WH is cyclic.
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Now, if eH := |WH| is the size of this cyclic group and tH is one of its generators, the
set of reflections R can be partitioned as:

R =
⋃

H∈A
{tH, · · · , teH−1

H }. (2.1)

The reflection group W acts on A determining orbits of hyperplanes which we will
denote by C ∈ A/W. The size ωC of an orbit C is given by ωC := [W : NW(H)] (for any
H ∈ C). All elements H ∈ C have conjugate stabilizers WH and we write eC for their
common order. With this notation, the cardinalities of the set of reflections R and of the
set of reflecting hyperplanes A are given by

|R| = ∑
C∈A/W

ωC(eC − 1) and |A| = ∑
C∈A/W

ωC .

Notice that if some eC 6= 2, then |R| and |A| are not equal.

Braid groups and the full twist

We say that a vector v ∈ V is regular if it is not contained in any reflection hyperplane
and we write Vreg := V \ A for the set of regular vectors. We define the pure braid group
P(W) := π1(Vreg) to be the fundamental group of the regular space Vreg. It is a theorem
of Steinberg that the action of W on V is free precisely on Vreg.

Steinberg’s theorem implies that the restriction of the quotient map ρ : V → V/W
on Vreg is a Galois covering. We define the braid group B(W) := π1(Vreg/W) to be
the fundamental group of the base of this covering and use the following short exact
sequence to obtain a surjection π : B(W) � W:

1→ π1(Vreg) ↪
ρ∗−−→ π1(Vreg/W)

π
−� W → 1. (2.2)

Given a choice of a basepoint x0 ∈ Vreg, a loop b ∈ B(W) lifts to a path that connects x0
to b∗(x0) (we call this the Galois action of b). Then, we define w := π(b) to be the unique
element w ∈W such that w · x0 = b∗(x0).

Broué-Malle-Rouquier considered [6, Notation 2.3] a particular element π of the pure
braid group P(W). It is given as the geometric circle [0, 1] 3 t→ e2πit · x0.

Definition 2.1. We call π the full twist. It is central in B(W) and lies in P(W) [10, § 2.2].

Although our initial purpose for this project was to give a uniform proof of the
Chapuy-Stump formula (1.3) which regards Coxeter elements, it soon became clear that
the techniques developed (see Lemma 3.5) apply to the larger class of Springer-regular
elements. The crucial property these elements share is that they lift to roots of π:

Definition 2.2. [14] We say that an element g ∈ W is ζ-regular if it has a regular ζ-
eigenvector. Its order d := |g| is equal to the order of ζ and is called a regular number.

Proposition 2.3. [5, Prop. 5.24] Let ζ = exp(2πil/d) be a primitive dth root of unity, and let
g be a ζ-regular element of W. Then, g has a lift g ∈ B(W) such that gd = πl.
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3 Frobenius lemma via Coxeter numbers

The lemma of Frobenius gives a representation theoretic formula for enumerating fac-
torizations of group elements, when the factors belong to given conjugacy classes:

Theorem 3.1. [13, App. A.1.3] Let G be a finite group and Ai ⊂ G, i = 1 . . . l, subsets that are
closed under conjugation. Then the number of factorizations t1 · · · tl = g of an element g ∈ W,
where each factor ti belongs to Ai, is given by

1
|G| ∑

χ∈Ĝ

χ(1) · χ(g−1) · χ(A1)

χ(1)
· · · χ(Al)

χ(1)
,

where Ĝ denotes the (complete) set of irreducible characters of G and χ(A) := ∑g∈A χ(g).

For a reflection group W, the set of reflections R is indeed closed under conjugation.
If we write FactW,g(l) for the cardinality of the following set of factorizations

FactW,g(l) := #{(t1, · · · , tl) ∈ Rl | t1 · · · tl = g},

then the lemma of Frobenius implies that

FactW,g(l) =
1
|W| ∑

χ∈Ŵ

χ(1) · χ(g−1) ·
[χ(R)

χ(1)

]l
.

After this, the exponential generating function for reflection factorizations of g equals:

FACW,g(t) := ∑
l≥0

FactW,g(l) ·
tl

l!
=

1
|W| ∑

χ∈Ŵ

χ(1) · χ(g−1) · exp
[
t · χ(R)

χ(1)

]
. (3.1)

Now, a priori the evaluations χ(R) are complex numbers, but the decomposition
(2.1) of the set R forces them to in fact be integers:

Proposition 3.2. The numbers χ(R) are integers, and they further respect the tight bounds:

−|A| · χ(1) ≤ χ(R) ≤ |R| · χ(1).

Proof. We keep the notation from (2.1) and choose a generator tH for each of the cyclic
groups WH and write eH := |WH| for its order.

For each eigenvalue λ of tH in the representation Uχ associated to χ, the contribution
of the set of reflections {tH, · · · , teH−1

H } in the evaluation of χ(R) equals ∑eH−1
k=1 λk. Since

λeH = 1, this quantity is either eH − 1 or −1 depending on whether λ itself is 1 or not.
This implies the integer property as well as the inequalities, after noticing that the

multiset of eigenvalues of tH acting on Uχ has χ(1)-many elements. In particular, in
order to recover the second inequality we use, after (2.1), that ∑H∈A(eH − 1) = |R|.

For the tightness statement, the higher bound is achieved when each eigenvalue of
each tH equals 1; of course this happens only in the trivial representation. For the lower
bound, we need all λ 6= 1, which happens for instance in the det representation.
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The character values χ(R) on the sum of reflections are related to a statistic of the
associated representation called the Coxeter number and denoted by cχ. We postpone to
Section 4.1 the discussion about its origin and for now we only give the definition:

Definition 3.3. [11, §1.3] We define the Coxeter number cχ associated to the character χ,
as the normalized trace of the central element ∑t∈R(1− t). That is,

cχ :=
1

χ(1)
·
(
|R|χ(1)− χ(R)

)
= |R| − χ(R)

χ(1)
.

We record the following as an immediate corollary of Theorem 3.1:

Corollary 3.4. The exponential generating function FACW,g(t) for arbitrary length reflection
factorizations of an element g ∈W is given by:

FACW,g(t) =
et|R|

|W| ∑
χ∈Ŵ

χ(1) · χ(g−1) · e−t·cχ . (3.2)

The following lemma is the main technical ingredient for the proof of Theorem 3.6;
we postpone an argument until Section 5, where we prove the more general Lemma 5.2.
It relies on a cyclic action on the set Irr(W) of irreducible representations of W which
is induced by a Galois action (see Definition 4.4) on the modules of the Hecke algebra
H(W).

Lemma 3.5. For a complex reflection group W, and a regular element g ∈ W, the total contri-
bution in (3.2) of those characters χ ∈ Ŵ for which cχ is not a multiple of |g| is 0.

Theorem 3.6. For a complex reflection group W, and a regular element g ∈ W, the exponential
generating function FACW,g(t) of reflection factorizations of g takes the following form:

FACW,g(t) =
et|R|

|W| ·
[
(1− X)lR(g) ·Φ(X)

]∣∣∣
X=e−t|g|

.

Here lR(g) is the reflection length of g and Φ(X) is a polynomial of degree |R|+|A||g| − lR(g) in
X, which is not further divisible by (1− X) and has constant term equal to 1.

Proof. After Lemma 3.5 we only consider terms of the form χ(1) · χ(g−1) · e−t·k|g|, k ∈
Z in the evaluation of (3.2). Furthermore, rephrasing Proposition 3.2 in terms of the
Coxeter numbers (via Definition 3.3) forces k ∈ {0, . . . , |R|+|A||g| }. This means that if we

set X = e−t|g|, we can rewrite (3.2) as

FACW,g(t) =
et|R|

|W| · Φ̃(X),
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where Φ̃(X) is a priori a polynomial in C[X] of degree (|R|+ |A|)/|g|. From the proof
of Lemma 3.5 we have that the constant term of Φ̃(X) is equal to χtriv(1) · χtriv(g−1) = 1.

Now, since Φ̃(X) essentially encodes the generating function FACW,g(t), the combi-
natorial properties of the latter impose restrictions on its structure. In particular, consider
the root factorization of the polynomial:

Φ̃(X) = a(α1 − X)(α2 − X) · · · (αr − X).

If we revert to X = e−t|g|, each of the linear terms above has a Taylor expansion that
starts with (αi − 1) + t|g| + · · · . This means that it contributes to the leading term of
FACW,g(t) either by a factor of (αi − 1) or by a factor of t|g|, depending on whether αi
equals 1 or not.

On the other hand, the combinatorial definition of FACW,g(t) in (3.1) implies that its
leading term is a multiple of tlR(g). Therefore, exactly lR(g)-many of the roots of Φ̃ must
be equal to 1 and this completes the proof. The statements about the degree and the
constant term follow from the analogous results for Φ̃ described previously.

Remark 3.7. In the previous argument, the existence of a reflection length and therefore
the knowledge that the first few terms of the generating function FACW,g(t) are zero,
came for free but was very useful nonetheless. It is hoped that similar ideas might
apply to other groups with natural length functions, such as GLn(Fq). Moreover, one
might construct special length functions to support different enumerative questions (as
we pursue in Proposition 3.10 and in Definition 5.3).

Corollary 3.8. For a complex reflection group W and a regular element g ∈W of order |g| = dn,
the exponential generating function for reflection factorizations of g is given by:

FACW,g(t) =
et|R|

|W| ·
(
1− e−t|g|)lR(g).

Sketch: This is essentially due to a theorem of Bessis [1, Prop. 4.2] which states that when
dn is regular, the minimal number of reflections needed to generate W is (|R|+ |A|)/dn.
The remaining details appear in [10, Corol. 3.9].

Remark 3.9. When W is a well-generated group and c a Coxeter element of W, we always
have |c| = dn. The previous corollary therefore completes a proof of the Chapuy-Stump
formula (1.3) and extends it to the groups for which dn is regular.

We finish this section with an example where we can push the previous ideas slightly
further by considering a different length function, the transitive factorization length:

Proposition 3.10. [10, Prop. 3.11] The exponential generating function for transitive reflection
factorizations of the regular element g = (12 · · · n− 1)(n) ∈ Sn is given by

TR-FACSn,g(t) =
et(n

2)

n!
·
(
1− e−t(n−1))n.
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4 Hecke algebras and the technical lemma

The following definition of Hecke algebras, which recovers the usual Iwahori-Hecke
algebras when W is a Coxeter group, is due to Broué, Malle, and Rouquier, and was
introduced in their seminal paper [6].

Let C ∈ A/W denote an orbit of hyperplanes, and eC the common order of the
pointwise stabilizers WH (for H ∈ C). Consider now a set of ∑C∈A/W eC many variables
u := (uC,j)(C∈A/W,0≤j≤eC−1) and let Z[u, u−1] be the Laurent polynomial ring on them.

Definition 4.1. [6, Defn. 4.21] The generic Hecke algebra H(W) associated to W is the
quotient of the group ring Z[u, u−1]B(W) of the braid group, over the ideal generated
by the elements of the form

(s− uC,0)(s− uC,1) · · · (s− uC,eC−1), (4.1)

which we call deformed order relations. Here s runs over all possible braid reflections
(these are a set of topological generators of B(W) [10, § 2.1]) around the stratum C of H.

Broué, Malle, Rouquier also made various conjectures about these Hecke algebras, the
most important of which was until recently known as “The BMR freeness conjecture":

Theorem. [4, after Thm. 3.5] The algebra H(W) is a free Z[u, u−1]-module of rank |W|.

The Hecke algebra is by construction a deformation of the group algebra of W. In-
deed, for ζn := exp(2πi/n), the specialization σ : uC,j → ζ

j
eC turns the defining relations

(4.1) to order relations of the form seC = 1, where we have W ∼= B(W)/〈seC 〉, [10, § 2.1].
Any ring map θ : Z[u, u−1] → R defines an R-module structure on the Hecke al-

gebra and will be called a specialization of it. We will further say that θ is an admissible
specialization if it factors through σ (i.e. if there is a map f such that f ◦ θ(uC,j) = ζ

j
eC ).

Two particular specializations are fundamental in what follows. We first pick a set of
parameters x := (xC)C∈A/W and the single parameter x and define the ring maps:

θx : Z[u, u−1]→ Z[x, x−1] and θx : Z[u, u−1]→ Z[x, x−1]

θx(uC,j) =

{
xC if j = 0

ζ
j
eC if j 6= 0

θx(uC,j) =

{
x if j = 0

ζ
j
eC if j 6= 0

(4.2)

Both θx and θx are admissible specializations (as seen by further sending xC or x
to 1). We write Hx(W) and Hx(W) for the corresponding Hecke algebras; by Tits’
deformation theorem [10, § 4.1] (and because of the BMR-freeness theorem) there is a
spectra-preserving bijection between their representations and those of W. Therefore,
given a character χ of W, we will write χx and χx for the corresponding characters of
Hx(W) and Hx(W) respectively.
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4.1 Local Coxeter numbers and Malle’s character permutation

We are now going to define a local version of Coxeter numbers (see Definition 3.3) and
study how they naturally appear in our key technical lemma (Proposition 4.5).

Definition 4.2. We define the local Coxeter number cχ,C associated to the character χ and
the hyperplane orbit C ∈ A/W, as the normalized trace

cχ,C :=
1

χ(1)
· χ
(

∑
Vt∈C

(1− t)
)

.

Here, the sum is taken over all reflections t whose fixed hyperplane belongs to the orbit
C. Notice that these numbers refine the Coxeter numbers in the sense that cχ = ∑ cχ,C .

The following statement is proved similarly to Proposition 3.2 (see [10, Corol. 4.16]).
The integer property is [7, Corol. 4.17].

Proposition 4.3. The numbers cχ,C are integers and they satisfy 0 ≤ cχ,C ≤ eC ·ωC .

The local Coxeter numbers cχ,C appear in the following character calculation from [7]
(and we have reinterpreted their formulas, but one can find more details in [10, § 4.2-4.3]).
Let π be the full twist as in Definition 2.1 and w a regular element. By Proposition 2.3 w
has a lift w in B(W), that satisfies wd = πl for suitable l and d. Then, for the characters
χx of Hx(W) (see after (4.2)), and the elements Tπ and Tw of the Hecke algebra we have:

χx(Tπ) = χ(1) ∏
C∈A/W

x
eCωC−cχ,C
C and χx(Tw) = χ(w) ∏

C∈A/W
x
(eCωC−cχ,C )l/d
C . (4.3)

Moreover, after the further specialization xC → x of θx from (4.2) and for the charac-
ters χx of Hx(W), we have (recalling that ∑ eCωC = |R|+ |A|):

χx(Tπ) = χ(1) · x|R|+|A|−cχ and χx(Tw) = χ(w) · x(|R|+|A|−cχ)l/d. (4.4)

Malle’s permutation is a Galois action on the characters

The fake degree Pχ(q) := ∑ qei(χ) of a character χ ∈ Ŵ is a polynomial that records
its exponents ei(χ) (see [14, §4.4]). Beynon and Lusztig [3, Prop. A] had observed a
remarkable reciprocity property for these polynomials. They satisfy

Pχ(q) = qcχ Pι(χ)(q
−1),

where cχ is the Coxeter number as given in Definition 3.3 and ι is a permutation on
Irr(W) that for Weyl groups is the identity apart from two characters of E7 and four of
E8.
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Malle later on [15, Thm. 6.5] extended this reciprocity result for all complex reflection
groups, defining a permutation Ψ on Irr(W) that is induced by a Galois action on the
irreducible characters of the Hecke algebra (the two permutations satisfy ι(χ) = Ψ(χ∗)).
This permutation of Malle is the missing ingredient for Lemma 3.5; the characters χ for
which |g| does not divide cχ are grouped together by Ψ and their contributions cancel.

Recall from (4.2) the specializations of the Hecke algebra Hx(W) and Hx(W). It is
a theorem of Malle [15, Thm. 5.2] that one can find split extensions C(y)/C(x) and
C(y)/C(x) of the coefficient fields, by introducing parameters y := (yC)C∈A/W and
y, which satisfy yNW

C = xC and yNW = x for some number NW . This means that all
representations of Hx(W) and Hx(W) are realizable over C(y) and C(y) respectively.

Definition 4.4. We consider the permutations ΨC and Ψ on the sets Irr(Hx(W)) and
Irr(Hx(W)) that are induced by the Galois automorphisms ΦC (for C ∈ A/W) and Φ:

ΦC ∈ Gal
(
K(y)/K(x)

)
Φ ∈ Gal

(
K(y)/K(x)

)
yC → e2πi/NW · yC y→ e2πi/NW · y

In particular, they are defined via ΨC(χy)(Tg) := ΦC
(
χy(Tg)

)
and similarly for Ψ. By

Tits’ deformation theorem, they induce permutations on the set Ŵ of irreducible charac-
ters of W, which we also denote by ΨC and Ψ.

The following lemma is an almost immediate application of the character formulas
(4.3) and (4.4), in conjunction with Tits’ deformation theorem, and Definition 4.4:

Proposition 4.5 (The key technical lemma). [10, Prop. 4.19]
Let g be a ζ-regular element of W, with ζ = e2πil/d of order d, χ ∈ Ŵ an irreducible character,
and C ∈ A/W an orbit of hyperplanes. Then, we have

ΨC(χ)(g) = exp
(
− 2πi ·

lcχ,C

d
)
· χ(g) and Ψ(χ)(g) = exp

(
− 2πi · lcχ

d
)
· χ(g).

5 The weighted enumeration

The following section studies the weighted enumeration of reflection factorizations as
considered in [9]. It provides a uniform proof of their result and extends it in a similar
direction as with the Chapuy-Stump formula (1.3).

Definition 5.1. Consider a set of variables w := (wC)(C∈A/W) and a weight function

wt : R → {wC | C ∈ A/W},
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such that wt(t) = wC if C is the orbit that contains the fixed hyperplane Vt. Then, for a
given element g ∈W, we count its weighted reflection factorizations via:

FACW,g(w, z) := ∑
(t1,··· ,tN)∈RN

t1···tN=g

wt(t1) · · ·wt(tN) ·
zN

N!
.

Because the sets Cref := {t ∈ R | Vt ∈ C} are closed under conjugation, the Lemma
of Frobenius can again be used to express FACW,g(w, z) as a finite sum of exponentials.
Assuming that there are r = |A/W| different orbits of hyperplanes, denoted C1, · · · , Cr,
Theorem 3.1 implies that

FACW,g(w, z) =
1
|W| ∑

χ∈Ŵ

χ(1) · χ(g−1) · exp
[
zwC1

·
χ(Cref

1 )

χ(1)

]
· · · exp

[
zwCr

·
χ(Cref

1 )

χ(1)

]
.

By Definition 4.2 we can rewrite the quantities in the exponentials in terms of local Cox-
eter numbers. Indeed, we have cχ,C = |Cref| − χ(Cref)/χ(1) and if we define wt(R) :=
∑t∈Rwt(t), the previous expression becomes a direct analog of (3.2) :

FACW,g(w, z) =
ez·wt(R)

|W| ∑
χ∈Ŵ

χ(1) · χ(g−1) ·
(
e−zwC1

)cχ,C1 · · ·
(
e−zwCr

)cχ,Cr . (5.1)

Lemma 5.2. For a complex reflection group W, and a regular element g ∈ W, the total contri-
bution in (5.1) of those characters χ ∈ Ŵ for which any cχ,C is not a multiple of |g| is 0.

Proof. We have to start by ordering the orbits C ∈ A/W (arbitrarily); we will then apply
the following idea sequentially: We partition the set of irreducible characters χ ∈ Ŵ
into orbits under the action of ΨC1 . Pick a character χ whose orbit is not a singleton
and let k be the smallest number such that Ψk

C1
(χ) = χ (by Proposition 4.5, we will have

k = |g|
gcd(cχ,C1

,|g|)). Now, the degrees of characters and the (local) Coxeter numbers are

respected by ΨC1 (see [10, Prop. 4.18]), and so it is enough to show that

k

∑
j=1

Ψj
C1
(χ)(g−1) = 0.

Indeed, this follows immediately from Proposition 4.5 as Ψj
C1
(χ)(g−1) = ξ jχ(g−1) for

some kth root of unity ξ. Notice now that we can continue with the remaining characters
and the orbit C2 without worrying that we might eventually cancel the same character
twice.

Before we proceed with our structural result for weighted enumeration formulas, we
introduce the following combinatorial generalizations of the length function lR(g):
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Definition 5.3. For an arbitrary element g ∈ W and an orbit C ∈ A/W, we define
nC(g) to be the smallest number of reflections in Cref that may appear in any reflection
factorization of g (i.e. not necessarily reduced).

Remark 5.4. Notice that it is not always true that ∑ nC(g) = lR(g). Indeed, the element
g := (121̄2̄) = −1 in B2 (which is the square of the Coxeter element) can be written both
as g = (12)(12̄) and as g = (11̄)(22̄), so that n1(g) = n2(g) = 0.

Theorem 5.5. For a complex reflection group W and a regular element g ∈ W, the exponential
generating function FACW,g(w, z) of weighted reflection factorizations of g takes the form:

FACW,g(w, z) =
ez·wt(R)

|W| ·
[
Φ(X) · ∏

C∈A/W
(1− XC)nC (g)

]∣∣∣
XC=e−zwC |g|

.

Here, Φ(X) is a polynomial of degree (eC · ωC)/|g| − nC(g) on each of its variables XC , it has
constant term Φ(0) = 1, and it is not further divisible by any (1− XC). The exponents satisfy

eCωC
|g| ≥ nC(g) ≥ lR(g)− |R|+ |A| − eCωC

|g| .

Remark: The proof [10, Thm. 5.5] is very similar to that of Theorem 3.6. One significant
difference is that at some point it becomes necessary to write a generating function for
factorizations (of arbitrary length) that have precisely nC reflections from the orbit C.
This is done again through the Lemma of Frobenius.

Corollary 5.6. For a complex reflection group W and a regular element g ∈W of order |g| = dn,
the weighted reflection factorizations of g are counted by the formula:

FACW,g(w, z) =
ez·wt(R)

|W| · ∏
C∈A/W

(
1− e−zwC|g|

)nC (g),

where the exponents are explicitly given by nC(g) = (eCωC)/|g|.

Remark: This is essentially the same argument as in Corollary 3.8.

Remark 5.7. For well-generated groups W, we always have |c| = dn so that the previous
statement recovers the main theorem of [9] and extends it to the groups with dn regular.
Notice that while in well-generated groups we have at most two orbits of hyperplanes,
the groups G7, G11, G15, G19 have three orbits. For all of them but G15, dn is regular.
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