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Abstract. We define a new combinatorial dynamical system on node-labelings of
a poset P by rational functions called birational antichain rowmotion (BAR-motion for
short). It is analogous to the previously-studied birational rowmotion action (here called
birational order rowmotion, or BOR-motion). The latter action is detropicalized from an
extension of combinatorial rowmotion on order ideals of P to Stanley’s order polytope
OP(P). Analogously BAR-motion detropicalizes the extension of rowmotion on an-
tichains of P to the chain polytope C(P).

We study BAR-motion by defining a birational antichain toggle group generated by
involutions called toggles. This lifts Striker’s toggle group on the set of antichains of a
poset to the birational realm. We construct an explicit isomorphism between this group
and Einstein and Propp’s group of birational order toggles, lifting an analogous one
between the toggle groups of order ideals and antichains at the combinatorial level.

For certain nice families of posets, the order of BOR-motion is known to be finite, and
can often be easily computed. We lift Stanley’s transfer map between C(P) and OP(P)
to a birational transfer map, which allows us to easily deduce certain properties of one
kind of birational rowmotion from the other. We take advantage of this to derive the
periodicity and order of BAR-motion on certain root and minuscule posets. We also
lift a refined homomesy result of Propp and the second author from the combinatorial
setting to the birational one, using an analogue of the “Stanley–Thomas” word, which
cyclically rotates equivariantly with BAR-motion.

Keywords: birational rowmotion, dynamical algebraic combinatorics, homomesy,
periodicity, poset, toggling.

1 Introduction

Combinatorial rowmotion is a particular permutation of the set of order ideals J (P) of a
finite poset P or of the set of antichains A(P) of P. It was first studied as a map on A(P)
by Brouwer and Schrijver [2], and goes by several names; in recent literature, the name
“rowmotion,” due to Striker and Williams [19] (who summarize the history), has stuck.
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Rowmotion has proven to be of great interest in dynamical algebraic combinatorics.
On several “nice” posets (e.g., positive root poset or minuscule posets, such as a product
of two chains), rowmotion exhibits various phenomena including periodicity (of a rela-
tively small order), cyclic sieving (as defined by Reiner, Stanton, and White [13]), and
homomesy (where a natural statistic, e.g. cardinality, has the same average over every
orbit) [1, 8, 10, 12, 15, 20]. Rowmotion is related to Auslander–Reiten translation on
certain quivers [21]. Quite surprisingly, some of these features extend to the piecewise-
linear (order polytope) level and can be lifted further to the birational level. [4]. One
sometimes gets periodicity of the same order as the combinatorial map, and homomesy
extends as well. Birational rowmotion is related to Y-systems of type Am× An described
in Zamolodchikov periodicity [14, §4.4] and to the R-systems of Galashin–Pylyavskyy [6].

The lifting of order ideal rowmotion (herein denoted ρJ ) to BOR-motion (birational
order rowmotion) proceeds by first writing ρJ as a product of involutions called toggles,
which act on J (P), the set of order ideals of a poset. These toggles are then extended
to Stanley’s order polytope OP(P), which can then be lifted (via detropicalization) to
toggles at the birational level [4]. Striker defined antichain toggles that act on A(P), the
set of antichains of a poset [18], as part of a broader study of toggling in general. The
first author gave an explicit isomorphism between these two different toggle groups for
the same poset P, and extended these results to the piecewise-linear level, where A(P)
extends to Stanley’s chain polytope C(P) [9]. In this work we lift this as before to obtain a
new operation called Birational Antichain Rowmotion or BAR-motion for short.

We show that BAR-motion is periodic on P = [a]× [b] (product of two chains), with
the same order as BOR-motion (or indeed order ideal rowmotion), and lift a homomesy
result of [12] for fibers of the poset P = [a]× [b] (product of two chains) to BAR-motion,
which we conjecture holds for all a, but currently only have a proof for a ≤ 2. Our
main tools for doing this include a lifting of Stanley’s transfer map between O(P) and
C(P), and a generalization of the Stanley–Thomas word, which provides an equivariant
projection of BAR-motion to cyclic rotation. (See Section 3.)

The authors are grateful for useful conversations with David Einstein, Darij Grinberg,
James Propp, Richard Stanley, Jessica Striker, and Corey Vorland.

1.1 Rowmotion in the combinatorial realm

We assume familiarity with basic notions from the theory of posets (chains, antichains,
order ideals, order filters, linear extensions, etc.) as given in [17, Ch. 3]. Throughout this
paper P will denote a finite poset.

To define rowmotion, following the notation of Einstein-Propp [4], we define the
following natural bijections between the sets J (P) of all order ideals of P, F (P) of all
order filters of P, and A(P) of all antichains of P.
• The map Θ : 2P → 2P where Θ(S) = P \ S is the complement of S (so Θ sends
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order ideals to order filters and vice versa).
• The up-transfer ∆ : J (P)→ A(P), where ∆(I) is the set of maximal elements of I.

For an antichain A ∈ A(P), ∆−1(A) = {x ∈ P : x ≤ y for some y ∈ A}.
• The down-transfer ∇ : F (P) → A(P), where ∇(F) is the set of minimal elements

of F. For an antichain A ∈ A(P), ∇−1(A) = {x ∈ P : x ≥ y for some y ∈ A}.

Definition 1.1. Order ideal rowmotion is the map ρJ : J (P) → J (P) given by the
composition ρJ = ∆−1 ◦ ∇ ◦ Θ. Antichain rowmotion is the map ρA : A(P) → A(P)
given by the composition ρA = ∇ ◦Θ ◦ ∆−1.

Example 1.2. Below we show examples of ρJ and ρA on the positive root poset Φ+(A3).
In each step, the elements of the subset of the poset are given by the filled-in circles.

ρJ : Θ7−→ ∇7−→ ∆−1
7−→

ρA :
∆−1
7−→ Θ7−→ ∇7−→

1.2 The order ideal toggle group

The map ρJ can also be written a composition of involutions on J (P) called toggles,
as first shown by Cameron and Fon-Der-Flaass [3]. They also proved that for any finite
connected poset P, the toggle group TogJ (P) generated by {te : e ∈ P} is either the
symmetric or alternating group on the set J (P).

Definition 1.3 ([3]). For e ∈ P, the order ideal toggle corresponding to e is the map

te : J (P)→ J (P) defined by te(I) =


I ∪ {e} if e 6∈ I and I ∪ {e} ∈ J (P),
I \ {e} if e ∈ I and I \ {e} ∈ J (P),
I otherwise.

Let TogJ (P) denote the toggle group of J (P) generated by the toggles {te : e ∈ P}.

The toggle te either adds or removes e from the order ideal if the resulting set is still
an order ideal, and otherwise does nothing. The following proposition presents basic
properties of order ideal toggles.

Proposition 1.4 ([3]). Each toggle tx is an involution (i.e., t2
x is the identity). Two toggles tx, ty

commute if and only if neither x nor y covers the other.

Proposition 1.5 ([3]). For any linear extension (x1, x2, . . . , xn) of P, order ideal rowmotion is
given by ρJ = tx1tx2 · · · txn .
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1.3 The antichain toggle group

Toggling makes sense in a broader context, as formalized by Striker [18]. We can define
antichain toggles on A(P), by replacing J (P) with A(P) in the definition. Removing any
element from an antichain always yields an antichain, giving a simpler second case.

Definition 1.6 ([18]). Let e ∈ P. Then the antichain toggle corresponding to e is the map
τe : A(P)→ A(P) defined by

τe(A) =


A ∪ {e} if e 6∈ A and A ∪ {e} ∈ A(P),
A \ {e} if e ∈ A,
A otherwise.

Let TogA(P) denote the toggle group of A(P) generated by the toggles {τe : e ∈ P}.

Proposition 1.7 ([18]). Each antichain toggle τx is an involution. Two toggles τx, τy commute
if and only if x = y or x and y are incomparable.

The first author constructed an explicit isomorphism between TogJ (P) and
TogA(P) [9].

Definition 1.8. For e ∈ P, we define the following.
• Set t∗e ∈ TogA(P) by t∗e := τe1τe2 · · · τek τeτe1τe2 · · · τek where e1, . . . , ek are the ele-

ments of P covered by e. (If e is a minimal element of P, then k = 0 and t∗e = τe.)
• Set ηe ∈ TogJ (P) by ηe := tx1tx2 · · · txk where (x1, x2, . . . , xk) is a linear extension of

the subposet {x ∈ P : x < e} of P.1

• Let τ∗e := ηeteη
−1
e ∈ TogJ (P).

The following theorem gives an explicit isomorphism from TogA(P) to TogJ (P) via
τe 7→ τ∗e , with inverse given by te 7→ t∗e .

Theorem 1.9 ([9, Theorems 2.15 and 2.19]). The following diagrams commute.

J (P)

A(P)

J (P)

A(P)
∆

t∗e

te

∆
J (P)

A(P)

J (P)

A(P)
∆

τe

τ∗e

∆

Note that in Theorem 1.9, the left commutative diagram together with the basic prop-
erties of toggles (Proposition 1.4 and 1.7) are enough to prove the right commutative
diagram using group theory alone. A consequence of this isomorphism is that antichain
rowmotion is also a product of antichain toggles in an order specified by a linear exten-
sion, but in the opposite order from order ideal rowmotion.

1Any two linear extensions of a poset differ by a sequence of transpositions between adjacent incom-
parable elements [5]. So ηe is well-defined.
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Proposition 1.10 ([9, Prop. 2.24]). For any linear extension (x1, x2, . . . , xn) of P, antichain
rowmotion is given by ρA = τxn · · · τx2τx1 .

1.4 Birational dynamics

The toggling perspective allows us to extend these maps from the combinatorial realm
(on finite sets) to the piecewise-linear realm (polytopes whose vertices correspond to
these sets), and then lift to the birational realm by detropicalizing the operations [4].
Piecewise-linear dynamics begin with two polytopes introduced by Stanley [16], the
order polytope and the chain polytope of P. The vertices of these polytopes are the sets
F (P) of order filters and A(P) of antichains (associating a subset of P with its indicator
function labeling). Einstein and Propp defined piecewise-linear toggle operations on
the order polytope that match the order ideal toggle te when restricted to the vertices
(though here we use order filters instead of order ideals) [4, §3, 4].

This paper focuses on the generalization to the birational realm. Let K be a field.
To define birational toggles, we “detropicalize” the operations from the piecewise-linear
toggles, by replacing addition with multiplication and the max operation with addition.
The additive identity 0 lifts to 1, and 1 lifts to a generic fixed constant C ∈ K. This gives
the following definition of the birational order toggle. (The definition in [4] is slightly
more general than we need here; setting α = 1 and ω = C in their version gives ours.)

Definition 1.11 ([4, Definition 5.1]). Let KP be the set of K-labelings of the elements of
P. We extend P to the poset P̂ by adding a minimal element 0̂ and maximal element 1̂.
For e ∈ P, the birational order toggle at e is the birational map Te : KP 99K KP given by

(Te( f ))(x) =


f (x) if x 6= e

∑
y∈P̂,ylx

f (y)

f (e) ∑
y∈P̂,ymx

1
f (y)

if x = e

where we set f (0̂) = 1 and f (1̂) = C. The notation y l x means “x covers y’.

The birational order toggles {Te : e ∈ P} generate a group, which we will call
BTogO(P). These are involutions whose commutation is like with order ideal toggles.

Proposition 1.12. Each toggle Tx is an involution (i.e., T2
x is the identity). Two toggles Tx, Ty

commute if and only if neither x nor y covers the other.

Definition 1.13 ([4, Definition 5.2]). Let (x1, x2, . . . , xn) be any linear extension of P.
The birational analogue of order ideal rowmotion, which we will call birational order
rowmotion (or BOR-motion), is BOR = Tx1 Tx2 · · · Txn . (Compare with Proposition 1.5.)
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Any property of periodicity or homomesy satisfied by birational toggling and row-
motion also holds in the piecewise-linear realm (by tropicalization) and furthermore in
the combinatorial realm (by restriction). What is more surprising, however, is that for
certain families of posets (e.g. type A and B root posets and products of two chains),
many properties (particularly periodicity) that hold in the combinatorial realm extend
to the birational realm; see [4, 7, 11]. Furthermore, studying birational rowmotion can
shed light on some patterns in the combinatorial realm, such as why the posets where
rowmotion has nice properties are usually graded posets; see [7, §3–6].

1.5 Birational transfer maps

Stanley defined a bijection between the order and chain polytopes of P called the transfer
map. By detropicalizing the operations, we get the birational analogue of the up-transfer
map. Einstein and Propp prove [4, §6] that BOR = Θ ◦ ∆−1 ◦ ∇ where the birational
transfer maps are defined below. The order of composition differs from order ideal
toggling since birational rowmotion ρJ is defined through the order filter perspective.

Definition 1.14 ([4, §6]). For a labeling f ∈ KP and element x ∈ P,
• (Θ f )(x) = C

f (x) ,

• (∇ f )(x) = f (x)
∑

ylx
f (y) (with f (0̂) = 1),

• (∆−1 f )(x) = ∑
{

f (y1) f (y2) · · · f (yk) : x = y1 l y2 l · · ·l yk l 1̂
}

.

The maps Θ, ∆, and ∇ are called complementation, up-transfer, and down-transfer.
They generalize those above Definition 1.1. We use the same symbols in both the combi-
natorial and birational realms, allowing context to clarify which is meant.

2 Birational antichain toggling and rowmotion

2.1 Birational antichain rowmotion

Now we will combine the different generalizations of toggling and study a birational
analogue of antichain toggling and rowmotion.

Definition 2.1. Birational antichain rowmotion (or BAR-motion) is the birational map
BAR = ∇ ◦Θ ◦ ∆−1 where ∇, Θ, ∆−1 are defined in Definition 1.14.

Example 2.2. Figure 1 shows the poset P = [2] × [3] and a generic labeling g ∈ KP.
Figure 2 show one iteration of BAR-motion on this labeling.
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(1, 1)

(2, 1) (1, 2)

(2, 2) (1, 3)

(2, 3)

u

v w

x y

z

Figure 1: Left: The poset [2] × [3]. Right: A generic labeling on [2] × [3], used in
examples throughout this abstract.

u

v w

x y

z

BAR

∆−1

∇

Θ

u(vx + wx + wy)z
vxz w(x + y)z

xz yz
z

C
u(vx+wx+wy)z

u(vx+wx+wy)
vx

u(vx+wx+wy)
w(x+y)

vw(x+y)
vx+wx+wy

w(x+y)
y

xy
x+y

C
u(vx+wx+wy)z

C
vxz

C
w(x+y)z

C
xz

C
yz

C
z

Figure 2: One iteration of BAR-motion on [2]× [3].

2.2 Birational antichain toggle group

As in the combinatorial realm, we can obtain an equivalent expression of BAR-motion
through toggle operations, which we now introduce.

Definition 2.3. Let e ∈ P and g ∈ KP. Then we define MCe(P) as the set of all maximal
chains of P through e and Υeg = ∑

(y1,...,yk)∈MCe(P)
g(y1) · · · g(yk).

Definition 2.4. Let e ∈ P. The birational antichain toggle is the rational map τe : KP 99K
KP defined as follows:
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(
τe(g)

)
(x) =


C

∑
(y1,...,yk)∈MCe(P)

g(y1) · · · g(yk)
if x = e

g(x) if x 6= e

=


C

Υeg
if x = e

g(x) if x 6= e.

Let BTogA(P) denote the group generated by the toggles {τe : e ∈ P}. We call
BTogA(P) the birational antichain toggle group.

The definition of the birational antichain toggle comes directly from detropicaliz-
ing the operations in the toggles on the chain polytope (as defined in [9, §3]), which
correspond to the antichain toggles when restricting to the vertices of the chain poly-
tope. Note that we use the same notation for (combinatorial) antichain toggles τe and
birational antichain toggles. In the remainder of this abstract, we are working in the bi-
rational realm (except briefly in Section 3 when we discuss the combinatorial results we
are lifting to the birational realm). It is not hard to verify the following basic properties
of antichain toggles hold for the birational liftings too.

Proposition 2.5. Each birational antichain toggle τx is an involution. Two toggles τx, τy com-
mute if and only if x = y or x and y are incomparable.

We construct an isomorphism between the birational toggle groups BTogO(P) and
BTogA(P) analogous to one for the combinatorial toggle groups TogJ (P) and TogA(P).

Definition 2.6. For e ∈ P, we define the following.
• Set T∗e ∈ BTogA(P) by T∗e := τe1τe2 · · · τek τeτe1τe2 · · · τek where e1, . . . , ek are the ele-

ments of P covered by e. (If e is a minimal element of P, then k = 0 and t∗e = τe.)
• Set ηe ∈ BTogO(P) by ηe := Tx1 Tx2 · · · Txk where (x1, x2, . . . , xk) is a linear extension

of the subposet {x ∈ P : x < e} of P.
• Let τ∗e := ηeTeη

−1
e ∈ BTogO(P).

Theorem 2.7. Let e ∈ P. Then the following diagrams commute on the domains in which the
maps are defined. So there is an isomorphism from BTogA(P) to BTogO(P) given by τe 7→ τ∗e
with inverse given by Te 7→ T∗e .

KP

KP

KP

KP

KP

KP

∆−1

Te

T∗e

∆−1

Θ Θ

KP

KP

KP

KP

KP

KP

∆−1

τ∗e

τe

∆−1

Θ Θ
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u

v w

x y

z τ(1,1)7−→

C
u(vx+wx+wy)z

v w

x y

z τ(2,1)7−→

C
u(vx+wx+wy)z

u(vx+wx+wy)
vx

w

x y

z

Figure 3: The effect of applying the toggles τ(1,1) and then τ(2,1), as in Example 2.9.

The proof of Theorem 2.7 is very similar to the piecewise-linear realm proof in [9,
Thm. 3.19] but with detropicalized operations.

Using the isomorphism between the two toggle groups, we can prove that for a linear
extension (x1, x2, . . . , xn) of P, BOR = Tx1 Tx2 · · · Txn = τ∗xn · · · τ

∗
x2

τ∗x1
using a purely group-

theoretic proof analogous to the one found in [9, Thm. 3.21]. This gives the following
birational generalization of Proposition 1.10.

Proposition 2.8. Let (x1, x2, . . . , xn) be any linear extension of a finite poset P. Then BAR =
τxn · · · τx2τx1 .

Example 2.9. Reconsider the poset P = [2]× [3] and labeling of Figure 1. We perform

BAR along the linear extension
(
(1, 1), (2, 1), (1, 2), (2, 2), (1, 3), (2, 3)

)
. There are three

maximal chains through the bottom element (1, 1) of P:
• (1, 1)l (2, 1)l (2, 2)l (2, 3) with product of labels uvxz
• (1, 1)l (1, 2)l (2, 2)l (2, 3) with product of labels uwxz
• (1, 1)l (1, 2)l (1, 3)l (2, 3) with product of labels uwyz
For Υ(1,1)g, we add up the products of the labels on these three maximal chains, and

get Υ(1,1)g = uvxz + uwxz + uwyz = u(vx + wx + wy)z. Then to apply the toggle τ(1,1),
we change the label of (1, 1) from u to C

u(vx+wx+wy)z . This is shown in Figure 3. Now
we apply τ(2,1) to τ(1,1)g. There is only one maximal chain through (2, 1). The product
of labels on that maximal chain is Υ(2,1)(τ(1,1)g) =

C
u(vx+wx+wy)z vxz. Thus we change the

label of (2, 1) from v to C
C

u(vx+wx+wy)z vxz
= u(vx+wx+wy)

vx as in Figure 3.

To complete one iteration of BAR we must then apply the toggles τ(1,2), τ(2,2), τ(1,3),
and τ(2,3) in that order, giving the same result as in Figure 2.

Iterating BAR five times to the generic labeling on [2]× [3] returns the original label-
ing again. We can explain this on a general product of two chains poset [a]× [b] with
element set {(i, j) ∈ Z2 : 1 ≤ i ≤ a, 1 ≤ j ≤ b} with (i1, j1) ≤ (i2, j2) if and only if i1 ≤ i2
and j1 ≤ j2. For the poset [a]× [b], Grinberg and the second author proved that BOR-
motion has order a + b [7]. From the down-transfer, we can conclude the periodicity of
BAR from that of BOR because BOR = ∇−1 ◦ BAR ◦∇.
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Theorem 2.10. On P = [a]× [b], the order of BAR-motion is a + b.

3 Homomesy of fiber products for BAR-motion on [2]× [b]

Let S be a collection of combinatorial objects, and f : S → K a “statistic” on S . We call
f homomesic with respect to an invertible action w : S → S if the (arithmetic) average
of f over every orbit is the same [12]. In the birational setting, to avoid dealing with
taking nth roots, this manifests itself as certain products across an orbit equaling a fixed
constant, independent of the initial labels. See [12] for a more careful treatment of
combinatorial homomesy and [4, 11] for birational homomesy.

Propp and the second author proved a homomesy result for antichain rowmotion on
[a]× [b] in terms of fibers [12], which we lift to the birational realm.

Definition 3.1 ([12, §3.3.2]). Fix a, b ∈ Z+. For 1 ≤ k ≤ a, the subset {(k, `) : 1 ≤ ` ≤ b}
of [a]× [b] is called the kth positive fiber. For 1 ≤ ` ≤ b, the subset {(k, `) : 1 ≤ k ≤ a}
of [a]× [b] is called the `th negative fiber.

On P = [a]× [b], Stanley and Thomas defined an (a + b)-tuple w(A) corresponding
to an antichain A ∈ A(P) described as

wi =


1 if 1 ≤ i ≤ a and A has an element in the ath positive fiber,
1 if a + 1 ≤ i ≤ a + b and A has NO element in the (i− a)th negative fiber,
−1 otherwise.

They proved that A 7→ w(A) is a bijection between antichains of P and the possible
tuples that can occur. Furthermore, applying antichain rowmotion to A cyclically shifts
the Stanley–Thomas word w(A). This proves rowmotion (in the combinatorial realm)
has order a + b and also that the statistics pi : A(P) → Z and ni : A(P) → Z where
pi(A) (resp. ni(A)) is 1 if A has an element in the ith positive fiber (resp. negative fiber)
and 0 otherwise are homomesic with average b(a + b) for pi and a(a + b) for ni on any
orbit. As cardinality of an antichain can be expressed as p1 + p2 + · · ·+ pa, we see that
cardinality on A(P) is homomesic with average ab/(a + b) [12, §3.3.2].

Now we define a birational analogue of the Stanley–Thomas word. One key differ-
ence, however, is that a K-labeling of P is no longer uniquely determined by its Stanley–
Thomas word. Therefore, it can no longer be used to prove periodicity (which we already
proved in Theorem 2.10). However, we can use it to prove an analogue of fiber homo-
mesy in any situation where BAR cyclically rotates the birational Stanley–Thomas word
(which so far we have only proven for the case a = 2).

Definition 3.2. Let a, b ∈ Z+, P = [a]× [b], and g ∈ KP. The Stanley–Thomas word STg
is the (a + b)-tuple given by

STg(i) =
{

g(i, 1)g(i, 2) · · · g(i, b) if 1 ≤ i ≤ a,
C/
(

g(1, i− a)g(2, i− a) · · · g(a, i− a)
)

if a + 1 ≤ i ≤ a + b.
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Example 3.3. Let g be the generic labeling of [2] × [3] displayed in the right side of
Figure 1 and the top left corner of Figure 2. Then

STg =
(

STg(1), STg(2), STg(3), STg(4), STg(5)
)
=
(
uwy, vxz, C/(uv), C/(wx), C/(yz)

)
.

After applying BAR-motion to g (bottom left corner of Figure 2), the Stanley–Thomas
word of BAR(g) is

STBAR(g) =
(
C/(yz), uwy, vxz, C/(uv), C/(wx)

)
which is simply a rightward cyclic shift of STg.

Theorem 3.4. Let P = [2] × [b]. For a labeling g ∈ KP, STBAR(g)(i) = STg(i − 1) for
2 ≤ i ≤ 2 + b and STBAR(g)(1) = STg(2 + b). Thus,

1+b

∏
m=0

(BARm g)(k, 1)(BARm g)(k, 2) · · · (BARm g)(k, b) = Cb

for 1 ≤ k ≤ 2 and ∏1+b
m=0(BARm g)(1, `)(BARm g)(2, `) = C2 for 1 ≤ ` ≤ b.

Proving this result follows from an explicit description of BAR(g) in terms of the
labels in g. The details are omitted, but this can be determined on [a]× [b] by writing
BAR = τ1,b · · · τ1,2τ1,1τ0,b · · · τ0,2τ0,1 as in Proposition 2.8. We do not believe a = 2 is
necessary in Theorem 3.4, and we conjecture the following, which has been verified for
a, b ≤ 3.

Conjecture 3.5. Let P = [a] × [b]. For a labeling g ∈ KP, STBAR(g)(i) = STg(i − 1) for
2 ≤ i ≤ a + b and STBAR(g)(1) = STg(a + b). Thus,

a+b−1

∏
m=0

(BARm g)(k, 1)(BARm g)(k, 2) · · · (BARm g)(k, b) = Cb for 1 ≤ k ≤ a, and

a+b−1

∏
m=0

(BARm g)(1, `)(BARm g)(2, `) · · · (BARm g)(a, `) = Ca for 1 ≤ ` ≤ b.
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