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Abstract. We split the q-Schröder numbers into an “even” and “odd” part. The Schröder
numbers are known to enumerate certain necklaces, and the even part turns out to be a
q-analogue of the set of bracelets. Both parts are symmetric and unimodal, and we con-
jecture that there exist posets which explain this phenomenon. Along the way, we find
a new cyclic sieving phenomenon on certain double cosets of the symmetric group.
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1 Introduction

Given a sequence α = (α1, . . . , αr) of positive integers that sums to n, the multinomial
coefficient (

n
α

)
=

(
n

α1, . . . , αr

)
=

n!
α1! · · · αr!

is a positive integer, counting the number of words having exactly αi occurrences of the
letter i for each i = 1, 2, . . . , r. The symmetric group Sn acts on the set of such words
permuting positions, and when one restricts this action to the cyclic subgroup C = 〈c〉
generated by the n-cycle c = (1, 2, . . . , n), the orbits are called necklaces with αi beads
of color i; call these α-necklaces. It is easily seen that the C-action on α-necklaces will be
free whenever gcd(α) = gcd(α1, . . . , αr) = 1, and thus the number of α-necklaces in this
case is given by C(α) = 1

n (
n
α).

When α = (a, a + 1), this is the well-known Catalan number:

C(a, a + 1) =
1

2a + 1

(
2a + 1

a

)
=

1
a + 1

(
2a
a

)
.

So, for example, when α = (3, 4), there are C(3, 4) = 1
7(

7
3) = 1

4(
6
3) = 5 such necklaces

with 3 black beads and 4 white beads, shown here:
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This paper concerns two surprising properties of the q-analogue of C(α) defined by

C(α; q) =
1

[n]q

[
n
α

]
q

(1.1)

defined in terms of these standard q-analogues:[
n
α

]
q
=

[n]!q

[α1]!q · · · [αr]!q
,

[n]!q = [n]q[n− 1]q · · · [2]q[1]q,

[n]q = 1 + q + q2 + · · ·+ qn−1.

1.1 Cyclic Sieving

Recall from [9] that for a set X carrying the action of a cyclic group 〈τ〉 of order m,
and a polynomial X(q) in Z[q], we say that (X, X(q), C) exhibits the cyclic sieving phe-
nomenon if for every integer d,

|{x ∈ X : τd(x) = x}| = X(ζd
m)

where ζm = e
2πi
m .

We will be particularly interested in the case where m = 2, so that τ is an involution,
in which case one says that (X, X(q), τ) exhibits Stembridge’s q = −1 phenomenon
[11]. That is,

X(1) = #X,
X(−1) = #{x ∈ X : τ(x) = x}.

There is another way to phrase this, in terms of the τ-orbits on X of size one and two,
which we will call the symmetric and asymmetric τ-orbits, respectively. Letting X(q) =
∑i aiqi, to say that (X, X(q), τ) exhibits the q = −1 phenomenon is equivalent to saying
that the two sums

1
2
(X(1) + X(−1)) = a0 + a2 + a4 + · · · ,

1
2
(X(1)− X(−1)) = a1 + a3 + a5 + · · · , .

count the total number of τ-orbits, and the number of asymmetric τ-orbits on X, respec-
tively.

This lets us phrase our first result, which follows on the observation in [9, §8] that
whenever gcd(α) = 1, the q-analogue C(α; q) defined in (1.1) is a polynomial in q with
nonnegative coefficients. As noted above, C(α; 1) = C(α) counts the set X of all of α-
necklaces. There is a natural involutive action τ on X in which τ reverses a word or
reflects a necklace over a line; orbits for this τ-action are sometimes called α-bracelets.
Thus a bracelet is asymmetric if it represents a τ-orbit of necklaces that has size two.
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Theorem 1.1. When gcd(α) = 1, the set X of α-necklaces along with X(q) := C(α; q) = ∑i aiqi

and its τ-action by reflection exhibits Stembridge’s q = −1 phenomenon. That is,

1
2
(C(α; 1) + C(α;−1)) = a0 + a2 + a4 + · · · ,

1
2
(C(α; 1)− C(α;−1)) = a1 + a3 + a5 + · · · ,

count the total number of bracelets, and the number of asymmetric bracelets, respectively.

In the example of α = (3, 4),

C(α; q) =
1
[7]q

[
7
3

]
q
= 1 + q2 + q3 + q4 + q6,

with 1
2 (C(α; 1) + C(α;−1)) = 4 and 1

2 (C(α; 1) + C(α;−1)) = 1. This agrees with the fact
that the five necklaces in the previous example give rise to four bracelets, only one of
which is asymmetric, namely the one shown here:

=

Theorem 1.1 will be deduced in Section 2 from a much more general statement.
Notice that the reflection τ, thought of as an element of Sn, is contained in the normalizer
of C. We show a sufficient condition for other τ ∈ NSn(C) acting on α-necklaces to satisfy
a cyclic sieving phenomenon as well.

1.2 Parity Unimodality

We next explain a second surprising property of C(α; q). Say that a polynomial X(q) =
∑i aiqi in q with nonnegative coefficients ai is parity-unimodal if both subsequences
(a0, a2, a4, . . .) and (a1, a3, a5, . . .) are unimodal.

Conjecture 1.2. When gcd(α) = 1, the polynomial C(α; q) is parity-unimodal.

We have two pieces of evidence for Conjecture 1.2. First, it has been checked for all
relevant compositions α of n ≤ 30. Second, we will explain in Section 3 below why
known results in the theory of rational Cherednik algebras imply the conjecture when
α = (k, a− k, b− k) with gcd(a, b) = 1 and 0 ≤ k ≤ a. Here C(k, a− k, b− k; q) is called a
rational q-Schröder polynomial— the special case k = 0 is called the rational q-Catalan
polynomial, whose special case b = a + 1 is MacMahon’s q-Catalan polynomial.



4 Eric Stucky

Theorem 1.3. When α = (k, a, b) with gcd(a, b) = 1 and 0 ≤ k ≤ a, the rational q-Schröder
polynomial C(k, a− k, b− k; q) is parity-unimodal.

In this rational Schröder case, something beyond parity unimodality for C(α; q) =

∑s
i=0 aiqi is true. Here the two subsequences (a0, a2, a4, . . .) and (a1, a3, a5, . . .) are not

only unimodal, but also symmetric.
This, together with Theorem 1.1, brings to mind Proctor’s characterization of Peck

posets in [8]. This result suggests there may reasonably be two highly structured ranked
posets on α-bracelets whose rank sizes are (a0, a2, a4, . . . ) and (a1, a3, a5, . . . ), respectively.
In particular, the existence of such posets would give a considerably more elementary
demonstration of parity-unimodality for the rational q-Schröder polynomials.

In Section 4, we find such a pair of posets for k = 0 and a = 3, and discuss the
challenges with extending to other cases.

2 Cyclic Sieving

Before getting to a more general result that will imply Theorem 1.1, we review a fairly
general cyclic sieving phenomenon that specializes a result from [9].

Given any subgroup H of Sn, consider the transitive action of Sn on the coset space
X = Sn/H, and restrict this action to the cyclic subgroup C = 〈c〉 of Sn generated by
the n-cycle c = (1, 2, . . . , n). Also recall that Sn (and hence H) acts on the graded ring
of n-variable polynomials C[x] by permuting indices, and denote the fixed space of this
action by C[x]Sn (and similarly for C[x]H). Then [9, Theorem 8.2] implies that the triple
(X, X(q), C) exhibits the cyclic sieving phenomenon, where H(V; q) = ∑i≥0 dim(Vi)qi is
the Hilbert series of a graded vector space V =

⊕
i≥0 Vi, and

X(q) =
H(C[x]H, q)
H(C[x]Sn , q)

. (2.1)

We will be particularly interested in the special case where C acts freely on X = Sn/H.
Note that this is equivalent to the condition that no power of the n-cycle c is Sn-conjugate
to an element of H, or equivalently, that the permutation group H avoids all cycle types
of the form (d

n
d ) for divisors d of n with d ≥ 2.

In this case, the fact that (X, X(q), C) exhibits a cyclic sieving phenomenon [9, Theo-
rem 8.2] means that X(ζ) = 0 for any nontrivial nth root of unity. Equivalently, we have
that ∏n−1

i=1 (q− ζ i) = [n]q is a factor of of X(q), and so

Y(q) =
1

[n]q
X(q)

is in fact a polynomial.
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Remark. Reiner, Stanton, and White use a somewhat different notation: their
X(q) is defined as H(A(Sn)H, q), where A(Sn) is the coinvariant algebra
C[x]/

〈
f ∈ C[x]Sn : f (0) = 0

〉
. The translation between these two is a standard fact from

invariant theory; see, e.g. [2, Corollary 1.2.2].

Notice that elements τ of the normalizer NSn(C) can act on the set

Y = C\Sn/H = {double cosets CgH : g ∈ Sn}

via this rule:
τ · CgH = τCgH = CτgH. (2.2)

Choose a particular involution τ in NSn(C) having cycle type (2, 2, . . . , 2, 1) for n odd
and (2, 2, . . . , 2, 1, 1) for n even, namely let τ be the permutation of the vertices 1, 2, . . . , n
of a regular n-gon that comes from a reflection fixing vertex 1 (and fixing exactly one
other vertex, namely n

2 , when n is even). We can now state the general result.

Theorem 2.1. Fix a positive integer m ≥ 2, and suppose that either n ≡ 1 mod m, or n is even
and n ≡ 2 mod m.

Assume that H is a subgroup of Sn that avoids the cycle types

• (d
n
d ) for divisors d ≥ 2 of n,

• (`
n−2
` , 2) for divisors ` of m,

• (2
n−4

2 , 4).

Further assume that one has some τ in NSn(C) of order m whose cycle type is{
(m

n−1
m , 1) if n ≡ 1 mod m,

(m
n−2

m , 1, 1) if n ≡ 2 mod m.

Then one has a cyclic sieving phenomenon for the triple (Y, Y(q), 〈τ〉), where 〈τ〉 ∼= Z/mZ

acts on Y via the rule (2.2).

Before proving this theorem, we use it to prove Theorem 1.1.
It is a straightforward exercise in commutative algebra to show that if H = Sα1 ×

· · · × Sαr and X = Sn/H, then

X(q) =
[

n
α

]
q

.

Notice that as Sn-sets, X is equivalent to the set of words with αi copies of each letter i,
and so the group of rotations C = 〈c〉 acts freely on X if gcd(α1, . . . , αr) = 1. In this case,
the associated Y(q) is C(α; q). Moreover, note that H never has an element with cycle
type either (d

n
d ) or (2

n−4
2 , 4), since otherwise each of the αi would be divisible by d, or 2
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respectively. Thus, since τ is the reflection on bracelets, Theorem 2.1 shows that we have
a q = −1 phenomenon for the triple (Y, Y(q), τ), as desired.

We now sketch a proof of Theorem 2.1(a), for which n = 1+ km. The following lemma
encapsulates a Molien formula calculation which is used in both cases.

Lemma 2.2. Let ζ be a primitive mth root of unity, and k =
⌊

n−1
m

⌋
. For any partition λ ` n of

n, write FixX(λ) to mean the number of fixpoints in X ∈ Sn/H for any g ∈ Sn with cycle type
(mk, λ), and ci to mean number of parts in λ with size i.

(a) If n 6≡ 0 mod m, then

Y(ζ) = (1− ζ)
n−1−km

∏
j=1

(1− ζ j) ∑
λ ` n−km

| FixX(λ)|
∏
i≥1

(i(1− ζ i))ci ci!
.

(b) If n ≡ 0 mod m, then

Y(ζ) = (1− ζ) ∑
λ `m
λ1 6=m

| FixX(λ)|
∏
i≥1

(i(1− ζ i))ci ci!
+

(1− ζ)mk
4

| FixX(2m)|.

The formulas above simplify considerably since there is only one λ that partitions
n− km, namely λ = (1). Therefore, if ζ is a primitive mth root of unity, then

Y(ζ) = (1− ζ)
| FixX(τ)|

1− ζ
= | FixX(τ)|.

This does not immediately resolve the situation because FixX(τ) is the set of fixpoints
of τ acting on X, rather than the set Y of α-bracelets. Therefore, it remains to show that
| FixX(τ)| = |{CgH : τCgH = CgH}|. The following general lemma reduces this to
calculating the size of a centralizer:

Lemma 2.3. For an arbitrary finite group G, subgroup H, and C acting freely on G/H, let
τ ∈ NG(C). Denote the canonical quotient map G/H → C\G/H by π, and write πF to be the
restriction of π to the set FixX(τ) = {gH : τgH = gH}.

Then, for any gH ∈ FixX(τ), we have |π−1
F (CgH)| = |ZC(τ)|.

According to this lemma, we have π−1
F (CgH) = π−1

F (CγH) has size |ZC(τ)|. We
conclude that | FixX(τ)| = |ZC(τ)| · |{CgH : τCgH = CgH}|. Thus, it suffices to show
that ZC(τ) is the trivial group, which follows from a straightforward calculation.
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3 Unimodality in the Rational Schröder Case

We begin by fixing some notation. Any G-representation V gives rise to a symmetric
algebra SV∗; in coordinates, SV∗ is simply a polynomial ring C[x1, . . . , xa−1], where the
variables are basis vectors for V∗. The action is given in the natural way: g · p(x1, . . . , xa−1)
= p(gx1, . . . , gxa−1). Note that SV∗ is a graded vector space, and each graded piece SiV∗

is a G-representation.
It also gives rise to an exterior representation ∧V which as a vector space has a basis

element for every subset S ⊆ {x1, . . . , xa}. The only thing we will use in this paper about
its G-representation structure is that as a vector space ∧V has a natural grading, and
each of these pieces ∧iV is itself a G-representation.

For the remainder of the section, we let V = Ca−1 be the irreducible reflection repre-
sentation of Sa. The following result is fairly standard; see, e.g. [5, §3].

Theorem 3.1. Let U ⊆ SV∗ be an (a− 1)-dimensional Sa-subrepresentation contained in degree
b and denote by 〈U〉 the ideal generated by the elements of U. If SV∗/〈U〉 is finite-dimensional,
then as a graded SV∗-module and C[Sa]-module, it admits a resolution

0← SV∗/〈U〉 ← SV∗ ←
(

SV∗ ⊗∧1U(−b)
)
← · · · ←

(
SV∗ ⊗∧a−1U(−b)

)
← 0,

where the notation M(−d) denotes the module M with a shifted grading so that deg(1) = d.

Theorem 3.1 is a conditional result, computing a resolution when provided with a
“nice” Sa-representation U. In [4], Dunkl proved that if b is coprime to a, then such
a U does actually exist, and moreover as an Sa-representation, U ∼= V∗. The resulting
quotient space SV∗/〈U〉 has been well-studied. For instance, it is the space of “rational
parking functions” in the sense of [1]. In the following section we will introduce the
rational Cherednik algebra, and it is true that SV∗/〈U〉 is irreducible as a module over
this algebra (see, for instance, [3]). In the latter context it is often called Lb/a(1); we adopt
this notation here.

Using Theorem 3.1 together with a formula of Kirillov-Pak, corrected and simplified
by Molchanov in [7], we can determine an alternate model for C(α; q) in the rational
Schröder case:

Proposition 3.2. Let a < b be coprime and 0 ≤ k ≤ a. Then the rational q-Schröder polynomial
C(k, a− k, b− k; q) coincides with

Ck
a,b(q) := H

(
HomC[Sa]

(
∧k Ca, Lb/a(1)

)
; q
)

.

3.1 The sl2 Action on Lb/a(1)

Given an algebra A equipped with an action of a group G, the semidirect product AoG
is the algebra which as a vector space is A⊗ C[G], and whose product structure given
by (a⊗ g) · (b⊗ h) = ag(b)⊗ gh.
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Let V = Ca−1 be the irreducible reflection representation of Sa, and y1, . . . , ya−1 and
x1, . . . , xa−1 be a basis for V and its dual basis (respectively). The rational Cherednik
algebra is Hb/a = (S(V ⊕ V∗)o Sa)/I, where I is the ideal generated by the following
relations:

xixj = xjxi

yiyj = yjyi

xiyj = yjxi for all i 6= j

xiyi − yixi = 1− b
a

a

∑
k=1,k 6=i

(ik).

This algebra can be given a grading via deg(w) = 0 for all w ∈ Sn, and for the
variables, deg(xi) = 1 and deg(yi) = −1.

We are now ready to prove Theorem 1.3:

Theorem 1.3. When α = (k, a, b) with gcd(a, b) = 1 and 0 ≤ k ≤ a, the rational q-Schröder
polynomial C(k, a− k, b− k; q) is parity-unimodal.

Proof. This argument is loosely based on Haiman [6], which uses simpler tools to obtain
the result in the b = a + 1 case.

There is an action of sl2(C) on Hb/a given by left multiplication of certain elements:

e = −1
2

a−1

∑
i=1

x2
i f =

1
2

a−1

∑
i=1

y2
i

h =
a−1

∑
i=1

xiyi + (a− 1)

(
1
2
−

a−1

∑
i=1

(i, i + 1)

)
This extends to an action on SV∗ and hence on Lb/a(1), and commutes with the action

of Sa: e and f are clearly invariant under permuting indices (and thus, so is h = e f − f e).
Any sl2(C)-module V has a formal character ch(V) = ∑ dim(V`)q`. By typical Lie

theory arguments (see, e.g. [10]), all ch(V) are symmetric and parity-unimodal about q0.
The significance for our situation is that the grading on Hb/a descends to a grading

on Lb/a(1), and since h preserves the grading on Hb/a it also does so on Lb/a(1). It
follows that for any V ⊆ Lb/a(1), weight differs from degree only by a constant shift,
and therefore ch(V) is the Hilbert series of V up to a factor of some qc. Since

Lb/a(1) =
⊕
λ`a

(⊕
`≥0

m`,λV`

)
⊗ Sλ,

this implies that the space of intertwiners of Sλ with Lb/a(1) has (shifted) Hilbert func-
tion Pλ(q), where the Pλ are each Laurent polynomials, symmetric and parity-unimodal
about q0. In particular, this implies that Ck

a,b(q) = P(a−k,1k)(q) + P(a−k−1,1k+1)(q) is sym-
metric and parity-unimodal about q0, which is equivalent to the desired statement.



Cyclic Sieving, Necklaces, and Bracelets 9

4 Toward a Poset of Schröder Bracelets

The use of an sl2(C) action to show the symmetry and parity unimodality of C(k, a −
k, b− k) brings to mind a classic result of Stanley and Proctor. Let P be a finite ranked
poset with maximum rank ρ, and Pi be the set of elements with rank i. The rank gen-
erating function of P is the polynomial ∑i≥0 |Pi|xi. We say that P is rank symmetric if
|Pi| ≤ |Pρ−i| for all i, and that P is rank unimodal if the sequence (P0, P1, P2, . . . ) is uni-
modal. Finally, P is called strongly Sperner if for each k ≥ 1, there are no k antichains
whose union has more elements than the k largest Pi.

Theorem 4.1 (Proctor [8]). A ranked poset P with maximum rank ρ is rank-symmetric, rank-
unimodal, and strongly Sperner if and only if it carries a representation of sl2(C) in the following
sense: letting CPi be the complex vector space of formal linear combinations of elements with rank
i, there exist linear operators E and F acting on

⊕ρ
i=0 CPi such that

E(p) = ∑
p ·> q

cqq and F(p) = ∑
rank(q)=rank(p)+1

c′qq

for some collections of coefficients cq, c′q ∈ C, and for which each restriction (EF− FE)|CPi acts
by scalar multiplication v 7→ (2i− ρ)v.

If a poset satisfies either of the equivalent conditions in this theorem, it is said to
be Peck. Because one of these conditions is the existence of an sl2(C) action, it is rea-
sonable to hope for two Peck posets which explain the parity-unimodality of C(α; q).
In particular, assuming the posets and their corresponding representations were rea-
sonably straightforward, this would provide a much more elementary demonstration of
unimodality, without delving into the machinery of rational Cherednik algebras.

To help state this question more precisely, we introduce some notation.

Definition. The even q-Schröder polynomials are defined to be

ECk
a,b(q) =

1
2

[
Ck

a,b(q
1/2) + Ck

a,b(−q1/2)
]
.

Similarly the odd q-Schröder polynomials are defined to be

OCk
a,b(q) =

q−
1
2

2

[
Ck

a,b(q
1/2)− Ck

a,b(−q1/2)
]
.

These are both polynomials, and up to normalization are simply picking out the
terms of Ck

a,b(q) with even and odd exponents, respectively.
Additionally, recall that a symmetric chain decomposition of a ranked poset P with

finite maximum rank ρ is a partition of its ground set P = Γ1 ä Γ2 ä · · ·ä Γk into satu-
rated chains Γi, such that rank(min Γi) + rank(max Γi) = ρ for all i. Having a symmetric
chain decomposition is a much stronger condition on P than being Peck, but it is some-
what more elementary, and is satisfied by many combinatorially significant posets.
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Question 4.2. When gcd(a, b) = 1 and 0 ≤ k ≤ a, do there exist “natural” posets βk
a,b and β̃k

a,b
with the following properties?

• The ground sets of these posets are respectively the (k, a− k, b− k)-bracelets and asymmet-
ric (k, a− k, b− k)-bracelets.

• The identity map is an order-preserving injection β̃k
a,b → βk

a,b.

• The rank generating functions of these posets are respectively ECk
a,b(q) and OCk

a,b(q).

• These posets each admit symmetric chain decompositions.

We can make this question fully precise, and answer in the affirmative, for a ≤ 2, and
for (a, k) = (3, 0). Let us say that a poset structure on the set of α-bracelets is generated
by local moves if for each covering relation Al B, we can obtain B from A by swapping
two adjacent beads.

Theorem 4.3. Suppose that gcd(a, b) = 1 and either 0 ≤ k ≤ a ≤ 2, or that a = 3 and k = 0.
Then there exist posets βk

a,b and β̃k
a,b satisfying the four properties of Question 4.2, which are also

generated by local moves.

For a ≤ 2, all posets involved are chains, so we omit them here. For a = 3, recall that
the dominance order is defined in this way: pad all partitions of b with infinitely many
zeros, and then (λ1, λ2, . . . ) ≤ (µ1, µ2, . . . ) whenever for all n ≥ 0 the partitions satisfy
the partial sum inequalities λ1 + · · ·+ λn ≤ µ1 + · · ·+ µn.

We claim that the interval [>,⊥] in the dominance order is a satisfactory model for
β0

3,b, where the top element is the partition > = (b) (which is, indeed, the top element
of the dominance order itself), and the bottom is the partition ⊥ = (db/3e, [b/3], bb/3c),
where [x] is the nearest integer to x.

For any bracelet, each of the three adjacent pairs of white beads has a number of
black beads in between them. These numbers can be viewed as the parts of a partition,
because the order of these numbers can be freely permuted by rotations and reflections.
In particular, > and ⊥ correspond respectively to the bracelets where all three white
beads are next to each other, and where they are as evenly distributed as possible. Our
claim is equivalent to showing that the correspondence described above is in fact a
bijection between this interval and the set of (3, b)-bracelets.

Example. On the next page is a picture of β3,8 and the corresponding [⊥,>]. Notice that
its rank generating function is EC3,8(q) = 1 + q + q2 + 2q3 + 2q4 + q5 + q6 + q7, and the
columns form a symmetric chain decomposition of the poset.
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⇔

4.1 Negative Results

It is possible that the conditions in Theorem 4.3 may be relaxed somewhat, but they
do capture some genuine difficulties with the situation. Although we believe that the
question may still have an affirmative answer for larger a, we do not currently have an
appropriate notion of “naturalness”. In particular, the proof above suggests two candi-
dates for making the question into a precise conjecture, both of which are false.

First, the theorem as stated cannot be generalized to just include more values of a
and k. Even in the Catalan case when b = a + 1 and k = 0, being generated by local
moves can automatically force the rank counts to be incorrect.

Proposition 4.4. There is no bounded poset structure on the set of (4, 5)-bracelets having rank
generating function EC0

4,5(q) which is generated by local moves.

As a second attempt, there is nothing in the definition of dominance which forces
us to restrict our attention to partitions. Therefore, even though we may not preserve
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the bracelet by arbitrarily permuting the gaps between white beads for a > 3, we may
still try to consider the dominance order on some other representatives of the bracelets.
Quick calculations with the (4, 5)-bracelets already suggest this may be troublesome; for
instance, the lexicographically-largest bracelet representatives yields a poset which is not
ranked.

On the other hand, there must be some notion of “naturalness” imposed beyond the
four properties demanded by Question 4.2. Otherwise, we could make the following
trivial construction: arbitrarily assign ranks to bracelets to achieve the correct rank sizes
for both βk

a,b and β̃k
a,b, and then take A ≤ B if and only if rank(A) ≤ rank(B).
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