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Limit shapes of evacuation and jeu de taquin
paths in random square tableaux

Łukasz Maślanka∗1 and Piotr Śniady† 1

1 Institute of Mathematics, Polish Academy of Sciences, Warszawa, Poland

Abstract. We consider large random square Young tableaux and look for typical (in the
sense of probability) jeu de taquin paths and evacuation paths in the asymptotic setting.
We show that the probability distribution of such paths converges to a random meridian
connecting the opposite corners of the square.
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1 Introduction

A full version of this extended abstract will be published in [4].

1.1 Notation

For any n ∈ N let Yn denote the set of Young diagrams with n boxes. By �N ∈ YN2

we denote the square Young diagram of side N. For a Young diagram λ ∈ Yn let |λ| := n
be the size of diagram λ and by Tλ denote the set of standard Young tableaux of shape λ.
On the set T�N of square tableaux with N2 boxes we consider the uniform probability
measure PN.

We draw Young tableaux in the French notation. For a tableau T, by posk(T) = (xk, yk)
we denote the Cartesian coordinates of entry k, i.e. xk is its column and yk is its row.
The difference uT

k := xk − yk will be called the u-coordinate of the box k (in the literature
the name content is also used).

The irreducible representation of the symmetric group Sn which corresponds to
λ ∈ Yn will be denoted by Vλ and its character by χλ.
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1.2 Jeu de taquin, jeu de taquin path, evacuation path

Jeu de taquin is a transformation of tableaux that was introduced by Schützenberger [7].
It is a fundamental tool for studying the combinatorics of Young tableaux, Robinson–
Schensted–Knuth (RSK) algorithm, and Littlewood–Richardson coefficients [2].

Jeu de taquin acts as follows (see Figure 1(a) and (b)): we start with the bottom-left
corner box of the given tableau T, we erase it and obtain a hole in its place. Then we look
at the neigboring two boxes: the one to the right and the one above the hole, and choose
the smaller one. We slide the selected box into the hole; as a result the hole moves one
box to the right or up. We continue sliding as long as there is some box to right or up
to the hole. The resulting tableau will be denoted by j(T). The zig-zag path traversed
by the hole will be called jeu de taquin path.

For a given tableau T ∈ Tλ with n = |λ| boxes we may iterate jeu de taquin n times
until we end with the empty tableau. During each iteration the box with the biggest
number n either moves one node left or down, or stays put. Its trajectory

posn(T), posn

(
j(T)

)
, posn

(
j2(T)

)
, . . . , posn

(
jn−1(T)

)
(1.1)

will be called evacuation path.

1.3 The problem

If we draw the boxes of a given square tableau TN ∈ T�N as little squares of size 1
N

then both the corresponding jeu de taquin path as well as the evacuation path is a zig-
zag line connecting the opposite corners of the unit square [0, 1]2. We consider the case
when TN ∈ T�N is a random square tableau sampled with the uniform distribution PN.
The goal of the current paper is to find asymptotics of the corresponding scaled ran-
dom zig-zag lines in the limit as N → ∞, see Figure 2a.
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Figure 1: (a) Standard Young tableau T of shape λ. The highlighted boxes form the jeu
de taquin path. (b) The outcome j(T) of jeu de taquin transformation. (c) A bijection
on Tλ, modified jeu de taquin J(T), is defined by creating an additional box with en-
try |λ|+ 1 at the final position of the hole and then decreasing all entries by 1.
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Figure 2: (a) Zigzag lines are sample jeu de taquin paths for random square tableaux
of size N = 100, selected so they cross the anti-diagonal near the corresponding merid-
ians (smooth thick curves) with the longitudes ψ ∈ {1/10, 2/10, . . . , 9/10}. The grey lines
are the meridians with the longitudes ψ ∈ {2/100, 4/100, . . . , 98/100}. (b) Sample random
square tableau of size N = 10. Zigzag lines are the level curves for α ∈ {1/4, 1/2, 3/4}.
The smooth lines are the corresponding circles of latitude gα.

2 Asymptotics of evacuation paths

It is easy to change the definition of jeu de taquin so that it becomes a permutation
J : Tλ → Tλ on the set of standard tableaux of prescribed shape, see Figure 1c.

We keep notations from Section 1.3 and consider the evacuation path (1.1) for T = TN
and n = N2. The position of each of the boxes in the evacuation path coincides with
the position of a specific box in the standard Young tableau obtained by iterating J:

posN2

(
ji(TN)

)
= posN2−i

(
Ji(TN)

)
. (2.1)

The latter standard tableaux Ji(TN) is a uniformly random square Young tableau.
Some light on the problem of finding the right-hand side of (2.1) is provided by

the work of Pittel and Romik; one of their results [5, Theorem 2] gives an explicit family
of curves (gα) indexed by α ∈ [0, 1] which fit inside the square [0, 1]2, see Figure 2b.
Each curve gα turns out to be one of the level curves of (scaled down) random standard
Young tableau of shape �N which separates the boxes with entries ≤ αN2 from the boxes
with entries bigger than this threshold (asymptotically, as N → ∞, except for an event
of negligible probability). We will refer to the curves (gα) as circles of latitude.

It follows that asymptotically the (scaled down) position of the box (2.1) in the
evacuation path is very close to some point on the circle of latitude g1−t where t = i/N2.
The remaining difficulty is to pinpoint a specific location of this point on the curve.
For this purpose we need a convenient parametrization on each circle of latitude gα.
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2.1 Longitude. Geographic coordinates on the square

The work of Pittel and Romik [5, Theorem 2] additionally gives the limit distribution
of the (scaled down) position of the box bαN2c in a random square tableau with N2

entries. This probability distribution is supported on the curve gα and will be denoted
by µα. We will use µα to construct geographical coordinate system on the unit square [0, 1]2.

For any point p ∈ [0, 1]2 there is exactly one curve gα on which it lies. We say that
the latitude of p is equal to α. The longitude of p, denoted by ψ(p) ∈ [0, 1], is defined as
the measure µα of the set of points on the curve gα which have their u-coordinate smaller
than the u-coordinate of p. For given α, ψ ∈ [0, 1] we denote by Pα,ψ the unique point
of the square [0, 1]2 with the appropriate latitude and longitude.

2.2 The first main result: asymptotics of evacuation paths

For a given tableau TN ∈ T�N and t ∈ [0, 1] we denote by

Xt = Xt(TN) =
1
N

posN2

(
jbtN2c(TN)

)
∈ [0, 1]2

the scaled down point from the evacuation path, cf. (1.1).
Our first main result states that, asymptotically, the scaled evacuation path in a random

square tableau is a random meridian, i.e. a curve which consists of points in the square [0, 1]2

with equal longitude ψ. The probability distribution of this longitude ψ is the uniform
distribution on the interval [0, 1].

Theorem 2.1. For each N ∈N there exists a map ΨN : T�N → [0, 1] such that for each ε > 0

lim
N→∞

PN

{
TN ∈ T�N : sup

t∈[0,1]

∣∣∣Xt(TN)− P1−t,ΨN(TN)

∣∣∣ > ε

}
= 0. (2.2)

The probability distribution of the random variable ΨN converges, as N → ∞, to the uniform
distribution on the unit interval [0, 1].

3 Asymptotics of jeu de taquin paths

Let T be a standard Young tableau with n boxes. We define q(T) = (q1, . . . , qn) ⊂ N2

to be the corresponding jeu de taquin path in the lazy parametrization. More specifically,
qi is defined as the last box along the jeu de taquin path corresponding to T (cf. Figure 1a)
which contains a number ≤ i.

Our second main result states that, asymptotically, the scaled jeu de taquin path in a ran-
dom square tableau is a random meridian.
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Theorem 3.1. For each N ∈N there exists a map Ψ̃N : T�N → [0, 1] such that for each ε > 0

lim
N→∞

PN

{
TN ∈ T�N : sup

t∈[0,1]

∣∣∣∣ 1
N

qdtN2e(TN)− Pt,Ψ̃(TN)

∣∣∣∣ > ε

}
= 0.

The probability distribution of the random variable Ψ̃N converges, as N → ∞, to the uniform
distribution on the unit interval [0, 1].

An analogous problem was studied by Romik and Śniady [6] for random tableaux
obtained by applying Robinson–Schensted correspondence to a random permutation
(“Plancherel measure”). The proof presented there is not applicable in our context.

Proof. We show equivalence of Theorems 2.1 and 3.1 by comparing positions of boxes in
lazy jeu de taquin path and the evacuation path in pairs of corresponding tableaux.

In the proof we use: (1.) a Robinson-Schensted-Knuth algorithm which is a bijection
which applied to a permutation σ = (σ1, . . . , σn) ∈ Sn returns a pair (P(σ), Q(σ))
of tableaux of the same shape; (2.) a Schützenberger involution which is a map

Sn 3 σ 7→ ε∗(σ) := (n + 1− σn, . . . , n + 1− σ1);

and (3.) the identity [6, Section 2] in which s(σ) = s(σ1, σ2, . . . , σn) := (σ2, . . . , σn):(
j ◦Q

)
(σ) = (Q ◦ s) (σ), σ = (σ1, . . . , σn) ∈ Sn (3.1)

((3.1) holds true up to renumbering of the boxes on the left-hand side.)
Let σ ∈ SN2 . In the lazy jeu de taquin path q(T) := q(Q(σ)) we have by (3.1):

qn(T) = Q (σ1, σ2 . . . , σn) \Q (σ2, . . . , σn) .

On the other hand, using (3.1) many times, in the evacuation path (1.1) in the tableau
T∗ := Q(ε∗(σ)), the position of the box with entry N2 in jN2−p(T∗) is

Q
(

N2 + 1− σp, . . . , N2 + 1− σ2, N2 + 1− σ1

)
\Q

(
N2 + 1− σp, . . . , N2 + 1− σ2

)
.

By Greene theorem, this position is equal to Q
(

σ1, σ2 . . . , σp

)
\ Q

(
σ2, . . . , σp

)
= qp(T).

4 Sketch of proof of Theorem 2.1

Proof of Theorem 2.1. In order to investigate the point Xt we will pass to its geographic
coordinates α(Xt) and ψ(Xt); our goal is to show that for each c > 0 and ε > 0

sup
t∈[0,1]

∣∣∣α(Xt)− (1− t)
∣∣∣ < ε and sup

t∈[c,1−c]

∣∣∣ψ(Xt)−ΨN(TN)
∣∣∣ < ε (4.1)
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hold true except for TN in a set which has asymptotically negligible probability o(1).
The discussion from the beginning of Section 2 shows that the first statement in (4.1)

indeed holds true (except for an event of negligible probability, for N → ∞).
If the second statement in (4.1) instead of a supremum would involve only a fixed

value of t0 ∈ (0, 1), we could simply define ΨN(TN) := ψ(Xt0) to be longitude of Xt0 .
Unfortunately, we need to justify that this choice of ΨN(TN) is also good for other values
of t 6= t0. This kind of result is provided by Proposition 4.1.

Proposition 4.1. Assume that 0 < t1 < t2 < 1. Then for each ε > 0

lim
N→∞

PN

{
TN ∈ T�N :

∣∣∣ψ(Xt1)− ψ(Xt2)
∣∣∣ > ε

}
= 0.

5 Sketch of proof of Proposition 4.1. Surfers on the sink

Proposition 4.1 is equivalent to the conjuction of the following two statements for ε > 0:

lim
N→∞

PN
{

TN ∈ T�N : ψ(Xt1)− ψ(Xt2) > ε
}
= 0, (5.1)

lim
N→∞

PN
{

TN ∈ T�N : ψ(Xt1)− ψ(Xt2) < −ε
}
= 0. (5.2)

We present the proof of (5.1); the other claim (5.2) can be proved in an analogous way.

5.1 Single surfer scenario

We present the story of the evacuation path in a different light. We will speak about
a square pool of side N (=the square Young diagram �N) filled with N2 − 1 particles of wa-
ter (=the Young tableau TN with the largest entry removed), a passive surfer (=the box
with the biggest entry) and its behaviour when the pool is drained (=jeu de taquin).
Our goal in Theorem 2.1 is to show that, when pool is big enough, the surfer has some
typical paths along which he/she moves.

In our proof of Proposition 4.1 we start our analysis at time t1 when jeu de taquin
was already applied m = bt1N2c times. Our starting point is therefore the tableau

T′N := jm(TN)

with N2 −m boxes. Let us renumber the entries of this tableau so it becomes standard.
We denote w = N2 − m − 1. In this way the boxes with numbers 1, . . . , w correspond
to the water and the box with the number w + 1 to the surfer. By removing the box with
the surfer

W ′N := T′N \ {w + 1}
we get a standard Young tableau which encodes the configuration of the water.
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5.2 Pieri tableaux. Multisurfer scenario

Let k = b 4
√

Nc. Let M be a tableau in which the k largest entries are numbered by con-
secutive integers l + 1, . . . , l + k. We say that M is a Pieri tableau if these k largest boxes
are in an increasing order from north-west to south-east:

uM
l+1 < · · · < uM

l+k.

By T̃�N we denote the set of standard Young tableaux of shape �N which are Pieri,
and by P̃N the uniform distribution on the set T̃�N .

It is easy to check that if M has at least k + 1 boxes then M is a Pieri tableau if and
only if j(M) is a Pieri tableau.

To pinpoint the position of the surfer in random water, we will need a point of refer-
ence. We introduce the multisurfer scenario in which we consider the square pool filled
with N2 − k particles of water on which are surfing k surfers (=k boxes with the biggest
entries). We assume that the multisurfers are in an increasing order; it follows that this
scenario corresponds to a Pieri tableau MN ∈ T̃�N We assume that MN is a random
tableau sampled with the probability distribution P̃N.

We start our analysis when jeu de taquin was already applied m + 1 − k times.
Our starting point is therefore the tableau

M′N := jm+1−k(MN)

with N2 + k − m − 1 = w + k boxes. Let us renumber the entries of this tableau so
it becomes standard. In this way, just as in the single surfer scenario, the boxes with
numbers 1, . . . , w correspond to the water. On the other hand, the boxes with the num-
bers w + 1, . . . , w + k correspond to the multisurfers. By removing the multisurfers

W̃ ′N := M′N \ {w + 1, . . . , w + k} = Jm+1−k(Mn) \ {w + 1, . . . , N2} (5.3)

we get a standard Young tableau which encodes the configuration of the water.

5.3 Counting multisurfers gives longitude

For 0 ≤ i ≤ N2 − k we consider the situation after jeu de taquin was applied i times
in the multisurfer scenario, i.e. M′N = ji(MN), and for u ∈ [−1, 1] we define the ran-
dom variable Ψi(u) to be the fraction of the number of multisurfers which have scaled
u-coordinates smaller than u, i.e.:

Ψi(u) :=
1
k

max
{

p ∈ {1, . . . , k} :
1
N

uM′N
w+p ≤ u

}
. (5.4)

The following result states that Ψi gives a good approximation of the longitude.
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Proposition 5.1. Let α ∈ (0, 1) be fixed. For a given ψ ∈ [0, 1] we set (x, y) = Pα,ψ to be
the Cartesian coordinates of the point with geographic coordinates α, ψ and define Uα,ψ := x− y.

We set i := b(1− α)N2c. The random variable Ψi

(
Uα,ψ

)
converges in probability to ψ

and this convergence is uniform over ψ; in other words for each ε > 0

P̃N

{
MN ∈ T̃�N : sup

ψ∈[0,1]

∣∣∣ψ−Ψi

(
Uα,ψ

)∣∣∣ > ε

}
= O

(
1√
N

)
.

Proof. The scaled u-coordinates of the multisurfers may be encoded by a random proba-
bility measure on R

µ :=
1
k ∑

1≤p≤k
δ

(
1
N

uM′N
w+p

)
,

where δ(x) denotes the point measure concentrated in x. Our goal is to prove that
the cumulative probability function of µ converges uniformly to some explicit limit;
the convergence should hold true in probability.

In order to achieve this goal we investigate the moments of the measure µ:

Mr =
∫

R
zr dµ =

1
k ∑

1≤p≤k

(
1
N

uM′N
w+p

)r
for r ∈ {1, 2, . . . }.

By applying Lemma 5.2 for some specific symmetric polynomials W we are able to find
explicit values for the mean value and the variance of the random variableMr. It turns
out that, asymptotically for N → ∞, the mean value EMr converges to the ‘right’ value
and the variance VarMr tends to zero which implies that the convergence of measures
in the sense of moments indeed holds true in probability.

Since the limit measure is compatly supported, the convergence in the sense of mo-
ments implies also convergence of measures in the weak topology of probability measures,
as required.

Lemma 5.2 provides a link between the statistical properties of the multisurfers
and the representation theory of the symmetric groups. The problem of understanding
(the u-coordinates of) the positions of the multisurfers after i applications of jeu de taquin
is equivalent to finding (the u-coordinates of) the boxes with numbers from the set M :=
{a, . . . , b} := {N2 + 1− k− i, . . . , N2 − i} in the random tableau S := Ji(MN).

We will view the symmetric group Sk ⊂ SN2 as the group of permutations of the
set M and define an element of the symmetric group algebra pSk =

1
k! ∑σ∈Sk

σ ∈ CSN2 .
We also consider Jucys–Murphy elements Zs := ∑s−1

i=1 (i, s) ∈ CSN2 (see [3]).

Lemma 5.2. Let W(x1, . . . , xk) be a symmetric polynomial in k variables. Let S be a random el-
ement (sampled with the uniform distribution) of the set of tableaux T ∈ T�N with the additional
property that

uT
a < · · · < uT

b .
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Then

E W
(

uS
a , . . . , uS

b

)
=

χ�N
(

pSk ·W (Za, . . . , Zb)
)

χ�N
(

pSk

) . (5.5)

Proof. The proof has the following ingredients.
Firstly, the observation that the vector space V�N has a linear basis (eT) indexed

by standard Young tableaux T ∈ T�N in which the action of Jucys–Murphy elements
is diagonal, with the eigenvalue equal to the u-coordinate of the appropriate box:

Zs eT = uT
s eT.

Secondly, with the help of Littlewood–Richardson coefficients, we investigate the de-

composition of the restricted representation V�N

ySN2

SN2−i−k×Sk×Si
into irreducible compo-

nents

5.4 Presence of multisurfers does not influence the water

We will show that the probability distribution of water in the single surfer scenario
is very close to its multisurfer counterpart.

Lemma 5.3. For any standard Young tableau S with shape λ := sh S and w boxes

PN

{
TN ∈ T�N : W ′N = S

}
P̃N

{
MN ∈ T̃�N : W̃ ′N = S

} =

PN

{
TN ∈ T�N : sh W ′N = λ

}
P̃N

{
MN ∈ T̃�N : sh W̃ ′N = λ

} = 1 + O

(
1√
N

)
. (5.6)

Proof. The first equality follows from the observation that the conditional probability
distribution of W ′N under the event that sh W ′N = λ is the uniform measure on Tλ

and the analogous result for W̃ ′N.
Since P̃N(·) = PN(·|T̃�N) is a conditional probability, Bayes rule can be applied

and the middle part of (5.6) is equal to

PN

(
T̃�N

)
PN

(
T̃�N

∣∣∣ sh W ′N = λ

) . (5.7)

We will show the following estimate for the denominator:

PN

(
T̃�N

∣∣∣ sh W ′N = λ

)
=

1 + O
(

1√
N

)
k!

. (5.8)
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Equation (5.3) shows that under condition sh W ′N = λ the conditional probability distri-
bution of U := Jm+1−k(MN) \ {1, . . . , w} coincides with the uniformly random tableau
with the skew shape �N \ λ. The conditional probability (5.8) is thus equal to the proba-
bility that the smallest k boxes of U (or, equivalently, the smallest k boxes of the rectified
tableau V := rect U) are ordered from north-west to south-east á la Pieri. We denote by µ

the shape of V. It follows that

PN

(
T̃�N

∣∣∣ sh W ′N = λ

)
= ∑

µ∈YN2−w such that µ⊂�N

PN
{

TN ∈ T�N : V = µ
}
· Pµ, (5.9)

where Pµ denotes the probability that V (viewed as a uniformly random tableau sam-
pled from Tµ) has entries 1, . . . , k ordered from north-west to south-east or, equivalently,
the shape of the restricted tableau sh

(
V|1,...,k

)
= (k) is the one-row Young diagram

with k boxes.
The link between standard Young tableaux and combinatorics of irreducible repre-

sentations of the symmetric groups implies that

Pµ =

multiplicity of V(k) in
(

Vµ
ySN2−w

Sk

)
dim Vµ =

〈
χµ
ySN2−w

Sk
, χ(k)

〉
dim Vµ =

1
k!

1 + ∑
π∈Sk and π 6=id

χµ(π)

dim Vµ

 , (5.10)

where the second equality follows from the orthogonality of irreducible characters.
Let C > 0 be fixed. We say that a Young diagram µ is C-balanced if both its number

of rows and its number of columns are ≤ C
√
|λ|. Each tableau µ which contributes

to (5.9) is C-balanced for C = N√
t1N2

= 1√
t1

. The result of Feráy and Śniady [1, Theorem 1]

gives a good upper bound for the character ratios on the right-hand side of (5.10) for µ

in the class of C-balanced diagrams which implies that

Pµ =
1 + O

(
1√
N

)
k!

.

The latter estimate combined with (5.9) implies that (5.8) indeed holds true.

An analogous (but simpler) reasoning shows that the numerator from (5.7) fulfills

PN

(
T̃�N

)
=

1 + O
(

1√
N

)
k!

. (5.11)

The estimates (5.8) and (5.11) for the terms in (5.7) complete the proof.
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5.5 Single- and multisurfer scenario on the same water

In Sections 5.1 and 5.2 we considered two random tableaux: T′N and M′N defined
on two different probability spaces. Our goal is to define variants of these two ran-
dom tableaux T′N and M′N on the same probability space in such a way that the corre-
sponding configurations of water would coincide: W′N := W ′N = W̃ ′N.

In order to achieve this goal we start by randomly sampling the tableau W′N (=water)
with the probability distribution of W ′N from Section 5.1. Once W′N is selected we ran-
domly choose the tableaux T′N (=single surfer) and the Pieri tableau M′N (=multisurfers)
according to the conditional probability distributions (conditioned by choosing W′N)

P(T′N = S) := PN
(
T′N = S|W ′N = W′N

)
,

P(M′N = S) := P̃N

(
M′N = S|W̃ ′N = W′N

)
for an arbitrary standard tableau S.

The probability distribution of T′N coincides with the distribution of T′N from Sec-
tion 5.1. On the other hand Lemma 5.3 shows that the total variation distance between
the distribution of M′N and the distribution of M′N from Section 5.2 is small, of or-

der O
(

1√
N

)
.

5.6 Ghosts of multisurfers do not overtake the surfer from right to left

Let us fix a pair of tableaux T′N and M′N given by the above construction. For any
0 ≤ q ≤ w we will iteratively apply jeu de taquin q times to both tableaux and compare
the outcomes. (Informally speaking, with the notations of Section 5.3, this means that
jeu de taquin was applied i = bt1N2c+ q times to the tableau TN.)

A simple inductive argument shows that after q steps the configurations of water
in jq(T′N) and jq(M′N) coincide:

jq(T′N) \ {w + 1} = jq(M′N) \ {w + 1, . . . , w + k}.

In other words, we are dealing with two alternative universes in which the history
of water is the same, and differ only by the number of surfers on top. Since the dy-
namics of the surfer and the multisurfers depends only on the water, there is no
interaction between the surfer and the multisurfers (they are like ghosts).

We define ψ̃q as the fraction of the multisurfers which are to the left of the surfer:

ψ̃q :=
1
k

max
{

p ∈ {1, . . . , k} : ujq(M′N)
w+p ≤ ujq(T′N)

w+1

}
.

This quantity is a modification of (5.4) in which the role of ji(MN) is played by jq(M′N)

evaluated at u = 1
N ujq(T′N)

w+1 . The discussion from Section 5.5 shows that for the conclusion
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of Proposition 5.1 remains valid also for this modification. It follows that both at time t1
as well as at time t2 we have ∣∣∣ψ(Xt1)− ψ̃0

∣∣∣ < ε/2, (5.12)∣∣∣ψ(Xt2)− ψ̃bt2N2c−bt1N2c

∣∣∣ < ε/2. (5.13)

hold true, except for an event of negligible probability.
By comparing the action of jeu de taquin on jq(M′N) with its action on jq(T′N) it fol-

lows that the sequence (ψ̃q) is weakly decreasing:

ψ̃0 ≥ · · · ≥ ψ̃w; (5.14)

in other words, if we compare the relative positions of the surfer and the ghosts
of the multisurfers in the alternative universe, the multisurfers can only move from
the left of the surfer to the right, but not in the opposite direction.

By combining (5.12), (5.13) and (5.14) it follows that (5.1) indeed holds true, as we
claimed. This concludes the proof of Proposition 4.1.
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