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Abstract. Immanants are functions on square matrices generalizing the determi-
nant and permanent. Stembridge showed that irreducible character immanants are
nonnegative on totally nonnegative matrices. Rhoades and Skandera later defined
Kazhdan–Lusztig immanants, using specializations of Kazhdan–Lusztig polynomials
at 1; results of (Stembridge, 1992) and (Haiman, 1993) show that these are also non-
negative on totally nonnegative immanants. Here, we give conditions on v ∈ Sn so that
the Kazhdan–Lusztig immanant corresponding to v is positive on k-positive matrices.
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1 Introduction

Given a function f ∶ Sn → C, the immanant associated to f , Imm f ∶Matn×n(C) → C, is the
function

M = (mij)1≤i,j≤n ↦ Imm f (M) ∶= ∑
w∈Sn

f (w) m1,w(1)⋯mn,w(n). (1.1)

Well-studied examples include the determinant, where f (w) = (−1)`(w), the perma-
nent, where f (w) = 1, and more generally character immanants, where f is an irreducible
character of Sn.

We will be interested in immanants evaluated on matrices that meet certain positivity
conditions.

Definition 1.1. Let M ∈ Matn×n(C). We call M k-positive (respectively, k-nonnegative) if
all minors of size at most k are positive real numbers (respectively, nonnegative real
numbers). If M is n-positive (respectively, n-nonnegative), we also call M totally positive
(respectively, totally nonnegative).

Notice that the entries of M are 1× 1 minors, so if M is k-nonnegative for any k ≥ 1, it
has real entries.
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Example 1.2. The matrix

⎡⎢⎢⎢⎢⎢⎣

11 9 3
8 7 3
2 2 1

⎤⎥⎥⎥⎥⎥⎦
is 2-positive but has negative determinant, so is not 3-nonnegative (totally nonnegative).

The positivity properties of immanants have been of interest since the early 1990s.
In [6], Goulden and Jackson conjectured (and Greene [7] later proved) that character
immanants of Jacobi–Trudi matrices are polynomials with nonnegative coefficients. This
was followed by a number of positivity conjectures by Stembridge [16], including two
that were proved shortly thereafter: Haiman showed that character immanants of gener-
alized Jacobi–Trudi matrices are Schur-positive [8] and Stembridge showed that character
immanants of totally nonnegative matrices are nonnegative [17].

In [16], Stembridge also asks if certain monomial immanants are nonnegative on k-
nonnegative matrices. More generally, it is natural to ask what one can say about the
signs of immanants on k-nonnegative matrices. Stembridge’s proof in [17] does not
extend to k-nonnegative matrices, as it relies on the existence of a certain factorization
for totally nonnegative matrices which does not exist for all k-nonnegative matrices.

Here, we will focus on the signs of Kazhdan–Lusztig immanants, which were defined
by Rhoades and Skandera [13].

Before giving the definition of Kazhdan–Lusztig immanants, we briefly review some
basic notions from Coxeter theory, which we will need in what follows. For details,
see e.g. [2]. For 1 ≤ i ≤ n − 1, let si ∈ Sn be the permutation exchanging i and i + 1
and fixing all other elements of {1, . . . , n}. We call s1, . . . , sn−1 simple transpositions. Any
permutation v ∈ Sn can be written as a product of simple transpositions. If an expression
for v as a product of simple transpositions uses the smallest possible number of simple
transpositions, it is called a reduced expression. The length of v, denoted `(v), is the
number of simple transpositions in a reduced expression for v. The length of v is also
the number of inversions of v (that is, the number of pairs of integers 1 ≤ i < j ≤ n
such that v(i) > v(j)). There is a unique element of Sn of maximum length, which
is w0 ∶= n (n − 1) . . . 2 1. For w, v ∈ Sn, v is smaller than w in the (strong) Bruhat
order, which we denote by v ≤ w, if some (equivalently, every) reduced expression for w
contains as a subexpression a reduced expression for v.

Definition 1.3. Let v ∈ Sn. The Kazhdan–Lusztig immanant Immv ∶Matn×n(C)→ C is given
by

Immv(M) ∶= ∑
w∈Sn

(−1)`(w)−`(v)Pw0w,w0v(1) m1,w(1)⋯mn,w(n) (1.2)

where Px,y(q) is the Kazhdan–Lusztig polynomial associated to x, y ∈ Sn and w0 ∈ Sn is
the longest permutation.
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For the definition of Kazhdan–Lusztig polynomials and their basic properties, see e.g.
[2]. It is a fact that Px,y(q) = 0 if x is not less than or equal to y in the Bruhat order, and
that Px,w0(q) = 1 for all x ∈ Sn. Using these two facts, we can compute that, for example,
Imme(M) = det M and Immw0(M) = mn,1mn−1,2⋯m1,n.

Using results of [8, 17], Rhoades and Skandera [13] show that Kazhdan–Lusztig im-
manants are nonnegative on totally nonnegative matrices, and are Schur-positive on
generalized Jacobi–Trudi matrices. Further, they show that character immanants are
nonnegative linear combinations of Kazhdan–Lusztig immanants, so from the perspec-
tive of positivity, Kazhdan–Lusztig immanants are the more fundamental object to study.

We will call an immanant k-positive if it is positive on all k-positive matrices. We are
interested in the following question.

Question 1.4. Let 0 < k < n be an integer. For which v ∈ Sn is Immv(M) k-positive?

Notice that Imme(M) = det M is k-positive only for k = n. On the other hand, Immw0

is k-positive for all k, since it is positive as long as the entries (i.e. the 1× 1 minors) of M
are positive. So, the answer to Question 1.4 is a nonempty proper subset of Sn.

Pylyavskyy conjectured that there is a link between Immv(M) being k-positive and v
avoiding certain patterns.

Definition 1.5. Let v ∈ Sn, and let w ∈ Sm. Suppose v = v1⋯vn and w = w1⋯wm in one-line
notation. We say that the pattern w1⋯wm occurs in v if there exist 1 ≤ i1 < ⋅ ⋅ ⋅ < im ≤ n such
that vi1⋯vim are in the same relative order as w1⋯wm. We say v avoids the pattern w1⋯wm
if it does not occur in v.

More precisely, Pylyavskyy conjectured the following.

Conjecture 1.6 ([12]). Let 0 < k < n be an integer and let v ∈ Sn avoid 12⋯(k + 1). Then
Immv(M) is k-positive.

Our main result is a description of some k-positive Kazhdan–Lusztig immanants, in
the spirit of Pylyavskyy’s conjecture.

Theorem 1.7. Let 0 < k < n be an integer and let v ∈ Sn be 123-, 2134-, 1(2k)(2k − 1)...2-, and
(2k − 1)(2k − 2)...1(2k)-avoiding. Then Immv(M) is k-positive.

Example 1.8. Consider v = 2413 in S4. It avoids the patterns 123, 2134, 1432, and 3214, so
Theorem 1.7 guarantees that

Immv(M) = m12m24m31m43 −m14m22m31m43 −m13m24m31m42 +m14m23m31m42

−m12m24m33m41 +m14m22m33m41 +m13m24m32m41 −m14m23m32m41

is positive on all 2-positive 4× 4 matrices.
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Remark 1.9. For k = 2, Theorem 1.7 concerns permutations which are 123-, 2134-, 1432-,
and 3214-avoiding. According to [19], the number of such permutations in Sn is given
by the coefficient of xn in the power series

∞
∑
i=0

cnxn = 1− x
1− 2x − x3 .

For other k, the number of permutations avoiding 123, 2134, 1(2k)(2k − 1)...2, and
(2k − 1)(2k − 2)...1(2k) is not known.

Note that Theorem 1.7 supports Conjeture 1.6. Indeed, if k = 1, the (2k − 1)(2k −
2)...1(2k)-avoiding condition reduces to avoiding 12. For k ≥ 2, the 123-avoiding condi-
tion ensures that v also avoids 12⋯(k + 1).

Before outlining the the proof of Theorem 1.7, we would like to provide some ad-
ditional motivation and context for Question 1.4. For an arbitrary reductive group G,
Lusztig [11] defined the totally positive part G>0 and showed that elements of the dual
canonical basis of O(G) are positive on G>0. Fomin and Zelevinsky [5] later showed
that for semisimple groups, G>0 is characterized by the positivity of generalized minors,
which are dual canonical basis elements corresponding to the fundamental weights of G
and their images under Weyl group action. Note that the generalized minors are a finite
subset of the (infinite) dual canonical basis, but their positivity guarantees the positivity
of all other elements of the basis.

In the case we are considering, G = GLn(C), G>0 consists of the totally positive
matrices and generalized minors are just ordinary minors. Skandera [15] showed that
Kazhdan–Lusztig immanants are part of the dual canonical basis of O(GLn(C)), which
gives another perspective on their positivity properties. (In fact, Skandera proved that
every dual canonical basis element can be obtained from a Kazhdan–Lusztig immanant
evaluated on matrices with repeated rows and columns.) In light of these facts, Ques-
tion 1.4 becomes a question of the following kind.

Question 1.10. Suppose some finite subset S of the dual canonical basis is positive on
M ∈ G. Which other elements of the dual canonical basis are positive on M? In particular,
what if S consists of the generalized minors corresponding to the first k fundamental
weights and their images under the Weyl group action?

These questions have a similar flavor to positivity tests arising from cluster algebras,
which is different than the approach we take here. The coordinate ring of GLn is a
cluster algebra, with some clusters given by double wiring diagrams [1]. The minors are
cluster variables. If we restrict our attention to the minors of size at most k in the clusters
for GLn, we obtain a number of sub-cluster algebras, investigated by the first author in
[3]. The cluster monomials in those sub-algebras will be positive on k-positive matrices.
Thus, one strategy to show Immv(M) is k-positive is to show it is a cluster monomial
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in a sub-cluster algebra. Interestingly, the Kazhdan–Lusztig immanants of 123-, 2143-,
1423-, and 3214-avoiding permutations do appear in sub-cluster algebras of this kind for
k = 2. In general, however, it is not known if Immv is a cluster variable in the cluster
structure on GLn, or in the sub-cluster algebras using only minors of size at most k. It
is conjectured that cluster monomials form a (proper) subset of the dual canonical basis,
so the cluster algebra approach would at best provide a partial answer to Question 1.10.

2 Results

To prove Theorem 1.7, we first note that Equation (1.2) has a much simpler form when
v is 1324- and 2143-avoiding. By [9], Px,y(q) is the Poincaré polynomial of the local in-
tersection cohomology of the Schubert variety indexed by y at any point in the Schubert
variety indexed by x; by [10], the Schubert variety indexed by y is smooth precisely when
y is 4231- and 3412-avoiding. These results imply that Px,y(q) = 1 for y avoiding 4231 and
3412. Together with the fact that Px,y(q) = 0 for x ≰ y in the Bruhat order, this gives the
following lemma.

Lemma 2.1. Let v ∈ Sn be 1324- and 2143-avoiding. Then

Immv(M) = (−1)`(v) ∑
w≥v

(−1)`(w) m1,w(1)⋯mn,w(n). (2.1)

The coefficients in the formula in Lemma 2.1 suggest a strategy for analyzing
Immv(M) for v ∈ Sn 1324- and 2143-avoiding: find some matrix M̃ such that det(M̃) =
± Immv(M). If such a matrix M̃ exists, the sign of Immv(M) is the sign of some deter-
minant, which we have tools (e.g. the Desnanot–Jacobi identity) to analyze. The most
straightforward candidate for M̃ is a matrix obtained from M by replacing some entries
with 0.

Definition 2.2. Let P ⊆ {1, . . . , n}2 and let M = (mij) be in Matn×n(C). The restriction of M
to P, denoted M∣P, is the matrix with entries

m̃ij =
⎧⎪⎪⎨⎪⎪⎩

mij if (i, j) ∈ P
0 else.

For a fixed v ∈ Sn that avoids 1324 and 2143, suppose there exists P ⊆ {1, . . . , n}2 such
that Immv(M) = ±det M∣P. Given the terms appearing in Equation (2.1), P must include
{(i, w(i)) ∶ w ∈ [v, w0]}, the union of graphs of permutations in the Bruhat interval [v, w0].
In fact, the minimal choice of P suffices.

Proposition 2.3. Let v ∈ Sn be 1324- and 2143-avoiding, and let M ∈ Matn×n(C). Denote by
gr[v, w0] ∶= {(i, w(i)) ∶ w ∈ [v, w0]}. Then

det(M∣gr[v,w0]) = ∑
w≥v

(−1)`(w) m1,w(1)⋯mn,w(n).
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Figure 1: An example of gr[v, w0] for v = 14253. Dots mark the positions (i, v(i)), and
crosses mark all other elements of gr[v, w0].

Before discussing the proof of Proposition 2.3, we mention that gr[v, w0] is easy to
characterize as a subset of Z2.

Lemma 2.4. Let v ∈ Sn. Then gr[v, w0] consists exactly of the points (i, j) such that there exist
k, ` ∈ {1, . . . , n} where k ≤ i ≤ ` and vk ≤ j ≤ v`.

Remark 2.5. Index the rows and columns of an n × n grid so that row indices increase
going down and column indices increase going right. Lemma 2.4 gives a method for
drawing gr[v, w0] in the grid. First, put a dot in positions (i, v(i)) for i = 1, . . . , n. Then,
put a cross in all positions that are weakly southeast of one dot and weakly northwest
of another (see Figure 1).

Returning to Proposition 2.3, notice that by definition,

det(M∣gr[v,w0]) = ∑
w∈Sn

gr(w)⊆gr[v,w0]

(−1)`(w) m1,w(1)⋯mn,w(n) (2.2)

where gr(w) ∶= {(i, w(i)) ∶ i = 1, . . . , n} is the graph of w. So the content of Proposition 2.3
is that for permutations v avoiding the appropriate patterns, [v, w0] = {w ∈ Sn ∶ gr(w) ⊆
gr[v, w0]}. This does not hold for arbitrary permutations v, as the following example
shows.

Example 2.6. Consider v = 14253. Then x = 12453 is not in the Bruhat interval [v, w0], but
gr(x) ⊆ gr[v, w0]. This can easily be seen from Figure 1.

Proposition 2.3 follows from Lemma 2.4 and a result of Sjöstrand [14]. Lemma 2.4
shows that for arbitrary v ∈ Sn, gr[v, w0] is equal to what Sjöstrand calls the “right convex
hull" of v. Theorem 4 of [14] establishes that the right convex hull of v contains only the
graphs of w ≥ v if and only if v avoids the patterns 1324, 24153, 31524, and 426153. The
latter 3 patterns contain an occurrence of 2143, so if v avoids 2143, it also surely avoids
these patterns.
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bb n− a+ 1

n− b+ 1 a
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n− a+ 1

Figure 2: P`
a,b (on the left) and Pr

a,b (on the right). The boxes on the antidiagonal are
shown in green.

In light of Proposition 2.3, it remains to analyze the sign of det(M∣gr[v,w0]). In par-
ticular, we would like to find some k for which det(M∣gr[v,w0]) has the same sign for all
k-positive matrices M. We will do this in the special case when v avoids 123 and 2143 by
describing gr[v, w0] more explicitly as a region in an n × n grid. We restrict to this case
so we can use a result of Tenner:

Theorem 2.7 ([18]). A permutation y ∈ Sn avoids 321 and 3412 if and only if in every (equiva-
lently, one) reduced expression for y, each simple transposition appears at most once.

If v avoids 123 and 2143, then w0v will avoid 321 and 3412. So, we can use Tenner’s
result to describe gr[v, w0] for v 123- and 2143-avoiding. The building blocks for these
graphs are pentagonal collections of dots, which we define next.

Definition 2.8. Let 0 < a, b ≤ n. If (a, b) is above the antidiagonal, we define P`
a,b as the

left-justified collection of dots in rows a through n − b + 1 where row i has min{n − b −
i + 3, n − b − a + 2} dots and the first dot in each row is in column b. Similarly, if (a, b)
is below the antidiagonal, Pr

a,b is the right-justified collection of dots in rows n − b + 1
through a where row i has min{b − n + i + 1, b − n + a} dots and the last dot in each row is
in column b. We call P`

a,b and Pr
a,b pentagonal shapes. See Figure 2 for an example.

Notice that P`
a,b is related to Pr

a,b by reflection across the antidiagonal.

Proposition 2.9. Let n > 2. Suppose v ∈ Sn avoids 123 and 2143 and `(v) = (n−1
2 ). Define

L ∶= {i ∶ v(i) < n − i} and R ∶= {i ∶ v(i) > n − i + 2}. Then

gr[v, w0] = (⋃
i∈L

P`
i,v(i)) ⋃ (⋃

i∈R
Pr

i,v(i)) .

Moreover, the pentagonal shapes alternate between P`
a,b and Pr

c,d down the antidiagonal, and P`
a,b

intersects Pr
c,d either nowhere or in a 2× 2 square of dots.
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Figure 3: Let v = 4 10 9 2 8 6 3 2 1 5. It is 123- and 2143-avoiding and every simple
transposition occurs once in each reduced expression for w0v. The decomposition of
gr[v, w0] into a union of pentagon shapes, guaranteed by Proposition 2.9, is shown
here. All P`

a,b’s are shown in red; all Pr
a,b’s are shown in blue.

We have the following immediate corollary.

Corollary 2.10. Let v ∈ Sn avoid 123 and 2143. Then gr[v, w0] is block antidiagonal. Consider
each minimal block of gr[v, w0] as a m ×m grid. Then either the block consists of a single dot,
consists of a 2× 2 square of dots, or has shape described by Proposition 2.9.

With this description of gr[v, w0] we can prove the following.

Theorem 2.11. Let v ∈ Sn be 123- and 2143-avoiding, and suppose k is the size of the largest
square appearing in gr[v, w0]. Then Immv(M) is k-positive.

Proof sketch. By Proposition 2.3, it suffices to show that det(M∣gr[v,w0]) is nonzero and has
sign `(v). We prove this first for v such that gr[v, w0] has a single antidiagonal block,
in which case `(v) = n − 1. The proof is by induction, and relies on the Desnanot–Jacobi
identity (also known as Dodgson condensation), which is as follows.

For N ∈ Matn×n(C) and I, J ⊆ {1, . . . , n}, let N J
I denote the submatrix obtained by

removing rows indexed by I and columns indexed by J. Then for 1 ≤ a < a′ ≤ n and
1 ≤ b < b′ ≤ n, we have

det N det Nb,b′
a,a′ = det Nb

a det Nb′
a′ −det Nb′

a det Nb
a′ . (2.3)
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Proposition 2.9 plays a crucial role in understanding the determinants of the matrices
appearing in the Desnanot–Jacobi identity for N = M∣gr[v,w0].

Once we know the case when gr[v, w0] is a single block, we use Corollary 2.10 and
the following lemma to establish the result for all v avoiding 123 and 2143.

Lemma 2.12. Let M ∈ Matn×n(C) be block-antidiagonal, with blocks M1, . . . , Mr of size
n1, . . . nr. Then

det M = (−1)(
n
2)

r
∏
i=1

(−1)(
ni
2 ) det Mi.

To obtain Theorem 1.7 from Theorem 2.11, we simply translate the condition "k is the
size of the largest square appearing in gr[v, w0]" into pattern avoidance language.

The assumptions of Theorem 2.11 are stronger than those of Proposition 2.3, so it’s
natural to conjecture that they can be weakened. In work following the completion of
this abstract [4], we prove the following statement.

Theorem 2.13 ([4]). Suppose v ∈ Sn avoids 1324 and 2143, and let k be the size of the largest
square in gr[v, w0]. Then Immv(M) is k-positive.

Example 2.14. Let v = 236145. Then gr[v, w0] is the following grid:

1 6

1

6

The largest square in gr[v, w0] is of size 4 (one choice of such a square is highlighted in
green). Since v avoids 1324 and 2143, we know that Immv(M) = (−1)`(v) det(M∣gr[v,w0]).
Theorem 2.13 states that if M is 4-positive, then Immv(M) is positive.

To prove Theorem 2.13, we again use the Desnanot–Jacobi identity to determine the
sign of det(M∣gr[v,w0]) for v and M satisfying the appropriate conditions. The key ob-
servation is that, for certain choices of deleted rows and columns, every term of the
Desdanot–Jacobi identity is of the form det(M∣gr[v′,w0]) for some v′ which avoids 1324
and 2143. After this observation, the argument proceeds by induction.
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