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Abstract. We introduce a new class of combinatorially defined rational functions and
apply them to deduce explicit formulae for local ideal zeta functions associated to the
members of a large class of nilpotent Lie rings which contains the free class-2-nilpotent
Lie rings and is stable under direct products. Our results unify and generalize a sub-
stantial number of previous computations. We show that the new rational functions,
and thus also the local zeta functions under consideration, enjoy a self-reciprocity
property, expressed in terms of a functional equation upon inversion of variables. We
establish a conjecture of Grunewald, Segal, and Smith on the uniformity of normal
zeta functions of finitely generated free class-2-nilpotent groups.
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This abstract is an exposition of some results from the preprint [5]. The objective
of our work is twofold. The first aim is to introduce a new class of combinatorially
defined multivariate rational functions and to indicate that they satisfy a self-reciprocity
property, expressed in terms of a functional equation upon inversion of variables. The
second is to apply these rational functions to describe explicitly the local ideal zeta
functions associated to a class of combinatorially defined Lie rings.

1 Generalized Igusa functions

In Section 1.1 we introduce generalized Igusa functions and state the functional equa-
tions that they satisfy. In Section 1.2 we record an identity involving weak order zeta
functions, motivated by our applications of Igusa functions in ideal growth. We collect
here some notation and fundamental notions.
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We write N = {1, 2, . . . } and, for a subset X ⊆ N, set X0 = X ∪ {0}. For n ∈ N0 we
denote [n] = {1, . . . , n}. Given a finite subset J ⊆N0, we write J = {j1, . . . , jr}< to imply
that j1 < · · · < jr. The power set of a set S is denoted P(S).

For a variable Y and integers a, b ∈N0 with a ≥ b, the associated Gaussian binomial is(
a
b

)
Y
=

∏a
i=a−b+1(1−Yi)

∏b
i=1(1−Yi)

∈ Z[Y].

Given n ∈ N and a subset J = {j1, . . . , jr}< ⊆ [n− 1], the associated Gaussian multi-
nomial is defined as (

n
J

)
Y
=

(
n
jr

)
Y

(
jr

jr−1

)
Y
· · ·
(

j2
j1

)
Y
∈ Z[Y]. (1.1)

The following Coxeter group theoretic interpretation of the Gaussian multinomials
is used in the proof of our reciprocity theorem. Recall that the symmetric group W =
Sn of degree n is a Coxeter group, with Coxeter generating system S = (s1, . . . , sn−1),
where si = (i i + 1) denotes the standard transposition. The Coxeter length `(w) of an
element w ∈ Sn is the length of a shortest word for w with elements from S. We define
the (right) descent set Des(w) = {i ∈ [n − 1] | `(wsi) < `(w)}. It is well-known ([17,
Proposition 1.7.1]) that the Gaussian multinomials (1.1) satisfy(

n
J

)
Y
= ∑

w∈Sn, Des(w)⊆J
Y`(w).

1.1 Generalized Igusa functions and their functional equations

Let n = (n1, . . . , nm) be a composition of N = ∑m
i=1 ni with m parts. Consider the poset

Cn of subwords of the word vn := an1
1 an2

2 . . . anm
m in “letters” a1, a2, . . . , am, each occurring

with respective multiplicity ni. This poset is naturally isomorphic to the lattice

Cn1 × · · · × Cnm ,

the product of the chains of lengths ni with the product order, which we denote by “≤”.
We write 1̂ = vn and 0̂ for the empty word.

We denote by WOn the chain (or order) complex of Cn. An element V ∈ WOn is a
(possibly empty) chain, or flag, of non-empty subwords of vn, of the form V = {v1 <
· · · < vt}. On WOn we consider the partial order defined by refinement of flags, also
denoted by “≤”. Consider the natural map

π : Cn → [n1]0 × · · · × [nm]0,
v = aα1

1 . . . aαm
m 7→ (α1, . . . , αm) =: (π1(v), . . . , πm(v)).
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1̂ = a2
1a2a3

a2
1a3 a1a2a3

a2
1

a2
1a2

a1a2 a1a3 a2a3

a1 a2 a3

0̂ = empty word

Figure 1: The poset Cn for n = (2, 1, 1).

Definition 1.1. We consider the induced morphism of posets

ϕ : WOn →
m

∏
i=1
P([ni − 1]),

V = {v1 < · · · < vt} 7→
({

πi(vj) | j ∈ [t]
}
∩ [ni − 1]

)m
i=1 =: (ϕi(V))m

i=1 .

Definition 1.2. Let V = {v1 < · · · < vt} ∈WOn. We define

WV(X) =
t

∏
j=1

Xvj

1− Xvj

∈ Q(Xv1 , . . . , Xvt)

and (
n
V

)
Y
=

m

∏
i=1

(
ni

ϕi(V)

)
Yi

∈ Q(Y1, . . . , Ym),

where ϕ(V) = (ϕ1(V), . . . , ϕm(V)).

Example 1.3. Let n = (3, 2, 2). For the flag V = {a2a3 < a1a2
2a3} ∈WO(3,2,2) we find that

WV(X) =
Xa2a3 Xa1a2

2a3

(1− Xa2a3)(1− Xa1a2
2a3

)

and (
n
V

)
Y
=

(
3
1

)
Y1

(
2
1

)
Y2

(
2
1

)
Y3

= (1 + Y1 + Y2
1 )(1 + Y2)(1 + Y3).
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The following is the key combinatorial tool of this paper.

Definition 1.4. The generalized Igusa function associated with the composition n is

Iwo
n (Y; X) := ∑

V∈WOn

(
n
V

)
Y

WV(X) ∈ Q(Y1, . . . , Ym, (Xr)r≤vn),

Example 1.5.

1. For n = (N), the trivial composition of N, we recover Iwo
(N)

(Y; X) = IN(Y; X), the
classical Igusa zeta function

In(Y; X) = ∑
I⊆[n]

(
n
I

)
Y

∏
i∈I

Xi

1− Xi
=

∑σ∈Sn Y`(σ) ∏i∈Des(σ) Xi

∏n
i=1(1− Xi)

∈ Q(Y, X1, . . . , Xn).

In this case, the functional equation upon inversion of the variables was found by
Igusa; cf. [19, Theorem 4].

2. For n = (1, . . . , 1), the all-one composition of N, we recover Iwo
(1,...,1)(Y; X) = Iwo

N (X),
the weak order zeta function introduced in [15, Definition 2.9]. The variables Y
do not appear in this case, as all the polynomials (n

V)Y are equal to the constant 1.
These functions also coincide with certain instances of generating functions associ-
ated with chain partitions in [2, Section 4.9].

3. For n = (2, 1) we obtain

Iwo
(2,1)(Y; X) =

1
1− Xa2

1a2

(
1 +

Xa2

1− Xa2

+
Xa2

1

1− Xa2
1

+

(1 + Y1)

(
Xa1

1− Xa1

+
Xa1a2

1− Xa1a2

+
Xa1

1− Xa1

Xa1a2

1− Xa1a2

+

Xa1

1− Xa1

Xa2
1

1− Xa2
1

+
Xa2

1− Xa2

Xa1a2

1− Xa1a2

))
.

The following “combinatorial reciprocity theorem” is the main result of this section.

Theorem 1.6. The generalized Igusa function associated with the composition n of N = ∑m
i=1 ni

satisfies the following functional equation:

Iwo
n (Y−1; X−1) = (−1)NXvn

(
m

∏
i=1

Y
−(ni

2 )

i

)
Iwo
n (Y; X).
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The proof of Theorem 1.6 builds on a number of crucial “inversion properties” satis-
fied by the rational functions WV(X). The first is rather simple.

Lemma 1.7. For all V ∈WOn,

WV(X−1) = (−1)|V| ∑
Q≤V

WQ(X).

To formulate the second, more sophisticated inversion property we denote by WO×n
the subcomplex of WOn of flags of proper subwords of vn. Also, for I = (I1, . . . , Im) ∈
∏m

i=1 P([ni − 1]) we write Ic := K \ I for ([n1 − 1] \ I1, . . . , [nm − 1] \ Im).

Proposition 1.8. For all I ∈ ∏m
i=1 P([ni − 1]),

∑
V∈WO×n
ϕ(V)⊇I

WV(X−1) = (−1)N−1 ∑
V∈WO×n
ϕ(V)⊇Ic

WV(X).

1.2 Weak order zeta functions and generalized Igusa functions

We record an identity between instances of weak order zeta functions which is used to
show that our computations of the ideal zeta functions of base extensions of the Heisen-
berg Lie algebra match results obtained earlier by two of the authors [15]. The identity,
which may be of independent interest, compares instances of weak order zeta functions
associated with the all-one-compositions g and 2g, with g and 2g parts, respectively, and
holds when substituting for the variables monomials satisfying certain relations.

We call a subword of the word 1̂ = v2g := a1 · · · a2g radical if it is of the form w =

∏i∈J aiai+g for some J ⊆ [g]. We observe that any subword r ≤ v2g may be written
uniquely in the form r =

√
r · r′r′′, where

√
r = ∏i∈I aiai+g is a radical word, whereas

r′ = ∏i∈I ′ ai and r′′ = ∏i∈I ′′ ai+g, and the subsets I , I ′, I ′′ ⊆ [g] are disjoint.
In the following result, we omit the non-occurring variable Y from the generalized

Igusa functions Iwo
g and Iwo

2g ; cf. our remark in Example 1.5 (2).

Proposition 1.9. Let g ∈ N. Suppose that y = (yr | r ≤ v2g) comprises terms satisfying
yr = y√r ·∏i∈I ′∪I ′′ yai . Then

Iwo
2g (y) =

(
g

∏
i=1

1 + yai

1− yai

)
Iwo
g (z),

where z = (z∏i∈I ai | ∏i∈I ai ≤ vg) is given by z∏i∈I ai = y∏i∈I aiai+g for all I ⊆ [g].
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2 Applications to ideal growth in Lie rings

2.1 Finite uniformity for ideal zeta functions of nilpotent Lie rings

Given an additively finitely generated ring L, i.e. a finitely generated Z-module with
some bi-additive, not necessarily associative multiplication, the ideal zeta function of L
is the Dirichlet generating series

ζ/L(s) = ∑
I/L
|L : I|−s, (2.1)

where I runs over the (two-sided) ideals of L of finite additive index in L and s is a
complex variable. Prominent examples of ideal zeta functions include the Dedekind
zeta functions, enumerating ideals of rings of integers of algebraic number fields and, in
particular, Riemann’s zeta function ζ(s).

It is not hard to verify that, for a general ring L, the ideal zeta function ζ/L(s) satisfies
an Euler product whose factors are indexed by the rational primes:

ζ/L(s) = ∏
p prime

ζ/L(Zp)
(s),

where, for a prime p,
ζ/L(Zp)

(s) = ∑
I/L(Zp)

|L(Zp) : I|−s

enumerates the ideals of finite index in the completion L(Zp) := L ⊗Z Zp or, equiv-
alently, the ideals of finite p-power index in L. Here Zp denotes the ring of p-adic
integers; note that ideals of L(Zp) are, in particular, Zp-submodules of L(Zp). It is,
in contrast, a deep result that the Euler factors ζ/L(Zp)

(s) are rational functions in the

parameter p−s; cf. [8, Theorem 3.5].
Computing these rational functions explicitly for a given ring L is, in general, a very

hard problem. Solving it is usually rewarded by additional insights into combinatorial,
arithmetic, or asymptotic aspects of ideal growth. It was shown by du Sautoy and
Grunewald [13] that the problem, in general, involves the determination of the numbers
of Fp-rational points of finitely many algebraic varieties defined over Q. Only under
additional assumptions on L may one hope that these numbers are given by finitely
many polynomial functions in p. We say that the ideal zeta function of L is finitely
uniform if there are finitely many rational functions W/

1 (X, Y), . . . , W/
N(X, Y) ∈ Q(X, Y)

such that for any prime p there exists i ∈ {1, . . . , N} such that

ζ/L(Zp)
(s) = W/

i (p, p−s).

If a single rational function suffices (i.e. N = 1), we say that the ideal zeta function of
L is uniform. While finite uniformity dominates among low-rank examples, including
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most of those included in the book [14] and those computed by Rossmann’s computer
algebra package Zeta [10, 11], it is not ubiquitous: for a non-uniform example in rank 9,
see [12] and [18]. In general, the ideal zeta function of a direct product of rings is not
given by a simple function of the ideal zeta functions of the factors. It is not even clear
whether (finite) uniformity of the latter implies (finite) uniformity of the former.

2.2 Main results

We apply the generalized Igusa functions introduced in Definition 1.4 to give construc-
tive proofs of (finite) uniformity of ideal zeta functions associated to the members of a
large class of nilpotent Lie rings of nilpotency class at most 2.

Definition 2.1. Let L denote the class of nilpotent Lie rings of nilpotency class at most 2
which is closed under direct products and contains the following Lie rings:

1. the free class-2-nilpotent Lie rings f2,d on d generators, for d ≥ 2.

2. the free class-2-nilpotent products gd,d′ = Zd ∗Zd′ , for d, d′ ≥ 0. These have Z-basis
{xi, yj, zij | i ∈ [d], j ∈ [d′]}, with the relations [xi, yj] = zij; all other pairs of basis
elements commute.

3. the higher Heisenberg Lie rings hd for d ≥ 1; these are d copies of the Heisenberg
Lie ring amalgamated over their centres and have Z-basis {x1, . . . , xd, y1, . . . , yd, z},
with relation [xi, yi] = z for all i ∈ [d]. All other pairs of basis elements commute.

Note that L contains the free abelian Lie rings Zd = gd,0 = g0,d.
Our main “global” result produces explicit formulae for almost all Euler factors of

the ideal zeta functions associated to Lie rings obtained from the members of L by
base extension with general rings of integers of number fields. In particular, we show
that these zeta functions are finitely uniform and, more precisely, that the variation of
the Euler factors is uniform among unramified primes with the same decomposition
behaviour in the relevant number field.

Theorem 2.2. Let L be an element of L, let g ∈N, and f = ( f1, . . . , fg) ∈Ng. There exists an
explicitly described rational function W/

L,f ∈ Q(X, Y) such that the following holds:
Let O be the ring of integers of a number field and set L(O) = L⊗O. If a rational prime p

factorizes in O as pO = p1p2 · · · pg, for pairwise distinct prime ideals pi in O of inertia degrees
( f1, . . . , fg), then

ζ/L(O),p(s) = W/
L,f(p, p−s).

In particular, ζ/L(O)(s) is finitely uniform and ζ/L(s) = ζ/L(Z)(s) is uniform.
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A special case of Theorem 2.2 establishes part of a conjecture of Grunewald, Segal,
and Smith on the normal subgroup growth of free nilpotent groups under extension of
scalars. In [8], they introduced the concept of the normal zeta function

ζ/G(s) = ∑
H/G
|G : H|−s

of a torsion-free finitely generated nilpotent group G, enumerating the normal sub-
groups of G of finite index in G. As G is nilpotent, it also satisfies an Euler product
decomposition

ζ/G(s) = ∏
p prime

ζ/G,p(s),

whose factors enumerate the normal subgroups of G of p-power index. If G has nilpo-
tency class two, then its normal zeta function coincides with the ideal zeta function
of the associated Lie ring LG := G/Z(G) ⊕ Z(G); see [8, Remark on p. 206]. Thus,
ζ/G(s) = ζ/LG

(s). Moreover, every class-2-nilpotent Lie ring L arises in this way and gives
rise to a torsion-free finitely generated nilpotent group G(L); see [21, Section 1.2] for
details. Theorem 2.2 thus has a direct corollary pertaining to the normal zeta functions
of the finitely generated class-2-nilpotent groups corresponding to the Lie rings in L.
Since the groups associated to the free class-2-nilpotent Lie rings f2,d are the finitely gen-
erated free class-2-nilpotent groups F2,d = G(f2,d), Theorem 2.2 implies the Conjecture
on p. 188 of [8] for the case ∗ = / and c = 2. The conjecture for normal zeta functions
had previously been established only for d = 2 ([8, Theorem 3]; see also Section 2.3). We
are not aware of any other case for which the conjecture has been proven or refuted.

Theorem 2.2 is a direct consequence of the following uniform “local” result. In the
following, o will denote a compact discrete valuation ring of arbitrary characteristic and
residue field of characteristic p and cardinality q. Thus, o may, for instance, be a finite
extension of the ring Zp of p-adic integers (of characteristic zero) or a ring of formal
power series of the form FqJTK (of positive characteristic). The o-ideal zeta function

ζ/ oL (s) = ∑
I/L
|L : I|−s

of an o-algebra L of finite o-rank is defined as in (2.1), with I ranging over the o-ideals
of L, viz. (ad L)-invariant o-submodules of L. Note that every element L of L may, after
tensoring over Z with o, be considered a free and finitely generated o-Lie algebra. Given
an o-module R, we write L(R) = L⊗o R.

Theorem 2.3. Let L = (L1, . . . ,Lg) be a family of elements of L and f = ( f1, . . . , fg) ∈ Ng.
There exists an explicit rational function W/

L, f ∈ Q(X, Y) such that the following holds:
Let o be a compact discrete valuation ring and (O1, . . . ,Og) be a family of finite unramified

extensions of o with inertia degrees ( f1, . . . , fg). Consider the o-Lie algebra

L = L1(O1)× · · · × Lg(Og).
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For every finite extension O of o, of inertia degree f over o, say, the O-ideal zeta function of L(O)
satisfies

ζ/OL(O)(s) = W/
L, f (q

f , q− f s).

The rational function W/
L, f satisfies the functional equation

W/
L, f (X−1, Y−1) = (−1)N0 X(

N0
2 )YN0+N1W/

L, f (X, Y), (2.2)

where

N0 = rkoL =
g

∑
i=1

fi rkZ(Li) and N1 = rko(L/Z(L)) =
g

∑
i=1

fi rkZ(Li/Z(Li)).

Remark 2.4. In [15, Conjecture 1.4] it was suggested that a functional equation should
hold for all local factors ζ/

f2,2(O),p(s), where f2,2 is the Heisenberg Lie ring and O is a num-
ber ring; if p ramifies in O, then the symmetry factor must be modified from that of (2.2).
Some cases of the conjecture were proved in [16, Corollary 3.13]. There is computational
evidence, due to T. Bauer, that other Lie rings in the class L also exhibit the remarkable
property of the local factors ζ/L(O),p(s) at ramified primes p being described by rational
functions satisfying functional equations. Those computations, together with the results
of this paper, suggest the following natural question: how do the local factors ζ/L(O),p(s)
behave at ramified primes, and how does the structure of L govern their behaviour? A
further generalization of our generalized Igusa functions will be necessary to provide
explicit formulae in ramified cases.

2.3 Previous and related work

Theorems 2.2 and 2.3 generalize and unify several previously known results.

1. The most classical may be the formula for the o-ideal zeta function

ζon(s) := ζ/ oon (s) =
n

∏
i=1

1
1− q−s+i−1

of the (abelian Lie) ring on = g0,n(o) = gn,0(o); cf. [8, Proposition 1.1].

2. The ideal zeta functions of the Grenham Lie rings g1,d were given in [19, Theorem 5].

3. Formulae for the ideal zeta functions of the free class-2-nilpotent Lie rings f2,d on d
generators are the main result of [20].
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4. The paper [15] contains formulae for all local factors of the ideal zeta functions of
the Lie rings f2,2(O) = g1,1(O) = h1(O), i.e. the Heisenberg Lie ring over an arbitrary
number ring O, which are indexed by primes unramified in O. The uniform nature
of these functions had already been established in [8, Theorem 3]. Formulae for
factors indexed by non-split primes are given in [16].

5. The ideal zeta functions of the Lie rings hd × or were computed in [8, Proposi-
tion 8.4], whereas for the direct products hd × · · · × hd they were computed in [1].

6. The ideal zeta function of the Lie ring g2,2 was computed in [9, Theorem 11.1].

2.4 Informal overview of the proofs of Theorems 2.2 and 2.3

Here we summarize the principal ideas behind our approach, which greatly generalize
those of [15]. Let L be an o-Lie algebra with derived subalgebra L′ = [L, L]. If L is
class-2-nilpotent, then an o-sublattice Λ ≤ L is an o-ideal if [Λ, L] ≤ Λ ∩ L′, where
Λ = (Λ + L′)/L′. For simplicity of exposition we will assume that L′ = Z(L), i.e. that
L has no abelian direct summands. By an argument going back to [8, Lemma 6.1], the
computation of ζ/ oL (s) is reduced to a summation over pairs (Λ, M), where Λ ≤ L/L′

and M ≤ L′ are o-sublattices such that [Λ, L] ≤ M. Recall that the O-elementary divisor
type of a finite-index O-sublattice Λ ≤ On, where O is a compact discrete valuation ring
with maximal ideal M, is the partition (λ1, . . . , λn) such that

On/Λ ' O/Mλ1 × · · · ×O/Mλn .

Given the o-elementary divisor type λ(Λ) of [Λ, L], the lattices M satisfying this condi-
tion are enumerated by a formula going back to work of Birkhoff [3] (see [4, Lemma 1.4.1]
and also [7, 6, 22]).

An essential ingredient of our method, therefore, is an effective description of the
o-elementary divisor type λ(Λ) in terms of the structure of Λ. For the o-Lie algebras
considered in this paper, this is accomplished as follows. The quotient L/L′ decom-
poses, as an o-module, into a direct sum of m components, which are viewed as free
modules over finite extensions O1, . . . ,Om of o. For each component, we consider the
Oi-elementary divisor type ν(i) of the Oi-lattice generated by the projection of Λ onto
that component. The Lie rings in the class L of Definition 2.1 satisfy the combinatorial
condition, crucial to our method, that the parts of the partition λ(Λ) are given by the
minima of term-by-term comparisons among the elementary divisor types ν(1), . . . , ν(m).
Assuming this, we deduce a purely combinatorial expression for ζ/ oL (s).

Analogously to the argument of [15], we break up the ideal zeta function into a sum
of finitely many pieces on which the Gaussian multinomial coefficients and the dual
partitions occurring in Birkhoff’s formula are constant. The sum over each piece yields
a product of Gaussian multinomials and geometric progressions; these, in turn, are
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assembled into generalized Igusa functions introduced in Section 1. The combinatorial
machinery of the weak orders of Section 1.1 is required to keep track of the relative sizes
of the parts of the different partitions ν(i); this is necessary in order to specify domains
of summation over which the dual partition λ(Λ)′ is constant. As in [15], Dyck words
of fixed length turn out to be suitable indexing objects for the finitely many pieces. An
intrinsic advantage of this combinatorial point of view over the general (and typically
immensely more powerful) algebro-geometric approach is that, structurally, Zp only
enters as a compact discrete valuation ring. The effect of passage to various other such
local rings, including those of positive characteristic, is therefore easy to control.
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