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Abstract. We study various aspects of the divided symmetrization operator, which
was introduced by Postnikov in the context of volume polynomials of permutahe-
dra. Divided symmetrization is a linear form which acts on the space of polynomials
in n indeterminates of degree n − 1. Our main results are related to quasisymmet-
ric polynomials. We show that divided symmetrization applied to a quasisymmetric
polynomial in m ≤ n indeterminates has a natural interpretation. We further show
that divided symmetrization of any polynomial can be naturally computed with re-
spect to a direct sum decomposition due to Aval–Bergeron–Bergeron, involving the
ideal generated by positive degree quasisymmetric polynomials in n indeterminates.
Our main motivation for studying divided symmetrization comes from studying the
cohomology class of the Peterson variety.
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1 Introduction

Toward computing volume polynomials of permutahedra, Postnikov [10] introduced
an operator called divided symmetrization (abbreviated to DS in the sequel on occa-
sion). It takes a polynomial f (x1, . . . , xn) as input and outputs a symmetric polynomial〈

f (x1, . . . , xn)
〉

n defined by

〈
f (x1, . . . , xn)

〉
n := ∑

w∈Sn

w ·
(

f (x1, . . . , xn)

∏1≤i≤n−1(xi − xi+1)

)
,

where Sn denotes the symmetric group on n letters, naturally acting by permuting vari-
ables. It can be checked that divided symmetrization acting on homogeneous polyno-
mials of degree strictly less than n− 1 results in 0. Thus the degree n− 1 case is the first
non-trivial case, and in this context divided symmetrizations results in scalars.
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A pertinent and motivating instance is the following. Given a = (a1, . . . , an) ∈ Rn,
the permutahedron Pa is the convex hull of all points of the form (aw(1), . . . , aw(n)) where
w ranges over all permutations in Sn. Postnikov [10, Section 3] shows that the volume of
Pa is given by 1

(n−1)!

〈
(a1x1 + · · ·+ anxn)n−1〉

n.
While a great deal of research has been conducted into various aspects of permutahe-

dra, especially in regard to volumes and lattice point enumeration, divided symmetriza-
tion has received limited attention; see [1, 9].

Our own motivation for studying divided symmetrization stems from a problem in
Schubert calculus, which we sketch now. The flag variety Fl(n) is a complex projective
variety structure on the set of complete flags, which are sequences F0 = {0} ⊂ F1 ⊂
F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = Cn of subspaces such that dim Fi = i. The Schubert varieties
Xw ⊂ Fl(n), for w ∈ Sn, give rise to the basis of Schubert classes σw in the integral
cohomology H∗(Fl(n)). The Peterson variety Petn is the subvariety of Fl(n) of dimension
n− 1 comprised of flags (Fi)i=0,...,n such that NFi ⊂ Fi+1 for i < n, where N is the n× n
matrix with ones above the diagonal and zeros everywhere else. It is a special case of a
regular nilpotent Hessenberg variety.

Our initial problem was to compute the number aw of points in the intersection of
Petn with a generic translate of a Schubert variety Xw, for w of length n− 1. Equivalently,
aw is the coefficient of the class [Petn] ∈ H∗(Fl(n)) on the class σw. We can then show
that aw is given by

〈
Sw(x1, . . . , xn)

〉
n where Sw is the celebrated Schubert polynomial

attached to w.
The results presented in this extended abstract are thus primarily motivated by un-

derstanding the divided symmetrization of Schubert polynomials. The reader is referred
to [8] for the version with proofs. We aim to understand more about the structure of
the divided symmetrization operator acting on polynomials of degree n− 1, since Post-
nikov’s work and our own work coming from Schubert calculus both have this condition.
Our investigations allows us to uncover a direct (and intriguing) connection between di-
vided symmetrization and quasisymmetric polynomials.

The ring of quasisymmetric functions in infinitely many variables x = {x1, x2, . . . }
was introduced by Gessel [5] and has since acquired great importance in algebraic com-
binatorics. A distinguished linear basis for this ring is given by the fundamental qua-
sisymmetric functions Fα where α is a composition. Given a positive integer n, consider
a quasisymmetric function f (x) of degree n− 1. We denote the quasisymmetric polyno-
mial obtained by setting xi = 0 for all i > m by f (x1, . . . , xm) and refer to the evaluation
of f (x1, . . . , xm) at x1 = · · · = xm = 1 by f (1m). Our first main result states the following:

Theorem 1.1. For a quasisymmetric function f of degree n− 1, we have

∑
j≥0

f (1j)tj =
∑n

m=0
〈

f (x1, . . . , xm)
〉

ntm

(1− t)n .
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A natural candidate for f comes from Stanley’s theory of P-partitions [11, 12]: To any
naturally labeled poset P on n− 1 elements, one can associate a quasisymmetric function
KP(x) with degree n− 1. Let L(P) denote the set of linear extensions of P. Note that
elements in L(P) are permutations in Sn−1. Under this setup, we obtain the following
corollary of Theorem 1.1.

Corollary 1.2. For m ≤ n, we have〈
KP(x1, . . . , xm)

〉
n = |{π ∈ L(P) | π has m− 1 descents}|.

We further establish connections between a quotient ring of polynomials investigated
by [4, 3]. Let Jn denote the ideal in Q[xn] := Q[x1, . . . , xn] generated by homogeneous
quasisymmetric polynomials in x1, . . . , xn of positive degree. Let Rn be the degree n− 1
homogeneous component of Q[xn] , and let Kn := Rn ∩ Jn. Aval–Bergeron–Bergeron [3]
provide a distinguished basis for a certain complementary space K†

n of Kn in Rn, defined
in Section 5. This leads to our second main result.

Theorem 1.3. If f ∈ Kn, then
〈

f
〉

n = 0. More generally, if f ∈ Rn is written f = g + h with
g ∈ K†

n and h ∈ Kn according to (5.1), then〈
f
〉

n = g(1, . . . , 1).

Outline of the article: Section 2 sets up the necessary notations and definitions.
In Section 3 we discuss the case of monomials of degree n − 1 and define our distin-
guished class of Catalan compositions that plays a crucial role. In Section 4 we focus on
quasisymmetric polynomials, beginning with the basis of quasisymmetric monomials.
Our central result stated above as Theorem 1.1 is proved there. Section 5 deepens the
connection with quasisymmetric polynomials by way of Theorem 5.2.

2 Background

Throughout, for a nonnegative integer n, we set [n] := {i | 1 ≤ i ≤ n}. In particular,
[0] = ∅. We denote the set of variables {x1, . . . , xn} by xn. Furthermore, set Q[xn] :=
Q[x1, . . . , xn]. We refer the reader to [11, 12] for any undefined terminology.

2.1 Compositions

Given a nonnegative integer k and a positive integer n, a weak composition of k with n
parts is a sequence (c1, . . . , cn) of nonnegative integers whose sum is k. We denote the
set of compositions n − 1, which play a special role in what follows, by W ′

n. The size
of a weak composition c = (c1, . . . , cn) is the sum of its parts and is denoted by |c|. A
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strong composition is a weak composition all of whose parts are positive. Given a weak
composition c, we denote the underlying strong composition obtained by omitting zero
parts by c+. Henceforth, by the term composition, we always mean strong composition.
If the size of a composition α is k, we denote this by α � k. We denote the number of
parts of α by `(α).

Given α = (α1, . . . , α`(α)) � k for k a positive integer, we associate a subset Set(α) =
{α1, α1 + α2, . . . , α1 + · · ·+ α`(α)−1} ⊆ [k− 1]. This establishes a bijection between com-
positions of k and subsets of [k − 1]. Given S ⊆ [k − 1], we define comp(S) to be
the composition of k associated to S under the preceding correspondence. The inclu-
sion order on subsets allows us to define the refinement order on compositions. More
specifically, given α and β both compositions of k, we say that β refines α, denoted by
α 4 β, if Set(α) ⊆ Set(β). For instance, we have α = (1, 3, 2, 2) 4 (1, 2, 1, 1, 1, 2) = β as
Set(α) = {1, 4, 6} is a subset of Set(β) = {1, 3, 4, 5, 6}.

2.2 Polynomials

Recall from the introduction that we refer to Q(n−1)[xn] as Rn. We say that f ∈ Q[xn]
is symmetric if w( f ) = f for all w ∈ Sn. The space of symmetric polynomials in Q[xn]

is denoted by Λn, and we denote its degree d homogeneous component by Λ(d)
n . To

keep our exposition brief, we refer the reader to [12, Chapter 7] and [6] for in-depth
exposition on symmetric polynomials. Instead, we discuss the space of quasisymmetric
polynomials, which includes Λn and has come to occupy a central role in algebraic
combinatorics since its introduction by Gessel [5].

Given a weak composition c = (c1, . . . , cn), let

xc := ∏
1≤i≤n

xci
i .

A polynomial f ∈ Q[xn] is called quasisymmetric if the coefficients of xa and xb in f
are equal whenever a+ = b+. We denote the space of quasisymmetric polynomials in
x1, . . . , xn by QSymn and its degree d homogeneous component by QSym(d)

n . A basis for
QSym(d)

n is given by the monomial quasisymmetric polynomials Mα(x1, . . . , xn) indexed by
compositions α � d. More precisely, we set

Mα(x1, . . . , xn) = ∑
a+=α

xa.

The reader may verify that f = x2
1x2 + x2

1x3 + x2
2x3 + x1x2x3 is a quasisymmetric poly-

nomial in Q[x3], and it can be expressed as M(2,1)(x1, x2, x3) + M1,1,1(x1, x2, x3). We note
here that Mα(x1, . . . , xn) = 0 if `(α) > n.



Divided symmetrization and quasisymmetric functions 5

The more important basis for QSymn consists of the fundamental quasisymmetric poly-
nomials Fα(x1, . . . , xn) indexed by compositions α. These are defined by the relation

Fα(x1, . . . , xn) = ∑
α4β

Mβ(x1, . . . , xn). (2.1)

3 Divided symmetrization of monomials of degree n− 1

If f = xc where c ∈ W ′
n, then [10, Proposition 3.5] gives us a precise combinatorial

description for
〈

f
〉

n. Given c := (c1, . . . , cn) ∈ W
′
n, define the subset Sc ⊆ [n− 1] by

Sc := {k ∈ {1, . . . , n− 1} |
k

∑
i=1

ci < k}. (3.1)

For instance, if c = (0, 3, 0, 0, 0, 1, 3, 0, ) ∈ W ′
8, then Sc = {1, 4, 5, 6} ⊆ [7]. For a subset

S ⊆ [n− 1], let

βn(S) := |{w ∈ Sn | Des(w) = S}|, (3.2)

where Des(w) := {1 ≤ i ≤ n− 1 | wi > wi+1} is the set of descents of w. Postnikov [10]
shows that

〈
xc〉

n for c ∈ W ′
n equals βn(Sc) up to sign.

Lemma 3.1 (Postnikov). If c = (c1, . . . , cn) ∈ W
′
n, then〈

xc〉
n = (−1)|Sc|βn(Sc). (3.3)

Example 3.2. Consider computing
〈

x1x3
〉

3. Then c = (1, 0, 1) and Sc = {2}. By Lemma 3.1,〈
x1x3

〉
3 up to sign is the number of permutations in S3 with the only descent in position 2. Thus,〈

x1x3
〉

3 = −2.

In theory, one can use Lemma 3.1 to compute
〈

f
〉

n ∈ Rn, but this typically results in
signed expressions, which may not be useful especially if we know that

〈
f
〉

n is in fact
positive. Nevertheless, there is a distinguished class of weak compositions for which
Lemma 3.1 simplifies immensely, and equally importantly, this class also motivates the
hitherto unknown connection between divided symmetrization and the work of Aval–
Bergeron–Bergeron [3].

3.1 Catalan compositions and monomials

We now focus on
〈
xc〉

n where c belongs to a special subset ofW ′
n. Consider CWn defined

as

CWn = {c ∈ W ′
n |

k

∑
i=1

ci ≥ k for 1 ≤ k ≤ n− 1}. (3.4)
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This description immediately implies that |CWn| = Catn−1, the (n− 1)-th Catalan num-
ber equal to 1

n (
2n−2
n−1 ). In view of this, we refer to elements of CWn as Catalan compositions.

Observe that Sc = ∅ if and only if c ∈ CWn. By Lemma 3.1, we have that
〈
xc〉

n = 1
when c ∈ CWn, since the only permutation whose descent set is empty is the iden-
tity permutation. We refer to monomials xc where c ∈ CWn as Catalan monomials. For
example, the Catalan monomials of degree 3 are given by {x3

1, x2
1x2, x2

1x3, x1x2
2, x1x2x3}.

Remark 3.3. We refer to the image of a Catalan monomial under the involution xi 7→
xn+1−i for all 1 ≤ i ≤ n as an anti-Catalan monomial. These monomials are characterized
by Sc = [n− 1]. By Lemma 3.1, the divided symmetrization of an anti-Catalan monomial
yields (−1)n−1.

The preceding discussion implies the following fact: If f (x1, . . . , xn) ∈ Rn is such that
each monomial appearing in f is a Catalan monomial, then

〈
f
〉

n = f (1n). Here, f (1n)
refers to the usual evaluation of f (x1, . . . , xn) at x1 = · · · = xn = 1. This statement is
a shadow of a more general result that we establish in the context of super-covariant
polynomials in Section 5. For the moment though, we demonstrate its efficacy by dis-
cussing a specific instance in a family of polynomials introduced by Postnikov in regards
to mixed volumes of hypersimplices [10, Section 9].

Example 3.4. For c = (c1, . . . , cn) ∈ W
′
n, consider the polynomial

yc := yc(x1, . . . , xn) = xc1
1 (x1 + x2)

c2 · · · (x1 + · · ·+ xn)
cn . (3.5)

Following Postnikov, define the mixed Eulerian number Ac to be
〈
yc
〉

n. In the case c =

(0k, n − 1, 0n−k−1), it turns out that Ac equals the Eulerian number An−1,k, the number of
permutations in Sn−1 with k descents, whence the name. We record here a simple proof of a
fact proved by Postnikov [10, Theorem 16.3 part (9)] via a different approach. Suppose c =
(c1, . . . , cn) ∈ CWn. Then

Ac = 1c12c2 · · · ncn . (3.6)

Indeed, consider the monomial expansion yc = xc1
1 (x1 + x2)

c2 · · · (x1 + · · · + xn)cn . Equa-
tion (3.6) is an immediate consequence of the fact that all monomials in the support of yc are
Catalan monomials if c is itself Catalan.

4 DS of quasisymmetric polynomials

We proceed to discuss the divided symmetrization of quasisymmetric polynomials of
degree n− 1. We begin by noting the elementary fact that if f ∈ Q[xn] is homogeneous
of degree k < n− 1, then

〈
f
〉

n = 0. This fact taken in conjunction with our Lemma 4.1
is extremely useful toward computing divided symmetrizations.
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Lemma 4.1. Let f ∈ Rn be such that f = (xi − xi+1)g(x1, . . . , xi)h(xi+1, . . . , xn). Then

〈
f
〉

n =

(
n
i

)〈
g(x1, . . . , xi)

〉
i

〈
h(x1, . . . , xn−i)

〉
n−i.

In particular,
〈

f
〉

n = 0 if deg(g) 6= i− 1 (or equivalently deg(h) 6= n− i− 1).

Using this lemma, we can compute the divided symmetrization of monomial qua-
sisymmetric polynomials. This is precisely the content of our next result which shows
in particular that

〈
Mα(x1, . . . , xm)

〉
n depends solely on n, m and `(α).

Proposition 4.2. Fix a positive integer n, and let α � n− 1. Then

〈
Mα(x1, . . . , xm)

〉
n = (−1)m−`(α)

(
n− 1− `(α)

m− `(α)

)
(4.1)

for any m ∈ {`(α), . . . , n− 1}, and〈
Mα(x1, . . . , xn)

〉
n = 0. (4.2)

Let us give an idea of the proof, which is given in [8]. Note that the right hand
side only depends on α through its number of parts `(α). The idea is then to perform
elementary transformations on the compositions α of a given length, and check that the
value of

〈
Mα(x1, . . . , xm)

〉
n is preserved; this uses Lemma 4.1 in a crucial way. These

transformations allow us to reach a “hook composition”, for which we can compute the
quantity of interest directly. Only the case m = n has to be treated differently at this
step, which explains in part why it is stated separately in the Proposition.

In the next subsection, we will see how Proposition 4.2 implies a pleasant result
(Theorem 4.3) for all quasisymmetric polynomials.

4.1 Truncated quasisymmetric functions and DS

In this subsection, we give a natural interpretation of
〈

f (x1, . . . , xm)
〉

n for m ≤ n when f
is a quasisymmetric polynomial in x1, . . . , xm with degree n− 1. To this end, we briefly
discuss a generalization of Eulerian numbers that is pertinent for us.

If φ(x) is a univariate polynomial satisfying deg(φ) < n, then (cf. [11, Chapter 4])
there exist scalars h(n)m (φ) such that

∑
j≥0

φ(j)tj =
∑n−1

m=0 h(n)m (φ)tm

(1− t)n . (4.3)
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By extracting coefficients, the h(n)m (φ) are uniquely determined by the following formulas
for j = 0, . . . , n− 1:

φ(j) =
j

∑
i=0

(
n− 1 + i

i

)
h(n)j−i(φ). (4.4)

Stanley calls the h(n)i (φ) the φ-eulerian numbers (cf. [11, Chapter 4.3]), and the numerator
the φ-eulerian polynomial, since if φ(j) = jn−1 we get the classical Eulerian numbers An,i
and polynomial An(t).

Let QSym denote the ring of quasisymmetric functions. Let x denote the infinite
set of variables {x1, x2, . . . }. Elements of QSym may be regarded as bounded-degree
formal power series f ∈ Q[[x]] such that for any composition (α1, . . . , αk) the coefficient
of xα1

i1
· · · xαk

ik
equals that of xα1

1 · · · x
αk
k whenever i1 < · · · < ik. Denote the degree n− 1

homogeneous summand of QSym by QSym(n−1), and pick f ∈ QSym(n−1). Let

rm( f )(x1, . . . , xm) := f (x1, . . . , xm, 0, 0, . . .) (4.5)

be the quasisymmetric polynomial obtained by truncating f . Additionally, set

φ f (m) := rm( f )(1, . . . , 1). (4.6)

This is ps1
m( f ) in the notation of [12, Section 7.8]. On occasion we will abuse notation

and write f (x1, . . . , xm) for rm( f ) and similarly f (1m) for φ f (m).
Observe that φ f (m) is a polynomial in m of degree at most n − 1. By linearity it is

enough to check this on a basis. If we pick Mα(x), we have that φMα(m) is the number
of monomials in Mα(x1, . . . , xm), that is

φMα(m) =

(
m

`(α)

)
, (4.7)

a polynomial of degree `(α) ≤ n− 1.
Therefore the φ f -Eulerian numbers h(n)m (φ f ) are well defined for m ≤ n− 1. Our first

main result, presented as Theorem 1.1 in the introduction, is that these can be obtained
by divided symmetrization:

Theorem 4.3. For any f ∈ QSym(n−1), we have that
〈
rn( f )

〉
n = 0 and

〈
rm( f )

〉
n = h(n)m (φ f )

for m < n. In other words, we have the identity

∑
j≥0

f (1j)tj =
∑n

m=0
〈

f (x1, . . . , xm)
〉

ntm

(1− t)n . (4.8)
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The following remarkable fact, which further emphasizes the role essayed by fun-
damental quasisymmetric polynomials in the context of divided symmetrization, is an
immediate consequence of Theorem 4.3.

Corollary 4.4. For any α � n− 1, and for m ≤ n, we have〈
Fα(x1, . . . , xm)

〉
n = δm,`(α). (4.9)

Thus if f ∈ QSym(n−1) expands as f = ∑
γ�n−1

cγFγ, then for any positive integer m < n

〈
f (x1, . . . , xm)

〉
n = ∑

γ�n−1
`(γ)=m

cγ.

If a quasisymmetric function expands nonnegatively in terms of fundamental qua-
sisymmetric functions, we call it F-positive. The upshot of Corollary 4.4 is that the di-
vided symmetrization of F-positive quasisymmetric polynomial is itself nonnegative. F-
positive quasisymmetric functions abound in combinatorics, with the ubiquitous Schur
functions serving as a prototypical instance. Indeed, given a partition λ ` n − 1 and
m ≤ n, Corollary 4.4 implies the following relation for the divided symmetrization of
the Schur polynomial sλ(x1, . . . , xm):〈

sλ(x1, . . . , xm)
〉

n = |{T ∈ SYT(λ) | |Des(T)| = m− 1}|. (4.10)

Here SYT(λ) denotes the set of standard Young tableaux of shape λ, and Des(T) refers to
the descent set of the standard Young tableau T.

Recall from the introduction that we were initially interested in the values aw given
by the DS of Schubert polynomials Sw, where w ∈ Sn has length n − 1. Now it is
well-known that if w is a Grassmannian permutation of shape λ and descent m, one
has Sw = sλ(x1, . . . , xm). Thus (4.10) tells us precisely that in this case the intersection
number aw is the number of standard tableaux of shape λ with m− 1 descents.

Example 4.5. The two standard Young tableaux of shape (2, 1) have exactly 1 descent each. It
follows that

〈
s(2,1)(x1, x2)

〉
4 = 2.

3
1 2

2
1 3

It further implies that
〈
s(2,1)(x1, x2, x3)

〉
4 = 0. An alternative way to infer the latter fact is

to realize that s(2,1)(x1, x2, x3) belongs to the ideal in Q[x4] generated by positive degree homo-
geneous symmetric polynomials in {x1, . . . , x4}. This motivates the more general picture that
follows next.
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5 Connection to the super-covariant ring

We proceed to another perspective on divided symmetrization, one which relates it to the
study of super-covariant polynomials initiated by Aval–Bergeron [4] and Aval–Bergeron–
Bergeron [3].

Let Jn denote the ideal generated by homogeneous quasisymmetric polynomials in
x1, . . . , xn with positive degree. The super-covariant ring SCn is defined as

SCn = Q[xn]/Jn.

The central result of Aval–Bergeron–Bergeron [3, Theorem 4.1] establishes that SCn is
finite-dimensional with a natural basis given by monomials indexed by Dyck paths.
Consider the set of weak compositions defined by

Bn = {(c1, . . . , cn) | ∑
1≤j≤i

cj < i for all 1 ≤ i ≤ n}.

Theorem 5.1 ([3]). The set of monomials {xc mod Jn | c ∈ Bn} forms a basis for SCn.

In particular, SCn is finite-dimensional with dimension given by the nth Catalan
number Catn. We are specifically interested in the degree n− 1 graded piece of SCn, that
is, Rn/(Rn ∩ Jn). The Aval–Bergeron–Bergeron basis for this piece is given by familiar
objects: it comprises what we have referred to as anti-Catalan monomials. In particular,
the dimension of Rn/(Rn ∩ Jn) equals Catn−1.

Since the involution on Q[xn] that send xi 7→ xn+1−i for 1 ≤ i ≤ n preserves the ideal
Jn, it sends any basis modulo Jn to another such basis. So if we set

Kn := Rn ∩ Jn and K†
n := Vect (xc | c ∈ CWn)

then Theorem 5.1 implies that we have a vector space decomposition

Rn = K†
n ⊕ Kn. (5.1)

We can now state our structural result, which is Theorem 1.3 in the introduction. It
characterizes divided symmetrization with respect to the direct sum in (5.1).

Theorem 5.2. If f ∈ Kn, then
〈

f
〉

n = 0. More generally, if f ∈ Rn is written f = g + h with
g ∈ K†

n and h ∈ Kn according to (5.1), then〈
f
〉

n = g(1, . . . , 1).

Notice that the first statement in Theorem 5.2 states that divided symmetrization
vanishes on the degree n − 1 piece of the ideal of positive degree homogeneous qua-
sisymmetric polynomials.
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Example 5.3. We revisit the computation of
〈

x1x3
〉

3, invoking Theorem 5.2 this time. Note that

x1x3 = x1F1(x1, x2, x3)− (x2
1 + x1x2),

and that x1x2 and x2
1 are both Catalan monomials. Using f = x1F1(x1, x2, x3) and g = −(x2

1 +
x1x2) in Theorem 5.2 we conclude that

〈
x1x3

〉
3 = −2.

As a further demonstration of Theorem 5.2, we revisit the divided symmetrization of
fundamental quasisymmetric polynomials in this new light.

5.1 Fundamental quasisymmetric polynomials revisited

Before stating the main result in this subsection, we need two operations for composi-
tions. Given compositions γ = (γ1, . . . , γ`(γ)) and δ = (δ1, . . . , δ`(δ)), we define the con-
catenation γ · δ and near-concatenation γ� δ as the compositions (γ1, . . . , γ`(γ), δ1, . . . , δ`(δ))
and (γ1, . . . , γ`(γ) + δ1, δ2, . . . , δ`(δ)) respectively. For instance, we have (3, 2) · (1, 2) =
(3, 2, 1, 2) and (3, 1)� (1, 1, 2) = (3, 2, 1, 2).

Given finite alphabets xn = {x1, . . . , xn} and ym = {y1, . . . , ym}, define the formal
sum xn + ym to be the alphabet {x1, . . . , xn, y1, . . . , ym} where the total order is given by
x1 < · · · < xn < y1 < · · · < ym. Following Malvenuto-Reutenauer [7], we have

Fα(xn + ym) = ∑
γ·δ=α or γ�δ=α

Fγ(xn)Fδ(ym). (5.2)

As explained in [7, Section 2], the equality in (5.2) relies on the coproduct in the Hopf
algebra of quasisymmetric functions. By utilizing the antipode on this Hopf algebra
[7, Corollary 2.3], one can evaluate quasisymmetric functions at formal differences of
alphabets. See [2, Section 2.3] for a succinct exposition on the same. The analogue of
(5.2) is

Fα(xn − ym) = ∑
γ·δ=α or γ�δ=α

(−1)|δ|Fγ(xn)Fδt(ym), (5.3)

where δt := comp([|δ| − 1] \ Set(δ)). For instance, if δ = (3, 2, 1, 2) � 8, then Set(δ) ⊆ [7]
is given by {3, 5, 6}. Thus we obtain δt = comp({1, 2, 4, 7}) = (1, 1, 2, 3, 1).

To conclude this article, we have the following result which renders Corollary 4.4
transparent.

Proposition 5.4. Let α � n− 1 and let m be a positive integer satisfying `(α) ≤ m ≤ n. If
m > `(α), then Fα(x1, . . . , xm) ∈ Jn. In particular, we have〈

Fα(x1, . . . , xm)
〉

n = δm,`(α).
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