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Word Measures on Symmetric Groups
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Abstract. Fix a word w in a free group Fr on r generators. A w-random permutation
in the symmetric group Sn is obtained by sampling r independent uniformly random
permutations σ1, . . . , σr ∈ Sn and evaluating w (σ1, . . . , σr). In (Puder 2014, Puder–
Parzanchevski 2015) it was shown that the average number of fixed points in a w-
random permutation is 1+ θ

(
n1−π(w)

)
, where π (w) is the smallest rank of a subgroup

H ≤ Fr containing w as a non-primitive element. We show that π (w) plays a role in
estimates of other natural families of characters. In particular, we show that for all
s ≥ 2, the average number of s-cycles is 1

s + O
(

n−π(w)
)

.
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1 Introduction

Let Fr denote the free group on r generators. A word w ∈ Fr induces a mapping on
any finite group, w : Gr → G, by substituting the letters of w with elements of G. This
map defines a distribution on the group G: the push forward of the uniform distribution
on Gr. Equivalently, this distribution is the normalized number of times each element
in G is obtained by a substitution in w. We call this distribution the w-measure on
G. For example, if w = xyxy−2, a w-random element in G is ghgh−2 where g, h are
independent, uniformly random elements of G. In this paper, we restrict our attention
to word measures on the symmetric groups Sn.

More concretely, we study these measures using non-abelian Fourier theory: given
a character1 χ of G, we compute Ew [χ], the average value of this character under the
w-measure on G. Word measures are constant on conjugacy classes of G, i.e. are class
functions on the group G, and every class function is a linear combination of irreducible
characters. Therefore, the expressions Ew [χ], running over all characters χ, uniquely
determine the resulting word measure.

Our focus is on the following class functions of Sn. Given k1, . . . , k` ∈ Z≥1, denote

χk1,...,k` (σ)
def
= #fix

(
σk1
)
· . . . · #fix

(
σk`
)

, (1.1)
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where #fix (τ) is the number of fixed points of the permutation τ. When we write
Ew
[
χk1,...,k`

]
there is also a suppressed parameter n. In fact, Ew

[
χk1,...,k`

]
is a map N→

Q, where n is mapped to the average value of this character under the w-measure on Sn.
For every word w ∈ Fr and k1, . . . , k` ∈ Z≥1, the expectation Ew

[
χk1,...,k`

]
is a ra-

tional function of n, for large enough n: this is essentially a result of Nica [8], and
see also Section 4 and especially Remark 31 in [4]. For example, Exyx−1y−1 [χ1,2] =

3 +
4(n4−9n3+23n2−13n−1)
n(n−1)(n−2)(n−3)(n−5) for all n ≥ 6. In particular, for large enough n, Ew

[
χk1,...,k`

]
can be written as a Laurent series in n. Our main goal in this paper is to estimate the
leading terms of this Laurent series expansion. The special case of χ1 = #fix(σ), the
average number of fixed points, was studied in [9, 10]. These papers show a connection
between Ew [χ1] and invariants of w as an element of the free group.

In order to explain these invariants, we need a few notions from combinatorial group
theory and the study of free groups. A generating set of minimal size of a finitely
generated free group is called a basis. An element w ∈ F is called primitive if it belongs
to a basis of F. The rank of the free group F, denoted rkF, is the size of a basis of
F. The classical Nielsen-Schreier theorem states that subgroups of free groups are free.
The primitivity rank of a word, which plays an important role in this paper, was first
introduced in [9]:

Definition 1.1. The primitivity rank π(w) of a word w ∈ Fr is the minimal rank of
a subgroup H ≤ Fr containing w as a non-primitive element. If there are no such
subgroups, set π (w) = ∞. We also consider the set of critical subgroups of w defined as

Crit (w) = {H ≤ F | rkH = π (w) , H 3 w and w non− primitive in H} .

For example, π (w) = 0 ⇐⇒ w = 1 as the trivial word is contained in the trivial sub-
group but not as a primitive element. Words with π (w) = 1 are precisely proper powers
and if u ∈ Fr is not a proper power and m ≥ 2, then Crit (um) =

{〈
ud〉 ∣∣ d | m, d < m

}
.

Finally, π (w) = ∞ if and only if w is primitive in Fr, and in any other case π (w) ≤ r
[9, Lemma 4.1]. The set Crit (w) is always finite [10, Section 4]. We can now state the
aforementioned result from [10].

Theorem 1.2 ([10, Theorem 1.8]). For every w ∈ Fr

Ew [#fix(σ)] = 1 +
|Crit(w)|
nπ(w)−1

+ O
(

1
nπ(w)

)
.

Since the expected number of fixed points in a uniformly random permutation is 1,
the theorem can be restated as

Ew [χ1] = Eunif [χ1] +
|Crit (w)|
nπ(w)−1

+ O
(

1
nπ(w)

)
,
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where Eunif [ f ] is the expectation of a function f : Sn → R with respect to the uniform
distribution on Sn. In this paper we prove the following generalization of Theorem 1.2:

Theorem 1.3. For every non-power w ∈ Fr and every k1, . . . , k` ∈ Z≥1, there exists a positive
integer Ck1,...,k` ∈N such that

Ew
[
χk1,...,k`

]
= Eunif

[
χk1,...,k`

]
+

Ck1,...,k` · |Crit (w)|
nπ(w)−1

+ O
(

1
nπ(w)

)
.

Moreover, the constant Ck1,...,k` is equal to the scalar product〈
χk1,...,k` , χ1 − 1

〉
=

1
n! ∑

σ∈Sn

χk1,...,k` (σ) · (χ1 (σ)− 1) ,

which is independent of n for all large enough n.

Note that the exclusion of powers in the statement of the theorem is necessary,
but these expected values can still be understood. Indeed, χk1,...,k`

(
σt) = χtk1,...,tk` (σ).

Hence, we can still obtain an approximation for the expected value of a power using the
theorem.

An interesting corollary of Theorem 1.3 deals with the expected number of cycles of a
given size. Fix s ∈N. Let Cycs(σ) denote the number of cycles of length s in the permu-
tation σ. The expected number of such cycles in a uniformly random permutation is 1

s .
For every large enough n, Cycs is a fixed linear combination of the characters from (1.1).
For example, Cyc2 = χ2−χ1

2 . If s ≥ 2, then for every large enough n,
〈
Cycs, χ1 − 1

〉
= 0.

Therefore, Theorem 1.3 yields,

Corollary 1.4. Let s ≥ 2. For every non-power w ∈ Fr,

Ew [Cycs] =
1
s
+ O

(
1

nπ(w)

)
.

It is a well-known fact, c.f. [6], that there are families of irreducible characters ξ =
{ξn}n≥n0

(ξn being an irreducible character of Sn), with dimension polynomial in n and
which are finite linear combinations of the functions χk1,...,k` . Such a family of irreducible
characters corresponds to a family of Young diagrams, given by a Young diagram D of
size n0, so that ξn corresponds to the Young diagram obtained from D by adding n− n0

boxes to the first row. The first few examples of such characters are 1, χ1 − 1, χ2+χ1,1
2 −

2χ1, χ1,1−χ2
2 − χ1 + 1, corresponding to the young diagrams (n) , (n− 1, 1) , (n− 2, 2) and

(n− 2, 1, 1), respectively.
In fact, by orthogonality of irreducible characters, Theorem 1.3 is equivalent to that

for such a family of irreducible characters ξ, if ξ 6= 1, χ1 − 1 then

Ew [ξ] = O
(

1
nπ(w)

)
. (1.2)

We conjecture the following much stronger bound:
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Conjecture 1.5. Let ξ be a family of irreducible characters of Sn as above. Then,

Ew [ξ] = O

(
1

(dim ξ)π(w)−1

)
. (1.3)

Whenever ξ 6= 1, χ1− 1, the dimension dim ξ is a polynomial function of n, of degree
greater than 1. Thus, the conjectural bound (1.3) is stronger (for non-powers) than (1.2).
The conjecture holds for words of primitivity rank 1, namely, for proper powers (this
follows from [8] and from [4, Section 4]). Another known special case of this conjecture is
the commutator [x, y] = xyx−1y−1: indeed, π ([x, y]]) = 2 and already in 1896 Frobenius
[2] showed that E[x,y] [χ] =

1
dim χ for every finite group G and every irreducible character

χ of G. Moreover, given two class functions f1, f2 : G → R and an irreducible character
χ of G, a simple application of Schur’s Lemma gives 〈 f1 ∗ f2, χ〉 = 〈 f1,χ〉〈 f2,χ〉

dim χ . If w1 ∈
F(x1, . . . , xk), w2 ∈ F(xk+1, . . . , xr) are two words generated by disjoint sets of letters, then
the w1w2-measure on G is the convolution of the w1- and the w2-measures, and by the

corollary of Schur’s Lemma, Ew1w2 [χ] =
Ew1 [χ]·Ew2 [χ]

dim χ . On the other hand, π(w1w2) =

π(w1) + π(w2) [9, Lemma 6.8]. Hence, knowing the conjecture for two such words
implies the claim for their product. In particular, this implies the conjecture for every
product of disjoint commutators and powers, that is, for every word of the form

w = [x1, y1] · [x2, y2] · . . . · [xr, yr] · zk1
1 · . . . · zkm

m ∈ F (x1, . . . , xr, y1, . . . , yr, z1, . . . , zm) ,

with r, m ∈N≥0 and k1, . . . , km ∈ Z.

2 The main ideas in the proofs

In this section we give an overview of the main ideas of our work, which together lead
to our main result: Theorem 1.3. Full proofs and further details are given in the full
version of this paper.

2.1 Generalizations of the object of study

The quantities we wish to study are of the form

Ew
[
χk1,...,k`

]
= Eσ1,...,σr∈Sn

[
#fix

(
wk1 (σ1, . . . , σr)

)
· . . . · #fix

(
wk` (σ1, . . . , σr)

)]
.

Assume that w is written in the ordered basis B = {b1, . . . , br} of Fr. Choosing a uni-
formly random r-tuple of permutations from Sn is the same as choosing at random an
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homomorphism ϕ : Fr → Sn, as ϕ (b1) , . . . , ϕ (br) is a uniformly random r-tuple of per-
mutations. Replacing the letters of w by the permutations ϕ (b1) , . . . , ϕ (br), we obtain
the permutation ϕ (w). Hence,

Ew
[
χk1,...,k`

]
= Eϕ∈Hom(Fr,Sn)

[
#fix

(
ϕ
(

wk1
))
· . . . · #fix

(
ϕ
(

wk`
))]

. (2.1)

Following [10], the first step in our analysis is to generalize the function we study. This
generalization is crucial for the next steps. The most straightforward generalization is to
consider quantities of the form

Eϕ∈Hom(Fr,Sn) [#fix (ϕ (w1)) · . . . · #fix (ϕ (w`))] , (2.2)

for arbitrary words w1, . . . , w` ∈ Fr. Next, we generalize from fixed points of a word
to common fixed points of several words, or, equivalently, to common fixed points of
subgroups: note that given a finite set of words w1, . . . , wt ∈ Fr, an element i ∈ [n]
is a common fixed point of all the permutations ϕ (w1) , . . . , ϕ (wt) if and only if it is a
common fixed point of all the permutations in the subgroup ϕ (H) ≤ Sn where H =
〈w1, . . . , wt〉 ≤ Fr. For (a finitely generated) H ≤ Fr we denote by #fix (ϕ (H)) the
number of common fixed points of ϕ (H). We extend the function we wish to study to
quantities of the form

Eϕ∈Hom(Fr,Sn) [#fix (ϕ (H1)) · . . . · #fix (ϕ (H`))] , (2.3)

where H1, . . . , H` ≤ Fr are f.g. (finitely generated) subgroups of Fr.
If H, H′ ≤ Fr are conjugate subgroups then #fix (ϕ (H)) = #fix (ϕ (H′)). Therefore,

(2.3) depends, in fact, on a multiset of conjugacy classes of f.g. subgroups of Fr. We shall
work in the category of these objects, which we denoteMOCC (Fr).

Finally, assume that there are two multisets of f.g. subgroups H1, . . . , H` ≤ Fr and
J1, . . . , Jm ≤ Fr, and that there is a map f : [`]→ [m], such that Hi ≤ J f (i) for all 1 ≤ i ≤ `.
Let

{
ϕj : Jj → Sn

}m
j=1 be independent, uniformly random homomorphisms. Our final

generalization of the object of study is to

E{ϕj∈Hom(Jj,Sn)}m
j=1

[
#fix

(
ϕ f (1) (H1)

)
· . . . · #fix

(
ϕ f (`) (H`)

)]
. (2.4)

As described in the sequel, much of the technique in our proofs relies on this generaliza-
tion of (2.1) to (2.2), (2.3) and (2.4). Next, we give a geometric description of the category
ofMOCC (Fr) which makes many of our definitions more straightforward and many of
our lemmas more intuitive.

2.2 Multi core graphs

Let B = {b1, . . . , br} be a basis of Fr, and consider the bouquet XB of r circles with
distinct labels from B and arbitrary orientations and with wedge point o. Then π1 (XB, o)
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is naturally identified with Fr. The notion of (B-labeled) core graphs, introduced in
[11], refers to (usually) finite, connected graphs with no leaves, that come with a graph
morphism to XB which is an immersion, namely, locally injective. In other words, this
is a finite connected graph with no leaves, with edges that are directed and labeled by
the elements of B, such that for every vertex v and every b ∈ B, there is at most one
incoming b-edge and at most one outgoing b-edge at v. We stress that multiple edges
between two vertices and loops at vertices are allowed.

There is a natural one-to-one correspondence between finite B-labeled core graphs
and conjugacy classes of f.g. subgroups of Fr – see [11, 3, 9, 10] for more details. Here,
we consider core graphs which are not necessarily connected:

Definition 2.1. Let B be a basis of Fr. A B-labeled multi core graph is a disjoint union of
finitely many finite core graphs. In other words, this is a finite graph, not necessarily
connected, with no leaves, and which comes with an immersion to XB. We denote the
set of B-labeled multi core graphs byMuCGB (Fr).

Because a connected core graph corresponds to a conjugacy class of f.g. subgroups of
Fr, a multi core graph corresponds to a multiset of such objects. Therefore, every basis
B of Fr gives a one-to-one correspondence

MuCGB (Fr) ={
B−labeled

multi core graphs

}
←→

MOCC (Fr) ={
finite multisets of conjugacy classes

of f.g. subgroups of Fr

}
. (2.5)

Definition 2.2. A morphism η : Γ → ∆ between B-labeled multi core graphs is a graph-
morphism which commutes with the immersions p, q to XB.

Γ
p

  

η
// ∆

q

~~
XB

In particular, the morphism η is itself an immersion, and it preserves the orientations
and labels of the edges. To get a description of η in terms of subgroups, assume that
Γ consists of ` components Γ1, . . . , Γ` and that ∆ consists of m components ∆1, . . . , ∆m.
Let f : [`] → [m] be the induced map on connected components, so η (Γi) ⊆ ∆ f (i). For
every i ∈ [`], pick an arbitrary vertex vi ∈ Γi and let Hi = π1 (Γi, vi). As η is an
immersion, it induces injective maps in the level of the fundamental groups: indeed, any
non-backtracking cycle in Γ is mapped to a non-backtracking cycle in ∆. Therefore, η

can be thought of as the injection, for all i ∈ [`]

Hi ↪→ π1

(
∆ f (i), η (vi)

)
. (2.6)
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Now we are very close to the situation that led to (2.4), but in order to define a (2.4)-
like quantity that depends on η, we still need to conjugate the images in (2.6) so that
they all sit in the same subgroups in the conjugacy class of subgroups of ∆j. Formally,
pick an arbitrary vertex vj ∈ ∆j for all j ∈ [m] and let Jj = π1

(
∆j, vj

)
. For every i ∈ [`],

let xi ∈ Fr satisfy xi

[
π1

(
∆ f (i), η (vi)

)]
x−1

i = J f (i). So now xiHix−1
i ≤ J f (i), and we are

now able to define another form of (2.4) which comes from the morphism η:

Definition 2.3. In the above notation, let
{

ϕj : Jj → Sn
}m

j=1 be independent, uniformly
random homomorphisms. Define

Φη (n)
def
= E{ϕj∈Hom(Jj,Sn)}m

j=1

[
#fix

(
ϕ f (1)

(
x1H1x−1

1

))
· . . . · #fix

(
ϕ f (`)

(
x`H`x−1

`

))]
.

Note that the values of Φη do not depend on our choice of basepoints in the com-
ponents of Γ and ∆. As explained in [10, Section 6] for the simpler case analyzed there,
Φη (n) can also be given the following topological interpretation. Let ∆̂n be a random
n-sheeted covering space of ∆. Then Φη (n) is equal to the average number of lifts of η

to ∆̂n.
∆̂n

p
����

Γ
η
//

??

∆

We end this subsection with three important invariants of multi core graphs.

Definition 2.4. Let Γ ∈ MuCGB (Fr) be a multi core graph and H =
{

HFr
1 , . . . , HFr

`

}
the corresponding multiset in MOCC (Fr). We denote by rkH = rkΓ the sum of ranks
of H1, . . . , H`, by χ (Γ) = χ (H) the Euler characteristic of Γ, and by c (Γ) = c (H) the
number of connected components of Γ (which is ` in the current notation). These three
quantities are related by rkΓ + χ (Γ) = c (Γ).

2.3 Free and algebraic morphisms

A subgroup H of a free group F is called a free factor of F, and F a free extension of H,

denoted H
∗
≤ F, if it is generated by some subset of a basis of F. Equivalently, this means

that there is another subgroup K ≤ Fr, such that F = H ∗ K. The useful notion of an
algebraic extensions of free groups is defined as follows (see [7] for a survey):

Definition 2.5. Let H be a subgroup of the free group F. Then F is an algebraic extension
of H, denoted H ≤alg F, if there is no intermediate proper free factor of F. Namely, if

whenever H ≤ J
∗
≤ F, we have J = F.
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Given a morphism of connected core graphs, we may say it is free (algebraic) if the
induced map in the level of fundamental groups gives a free (algebraic, respectively)
extension of groups. A crucial ingredient of our argument is to find the right generaliza-
tions of these notions to morphisms of multi core graphs. We start with free extensions.

Definition 2.6. If H1, . . . , H` are subgroups of the free group J, we say that J is a free

extension of the multiset {H1, . . . , H`}, denoted {H1, . . . , H`}
∗
≤ J, if J decomposes as a

free product
J =

(
∗`i=1 jiHi j−1

i

)
∗ K

for some conjugate subgroup jiHi j−1
i of Hi (so ji ∈ J) and some subgroup K ≤ J.

The definition of a free morphism η : Γ → ∆ of multi core graphs is very similar,
except that one needs first to choose arbitrarily some subgroup from the conjugacy class
of every component of ∆, and then find a suitable subgroup for every component of Γ
mapping to it. This can be done similarly to the manner by which we defined Φη in
Definition 2.3, and we give the precise definition in the full version of the paper. The
following theorem states some properties of free morphisms.

Proposition 2.7. 1. Every injective morphism of multi core graphs is free. In particular, the
identity morphism if free.

2. The composition of two free morphisms is free.

3. If • ϕ
//
η

++•
ψ
// • is a composition of morphisms with ψ free, then Φϕ = Φη.

We move to defining our generalization of the notion of algebraic extensions.

Definition 2.8. Let η : Γ → ∆ be a morphism of multi core graphs Γ, ∆ ∈ MuCGB (Fr).
We say that η is algebraic if whenever Γ

η1−→ Σ
η2−→ ∆ is a decomposition of η with η2

free, we have that η2 is an isomorphism.

This notion can also be described in algebraic terms, namely, when a free group F
is considered to be an algebraic extension of a multiset of its subgroups {H1, . . . , H`} –
we elaborate in the full paper. The following theorem lists some important properties of
algebraic morphisms.

Theorem 2.9.

1. Every algebraic morphism of multi core graphs is surjective.

2. The composition of two algebraic morphisms is algebraic.



Word Measures on Symmetric Groups 9

3. The identity morphism is algebraic.

4. Let η : Γ→ ∆ be a morphism of multi core graphs. Then there is a unique decomposition

Γ
algebraic

ϕ
//

η

%%
Σ

free
// ∆

η = ψ ◦ ϕ such that ϕ is algebraic and ψ is a free2.

2.4 The length of a morphism

In view of Proposition 2.7, for every morphism η : Γ→ ∆ of multi core graphs, if η marks
the induced morphism from Γ to the image of η in ∆, then Φη ≡ Φη. Therefore, in order
to analyze the values of the function Φ, it is enough to consider surjective morphisms.

Every surjective morphism η : Γ → ∆ can be thought of as a partition of the vertices
of Γ given by the fibers of η: the vertices of ∆ correspond to the blocks of this partition,
and there is a b-edge from the block V to the block U if and only if there a b-edge from
some vertex v ∈ V to some vertex u ∈ U. Note that not every partition of the vertices of Γ
corresponds to a moprhism, as the resulting graph might not be a core graph (and have,
say, two distinct b-edges emanating from the same vertex). However, every partition of
the vertices of Γ can “generate” a legitimate morphism using “Stallings foldings”, as we
now explain.

Given a B-labeled directed finite graph, which may not be a multi core graph, we can
“fold” it until it becomes a multi core graph. Every folding step consists of identifying
two edges e1 and e2 with the same label, either emanating from the same vertex or
entering the same vertex, and then gluing them to a single edge and identifying their
other ends to a single vertex. We continue folding until no such coincidences exist, in
which case we have a multi core graph3. The resulting multi core graph does not depend
on the order of folding steps (see [11]).

Definition 2.10. A merging-step of a multi core graph is a gluing together of two vertices
of this graph followed by folding. Let η : Γ → ∆ be a surjective morphism of B-labeled
multi core graphs. The length of η, denoted ρB (η), is the smallest number of merging-
steps which lead from Γ to ∆ to create η.

There is also a natural “algebraic”, basis-independent version of a distance between
multisets of conjugacy classes of subgroups. This algebraic distance gives rise to an

2To be precise, this decomposition is unique up to an isomorphism of the intermediate multi core
graph which preserves the two decompositions.

3In some sources, the folding process also includes leaf-pruning. In our situation we never introduce
leaves in the process, so it does not matter.
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algebraic distance of morphisms of MuCGB(Fr), denoted ρ (η), we define in the full
paper. The following theorem sums up the main properties of these two distances.

Theorem 2.11. Let η : Γ → ∆ be a morphism of multi core graphs. Let Σ = Image (η) denote
the image of η in ∆, and let η = ι ◦ η be the decomposition of η to a surjective and an injective

morphisms Γ
η
// // Σ �
� ι // ∆ . Then

ρ (η) = ρB (η) + [rk(∆)− rk(Σ)] .

In particular,

ρ (η) = rk(∆)− rk(Γ) ⇐⇒ ρB (η) = rk(Σ)− rk(Γ) ⇐⇒ η is free ⇐⇒ η is free.

2.5 Möbius inversions of Φ

Recall that our goal is to estimate Φη (n) for some morphism η : Γ → ∆ of multi core
graphs, and that we may assume that η is surjective. The next component is to analyze
several Möbius inversions of this function inside a finite poset which we now define.

Definition 2.12. Let η : Γ � ∆ be a surjective morphism of multi core graphs. Let
Decomp (η) denote the poset of decompositions of η into two surjective morphisms

Γ
η1 // // Σ

η2 // // ∆ , where the latter decomposition is considered identical to the mor-

phism Γ
η′1 // // Σ′

η′2 // // ∆ if there is an isomorphism Σ ∼= Σ′ which commutes with both
decompositions. In the same notation, (η1, η2) ≤ (η′1, η′2) whenever there is a morhism
θ : Σ→ Σ′ which makes the following diagram commute.

Γ
η1 // //

η′1
�� ��

Σ

θ����

η2

�� ��
Σ′

η′2 // // ∆

Clearly, Decomp (η) is a finite poset. In the same spirit as in [10], we can now define
three different Möbius inversions of the function Φ which are defined on the elements
of the poset. First, there is a unique “left inversion” of Φ, denoted LB, which can be
defined by setting that for every surjective morphism η,

Φη = ∑
(η1,η2)∈Decomp(η)

LB
η2

.

Note that this well defines a map LB
η : N → Q for every surjective morphism η by

induction on the size of Decomp (η). Indeed, LB
η = Φη − ∑(η1,η2)∈Decomp(η)\{(id,η)} LB

η2
,

and the summation on the right hand side is on morphisms with a smaller poset of
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decompositions. (The base case is LB
id = Φid.) Similarly, we define the right Möbius

inversion RB and the two-sided inversion CB by

Φη = ∑
(η1,η2)∈Decomp(η)

RB
η1

= ∑
(η1,η2,η3)

CB
η2

, (2.7)

where the rightmost summation is over decompositions η = η3 ◦ η2 ◦ η1 defined up to
an equivalence parallel to the one in Definition 2.12.

It follows from Theorem 2.9 that if η is algebraic, then we can obtain a subposet of
Decomp (η) which consists only of decompositions to algebraic morphisms. We can then
define in the same way the Möbius inversions of Φ with respect to this subposet. We
denote these inversions by Lalg, Ralg and Calg. We prove the following results:

Theorem 2.13. If η : Γ→ ∆ is a surjective morphism, then

CB
η (n) = O

(
nχ(Γ)−ρ(η)

)
.

Similarly, if η : Γ→ ∆ is an algebraic morphism, then

Calg
η (n) = O

(
nχ(Γ)−ρ(η)

)
.

In particular, following Theorem 2.11, if η is algebraic but not the identity, then

Calg
η (n) = O

(
nχ(∆)−1

)
.

Definition 2.14. Let η : Γ → ∆ be a surjective morphism. Denote by χmax(η) the max-
imal Euler characteristic of a multi core graph Σ such that there is a decomposition

Γ
η1 // // Σ

η2 // // ∆ of η with η1 non-identity algebraic. Every such decomposition of η with
η1 non-identity algebraic and χ (Σ) = χmax (η) is called critical (for η). Let Crit(η) denote
the subset of critical decompositions in Decomp (η).

In particular, if Γw is the core graph corresponding to 〈w〉Fr , and the unique mor-
phism Γw → XB is surjective, then χmax (Γw → XB) = 1− π (w). The following theorem
is now a simple corollary of Theorem 2.13 together with the connection between Calg

and Φ as described in (2.7), and the fact that for identity morphisms id : Γ→ Γ we have
Φid = Lalg

id = Ralg
id = Calg

id = nχ(Γ).

Theorem 2.15. Let η : Γ→ ∆ be a surjective morphism. Then

Φη(n) = nχ(Γ) + |Crit(η)| · nχmax(η) + O
(

nχmax(η)−1
)

.
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2.6 Back to χk1,...,k`

We now return to the initial quantity we aimed to study in Theorem 1.3. For w1, . . . , w` ∈
Fr \ {1} denote by Γw1,...,w`

the multi core graph which is a disjoint union of ` cycles,
depicting the conjugacy classes 〈w1〉Fr , . . . , 〈w`〉Fr . Fix k1, . . . , k` ∈ Z≥1 and a non-power
1 6= w ∈ Fr. In the language of multi core graphs and their morphisms, Ew

[
χk1,...,k`

]
is

equal to Φη, where η is the sole core graph morphism Γwk1 ,...,wk` → XB. There are many

decompositions Γwk1 ,...,wk`

η1 // // Σ
η2 // // XB of η with χ (Σ) = 0 and η1 algebraic which

are, in a sense, independent of w, and their number independent of w. We carefully
analyze the next layer of decompositions with η1 algebraic, show that they are all of
Euler characteristic 1− π (w), and that their number is exactly Ck1,...,k` · |Crit (w)|, for an
absolute constant Ck1,...,k` independent of w. (In this proof we rely on algebraic results of
Baumslag and Steinberg [1, Theorem 1] and of Louder [5, Theorem 1.5].) This then leads
to the statement of Theorem 1.3.
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