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Abstract. We show that any smooth permutation w is characterized by the set C(w) of
transpositions and 3-cycles that are ≤ w in the Bruhat order and that w is the product
(in a certain order) of the transpositions in C(w). We also characterize the image of the
map w 7→ C(w). This map is closely related to the essential set (in the sense of Ful-
ton) and gives another approach for enumerating smooth permutations and subclasses
thereof. As an application, we obtain a result about the intersection of the Bruhat in-
terval defined by a smooth permutation with a conjugate of a parabolic subgroup of
the symmetric group. Finally, we relate covexillary permutations to smooth ones.
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1 Introduction

This is an extended abstract to the paper [12], which contains all the proofs.
Fix an integer n ≥ 1 and an n-dimensional vector space V over C. Consider the

(complete) flag variety F ln consisting of all flags

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V, dim Vi = i, i = 0, . . . , n.

This is a homogeneous space under the action of the general linear group GL(V). It can
be identified with GLn(C)/Bn(C) where Bn is the Borel subgroup of upper triangular
matrices. By Gauss elimination (which is a special case of the Bruhat decomposition), the
orbits of Bn(C) on F ln are naturally indexed by the symmetric group Sn (the Weyl
group of GLn). The Schubert cell Yw pertaining to w ∈ Sn is by definition the orbit of the
permutation matrix of w. The Schubert variety Xw is by definition the closure of Yw. For
instance, for the identity permutation e, Ye = Xe is a singleton consisting of the standard
flag (whose stabilizer is Bn), while for the longest permutation w0, Yw0 is the open cell
defined by the non-vanishing of all minors in the bottom left corners and Xw0 = F ln.
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It is well known that many geometric properties of Schubert varieties can be de-
scribed combinatorially. For instance, the Bruhat order given by

x ≤ w ⇐⇒ Yx ⊆ Xw

admits the following simple combinatorial description:

x ≤ w ⇐⇒ rx(i, j) ≥ rw(i, j) for all i, j ∈ [n] := {1, . . . , n},

where for any permutation y ∈ Sn,

ry(i, j) = #
(
y([i]) ∩ [j]

)
, i, j ∈ [n].

(We refer to [3] for standard facts about the Bruhat order.) A more striking result due
to Lakshmibai–Sandhya is that the Schubert variety Xw is smooth if and only if w is 3412
and 4231 avoiding [14]. (In this case we say that w is smooth.) This beautiful result
opened the door to far-reaching relations between the geometry of Schubert varieties
and combinatorics (in particular, pattern avoidance). We refer the reader to [1] for a
recent survey.

Smooth permutations admit other (even earlier) combinatorial characterizations. For
instance, by analyzing the tangent space of Xw at Ye, Lakshmibai–Seshadri [15] proved
that

w is smooth ⇐⇒ #{i < j : Ti,j ≤ w} = `(w) := {i < j : w(i) > w(j)},

where Ti,j ∈ Sn denotes the transposition i ↔ j. Another characterizing property is that
the Kazhdan–Lusztig polynomial Pe,w is 1 [6]. This property is important in representation
theory because of the celebrated Kazhdan–Lusztig conjecture [13] (proved independently
by Bernstein–Beilinson and Brylinski–Kashiwara). For a more recent surprising occur-
rence of smooth permutations in representation theory see [17]. We refer the reader to
[2] for more information about singularities of Schubert varieties, excluding however
more recent exciting developments in Kazhdan–Lusztig theory.

Our purpose is to give another way of looking at smooth permutations combinato-
rially. Our main result is the characterization of smooth permutations in terms of their
2-3-table. By definition, the 2-3-table of a permutation w is the set of transpositions and
the 3-cycles that are ≤ w. The 2-3-table of a smooth permutation satisfies some simple
combinatorial properties and conversely, any set of transpositions and 3-cycles satisfying
these conditions arises from a smooth permutation (Theorem 2.1). Moreover, we can re-
cover a smooth permutation from its 2-3-table by taking the product of the transposition
Ti,j ≤ w in a suitable compatible order, governed by the additional data in the 2-3-table. In
fact, the set of compatible orders (with respect to the 2-3-table) has a structure of a con-
nected graph, in a way reminiscent of the graph of reduced decomposition of w under
Coxeter moves (Theorem 3.1).
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The result is in accordance with known enumerative results of smooth permutations
(e.g., [4, 5, 18]). It also gives a bijection between smooth permutations and Dyck paths
with additional data (Theorem 5.1). Another interesting consequence is yet another com-
binatorial characterization of smooth permutations (Theorem 4.1). This characterization
is of a rather different nature than the above-mentioned. Finally, an intriguing relation
between covexillary permutations and smooth ones is given (Theorem 6.1).

The 2-3-table of permutation is closely related to the notion of essential set conceived
by Fulton in his study of degeneracy loci [10]. This notion was further studied combi-
natorially by Eriksson–Linusson [8]. In the case of smooth permutations the situation is
particularly simple.

2 The 2-3-table of a permutation

Fix an integer n ≥ 1. Consider the symmetric group Sn of all the permutations of the set
[n] = {1, 2, . . . , n} with the Bruhat order ≤. Let T = {Ti,j : 1 ≤ i < j ≤ n} ⊂ Sn be the
set of transpositions. For every permutation w ∈ Sn define the 2-table of w to be

CT (w) = {x ∈ T : x ≤ w}.

For every w ∈ Sn we have `(w) ≤ #CT (w) where

`(w) = #{i < j : w(i) > w(j)}

is the number of inversions of w [15]. If `(w) = #CT (w), then w is called smooth, a termi-
nology that is justified by the fact that this condition also characterizes the smoothness
of the Schubert variety Xw pertaining to w [ibid.]. Another well-known combinatorial
characterization of the smoothness of w is that w is 4231 and 3412 avoiding [14]. We re-
fer to [2] and the references therein for more information about singularities of Schubert
varieties.

Distinct smooth permutations may have the same 2-table (for example, for n = 3,
CT ((231)) = {T1,2, T2,3} = CT ((312))). However, we show that smooth permutations
are distinguishable from each other at the ‘next level’. More precisely, let C2,3 ⊂ Sn be
the set of permutations consisting of a single cycle of length 2 or 3. Denote the 3-cycle
permutation i 7→ j 7→ k 7→ i with i < j < k by Ri,j,k, so that

C2,3 = T ∪ {Ri,j,k, R−1
i,j,k : i < j < k}.

We define the 2-3-table of a permutation w ∈ Sn to be

C(w) = {x ∈ C2,3 : x ≤ w}.

Clearly, C(w) is downward closed and it is easy to see that if Ri,j,l, R−1
i,k,l ∈ C(w) with

i < j, k < l, then Ti,l ∈ C(w).
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We say that a downward closed subset A of C2,3 is admissible if it satisfies the following
two conditions.

• If Ri,j,l, R−1
i,k,l ∈ A with i < j, k < l, then Ti,l ∈ A.

• Whenever Ti,j, Tj,k ∈ A, i < j < k, at least one of Ri,j,k and R−1
i,j,k belongs to A.

Our main result is the following.

Theorem 2.1. The map w 7→ C(w) defines a bijection between the smooth permutations of Sn
and the admissible sets. The inverse bijection A 7→ π(A) is given by

π(A) = max{x ∈ Sn : C(x) = A} = max{x ∈ Sn : CT (x) = AT , C(x) ⊆ A},

where max denotes the greatest element with respect to the Bruhat order.

3 Compatible orders

We give an alternative, more constructive definition of π(A) for an admissible set A ⊆
C2,3. We say that a total order ≺ on AT = A ∩ T is compatible (with A) if whenever
Ti,j, Tj,k ∈ A, i < j < k, the following hold:

1. If Ti,k ∈ A, then either Ti,j ≺ Ti,k ≺ Tj,k or Tj,k ≺ Ti,k ≺ Ti,j.

2. If Ti,k /∈ A, then Ri,j,k ∈ A ⇐⇒ Ti,j ≺ Tj,k.

Note that the first condition also occurs in the notion of reflection order (cf. [7], [3,
Section 5.2]) except that we do not consider a total order on the whole of T .

Theorem 3.1. Let A be an admissible subset of C2,3. Then, a compatible order on AT always
exists and π(A) is equal to the product of the elements of AT taken with respect to a compatible
order≺. (In particular, the product depends only on A.) Consequently, every smooth permutation
may be written as the product, in an appropriate order, of the transpositions in its 2-table (each
appearing exactly once).

More precisely, we define a graph GA whose vertices are the compatible orders on AT
and whose edges connect two compatible orders that can be obtained from one another
by one of the following elementary operations.

1. Interchanging the order of two adjacent commuting transpositions, or

2. Switching the order of consecutive Ti,j, Ti,k, Tj,k to Tj,k, Ti,k, Ti,j, or vice versa.
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These operations do not change the product of the elements of AT , taken in the respec-
tive orders. We show that GA is connected (and in particular, non-empty). In other
words, every two compatible orders are obtained from one another by a sequence of ele-
mentary operations. The situation is reminiscent of the case of reduced decompositions
of a permutation w, which form the vertices of a connected graph G(w) whose edges
are given by basic Coxeter relations. In fact, for A = C2,3 itself, there is a natural iso-
morphism between GA and G(w0) where w0 is the longest permutation [22]. However,
for a general smooth permutation w, the number of compatible orders on CT (w) with
respect to C(w) does not agree with the number of reduced decompositions of w, which
is given by a well-known formula of Stanley [20].

4 Intersection of Bruhat intervals with conjugates of para-
bolic subgroups

As an application of Theorem 2.1, consider an arbitrary partition X (i.e., an equivalence
relation) of [n] and the subgroup SX of Sn preserving all subsets of X. The group SX
is isomorphic to the direct product of S#y over y ∈ X. However, the product order on
SX (which we denote by ≤X) is in general stronger than the one induced from Sn. We
say that an element of SX is X-smooth if all its coordinates in S#y, y ∈ X are smooth.
This condition is weaker than smoothness in Sn. For instance, if X is the partition
{{1, 3}, {2, 4}} then the permutation (3412) is X-smooth but not smooth.

Theorem 4.1. w ∈ Sn is smooth if and only if for every partition X of [n], the set

{x ∈ SX : x ≤ w}

admits a maximum wX with respect to ≤X. Moreover, in this case wX is X-smooth.

5 Relation to Dyck paths

We may also interpret the bijection of Theorem 2.1 in terms of more familiar combina-
torial objects, namely Dyck paths. We may view a Dyck path as a weakly increasing
function f : [n] → [n] such that f (i) ≥ i for all i. Suppose that in addition to f , we are
given a function g : [n]→ {0, 1} such that

1. g(i) = 0 whenever f ( f (i)) = f (i).

2. g(i) = g(i + 1) whenever i < n and f (i + 1) < f ( f (i)).

In this case we say that ( f , g) is a good pair. Write g−1(0) = {i1, . . . , ik} and g−1(1) =
{j1, . . . , jl} with i1 < · · · < ik and j1 < · · · < jl.
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For every 1 ≤ i < j ≤ n, let Ci→j ∈ Sn be the cycle permutation i → i + 1 → · · · →
j→ i and let Ci←j = C−1

i→j.

Theorem 5.1. The map

( f , g)→ w( f , g) = Cj1← f (j1) · · ·Cjl← f (jl)Cik→ f (ik) · · ·Ci1→ f (i1) (5.1)

is a bijection between good pairs and the smooth permutations in Sn. The inverse is given by
w 7→ ( f , g), where for every i ∈ [n],

f (i) = max
(
{i} ∪ {j > i : Ti,j ∈ C(w)}

)
g(i) =

{
1 if i < f (i) and Ri, f (i), f (i)+1 ∈ C(w),
0 otherwise.

Moreover, the expression on the right-hand side of (5.1) is reduced. Finally,

C(w( f , g)) ={Ti,j : i < j ≤ f (i)} ∪ {Ri,j,k, R−1
i,j,k : i < j < k ≤ f (i)}⋃

{Ri,j,k : i < j ≤ f (i) < k ≤ f (j), g(i) = 1}⋃
{R−1

i,j,k : i < j ≤ f (i) < k ≤ f (j), g(i) = 0}.

Theorem 5.1 is in the spirit of Skandera’s factorization of smooth permutation [19].
Using Theorem 5.1, we can recover several known enumerative results concerning smooth
permutations [4, 5, 9, 18, 21].

6 Relation to covexillary permutations

Using Theorem 2.1, we can also give an interesting relation between smooth permuta-
tions and covexillary ones. Recall that a permutation is called covexillary if it avoids the
pattern 3412.

Theorem 6.1. For any covexillary x ∈ Sn, C(x) is admissible. Therefore, the map x 7→ π(C(x))
is an idempotent function from the set of covexillary permutations onto the subset of smooth
permutations. Moreover, this map is order preserving and for any covexillary x ∈ Sn,

π(C(x)) = min{w ∈ Sn smooth : w ≥ x}.

7 Relation to coessential set

In [10] Fulton introduced the notion of the essential set of a permutation w ∈ Sn. For our
purpose it is more convenient to use the following slight variant:

E(w) = {(i, j) ∈ [n− 1]× [n− 1] : w(i) ≤ j < w(i + 1) and w−1(j) ≤ i < w−1(j + 1)}.
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For any w ∈ Sn we have

∀x ∈ Sn, x ≤ w ⇐⇒ rx(i, j) ≥ rw(i, j) for all (i, j) ∈ E(w).

Moreover, the set E(w) is minimal with respect to this property.
In particular, w is defined by the set E(w) and the restriction of rw to E(w). The

image of the injective map
w ∈ Sn 7→ (E(w), rw

∣∣
E(w)

)

was described in [8], extending Fulton’s result in the covexillary case.
We say that w is defined by inclusion if rw(i, j) = min(i, j) (i.e., if w([i]) ⊆ [j] or

[j] ⊆ w([i])) for all (i, j) ∈ E(w). It was proved by Gasharov–Reiner that w is defined by
inclusion if and only if w is 4231, 35142, 42513 and 351624 avoiding [11]. In particular, w
is smooth if and only if w is covexillary and defined by inclusions.

In general, consider the subset

E◦(w) = {(i, j) ∈ E(w) : w([i]) ⊆ [j] or [j] ⊆ w([i])}.

Thus, w is defined by inclusion if and only if E(w) = E◦(w), in which case w is deter-
mined by the set E(w). In particular, this is the case if w is smooth.

Note that for any w ∈ Sn, the 2-3-table C(w) is determined by the set E◦(w). More
precisely, we have

Ti,j ∈ C(w) ⇐⇒ E◦(w) ∩
(
[i, j)× [i, j)

)
= ∅,

Ri,j,k ∈ C(w) ⇐⇒ E◦(w) ∩
(
[i, j)× [i, j)

)
= E◦(w) ∩

(
[j, k)× [i, k)

)
= ∅,

R−1
i,j,k ∈ C(w) ⇐⇒ E◦(w) ∩

(
[i, j)× [i, k)

)
= E◦(w) ∩

(
[j, k)× [j, k)

)
= ∅.

We say that a subset E of [n− 1]× [n− 1] is permissible if for every two distinct points
(i1, j1) and (i2, j2) in E such that min(i2, j2) ≥ min(i1, j1) we have

i2 ≥ i1, j2 ≥ j1, max(i2, j2) > max(i1, j1) and min(i2, j2) > min(i1, j1).

It is easy to see that E◦(w) is permissible for every covexillary w ∈ Sn.

Theorem 7.1. We have a commutative diagram of bijections

smooth permutations admissible sets

good pairs permissible sets
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that is compatible with those of Theorems 2.1 and 5.1. The good pair corresponding to a permis-
sible set E is given by

f (k) = min
(
{n} ∪ {max(i, j) : (i, j) ∈ E, i, j ≥ k}

)
,

g(k) =

{
1 if j < f (j) and (j, f (j)) ∈ E, where j = max f−1( f (k)),
0 otherwise.

The permissible set corresponding to a good pair ( f , g) is

{(i, f (i)) : i ∈ [n− 1], f (i + 1) > f (i) and g(i) = 1}⋃
{( f (i), i) : i ∈ [n− 1], f (i + 1) > f (i) and g(i) = 0}.

The admissible set corresponding to a permissible set E is

{Ti,j : E ∩
(
[i, j)× [i, j)

)
= ∅}⋃

{Ri,j,k : E ∩
(
[i, j)× [i, j)

)
= E ∩

(
[j, k)× [i, k)

)
= ∅}⋃

{R−1
i,j,k : E ∩

(
[i, j)× [i, k)

)
= E ∩

(
[j, k)× [j, k)

)
= ∅}.

The permissible set corresponding to an admissible set A is

{(i, i) : i < n, Ti,i+1 /∈ A}⋃
{(i, j) : i < j < n, Ti,j, Ti+1,j+1 ∈ A, Ti,j+1 /∈ A, Ri,j,j+1 ∈ A}⋃
{(i, j) : j < i < n, Tj,i, Tj+1,i+1 ∈ A, Tj,i+1 /∈ A, R−1

j,i,i+1 ∈ A}.

The permissible set corresponding to a smooth permutation w is E◦(w).

Finally, we can relate Theorems 6.1 and 7.1 as follows.

Theorem 7.2. For any covexillary x ∈ Sn we have E(π(C(x))) = E◦(x).

8 Odds and ends

Theorem 4.1 was the original motivation of this work. It came up in studying a re-
lated problem, which is discussed in [16]. The result of [ibid.] is relevant for a certain
representation-theoretic context. We hope that the same will be true for Theorem 4.1 and
its variants, although we will not discuss these possible applications here.

Likewise, it would be interesting to find a geometric context for Theorems 2.1 and 4.1.
It is natural to ask whether Theorem 3.1 admits an analogue for other Weyl groups

W. In particular, one may ask whether any smooth element w of W can be written as the
product (in a suitable order) of the reflections that are smaller than or equal to w in the
Bruhat order (each reflection occurring exactly once).
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