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Abstract. Equivariant Ehrhart theory enumerates the lattice points in a polytope with
respect to a group action. Answering a question of Stapledon, we describe the equiv-
ariant Ehrhart theory of the permutahedron, and we prove his Effectiveness Conjecture
in this special case.
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1 Introduction

Ehrhart theory measures a polytope P by counting the lattice points in its dilations tP for
positive integers t. Stapledon [10] introduced equivariant Ehrhart theory as a refinement
of Ehrhart theory that takes into account the symmetries of the polytope P. He asked for
a description of the equivariant Ehrhart theory of the permutahedron under its group
of symmetries, the symmetric group. In this extended abstract, we completely answer
Stapledon’s question, computing the equivariant Ehrhart polynomials of the standard
permutahedra and verifying several conjectures in this special case.

1.1 Ehrhart theory for fixed polytopes of the permutahedron

We consider the action of the symmetric group Sn on the (n− 1)-dimensional permu-
tahedron Πn. For each permutation σ ∈ Sn, we define the fixed polytope Πσ

n ⊆ Πn to be
the subset of the permutahedron Πn fixed by σ. Our first main result is a combinatorial
formula for the lattice point enumerator LΠσ

n(t) := |tΠσ
n ∩Zn|:
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Theorem 1.1. Let σ be a permutation of [n] := {1, 2, . . . , n} and let λ = (`1, . . . , `m) be the
partition of n given by the lengths of the cycles of σ. Say a set partition π = {B1, . . . , Bk} of [m]
is λ-compatible if for each block Bi, either `j is odd for some j ∈ Bi, or the minimum 2-valuation
among {`j : j ∈ Bi} is attained at least twice. Also write

vπ =
k

∏
i=1

(
gcd(`j : j ∈ Bi) ·

(
∑
j∈Bi

`j

)|Bi|−2
)

. (1.1)

Then the Ehrhart quasipolynomial of the fixed polytope Πσ
n is

LΠσ
n(t) =


∑

π�[m]

vπ · tm−|π| if t is even

∑
π�[m]

λ−compatible

vπ · tm−|π| if t is odd .

1.2 Equivariant Ehrhart theory

Theorem 1.1 fits into the framework of equivariant Ehrhart theory, as we now explain.
Let G be a finite group acting linearly on Zn and P ⊆ Rn be a d-dimensional lattice

polytope that is invariant under the action of G. Let M be the sublattice of Zn obtained
by translating the affine span of P to the origin, and consider the induced representation
ρ : G → GL(M). We then obtain a family of permutation representations by looking at
how ρ permutes the lattice points inside the dilations of P. Let χtP : G → C denote the
permutation character associated to the action of G on the lattice points in the tth dilate
of P. For g ∈ G, we have

χtP(g) = LPg(t),

where Pg is the polytope of points in P fixed by g and LPg(t) is its lattice point enumer-
ator.

The permutation characters χtP live in the ring R(G) of virtual characters of G, which
are the integer combinations of the irreducible characters of G. The positive integer
combinations are called effective; they are the characters of representations of G.

Stapledon encoded the characters χtP in a power series H∗[z] ∈ R(G)[[z]] given by

∑
t≥0

χtP(g)zt =
H∗[z](g)

(1− z)det(I − g · z) . (1.2)

We call it the equivariant H∗-series because for the identity element e ∈ G, the evaluation
H∗[z](e) is the well-studied h*-polynomial of P. We say that H∗[z] =: ∑i≥0 H∗i zi is effective
if each virtual character H∗i is a character.

The main open problem in equivariant Ehrhart theory is to characterize when H∗[z]
is effective, and Stapledon offered the following conjecture.



The equivariant Ehrhart theory of the permutahedron 3

Conjecture 1.2 ([10, Effectiveness Conjecture 12.1]). Let P be a lattice polytope fixed by the
action of a group G. The following conditions are equivalent.

(i) The toric variety of P admits a G-invariant non-degenerate hypersurface.

(ii) The equivariant H∗-series of P is effective.

(iii) The equivariant H∗-series of P is a polynomial.

Our second main result is the following.

Theorem 1.3. Stapledon’s Effectiveness Conjecture holds for the permutahedron under the action
of the symmetric group.

Finally, in Proposition 4.9 we verify three other conjectures of Stapledon in this case.

1.3 Organization

In Section 2 we introduce some background on Ehrhart theory and zonotopes. In Sec-
tion 3 we compute the Ehrhart quasipolynomial of the fixed polytope Πσ

n, proving Theo-
rem 1.1. In Section 4 we compute the equivariant H∗-series H∗[z] for permutahedra and
we verify Stapledon’s Effectiveness conjecture in this special case (Theorem 1.3).

2 Preliminaries

2.1 Ehrhart quasipolynomials

Let P be a convex polytope in Rn. The lattice point enumerator of P is the function
LP : Z≥1 → Z≥0 given by LP(t) := |tP∩Zn|. A function f : Z→ R is a quasipolynomial if
there exists a period d and polynomials f0, f1, . . . , fd−1 such that f (n) = fi(n) whenever
n ≡ i (mod d).

Theorem 2.1 (Ehrhart’s Theorem [4]). If P is a rational polytope, then LP(t) agrees with
a quasipolynomial in t of degree dim P. Its period divides the least common multiple of the
denominators of the coordinates of the vertices of P.

2.2 Zonotopes

Let V be a finite set of vectors in Rn. The zonotope generated by V, denoted Z(V), is
defined to be the Minkowski sum of the line segments connecting the origin to v for
each v ∈ V. We will also adapt the same notation to refer to any translation of Z(V),
that is, the Minkowski sum of any collection of line segments whose direction vectors are
the elements of V. Zonotopes have a combinatorial decomposition that is useful when
calculating volumes and counting lattice points. The following result is due to Shephard.
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Proposition 2.2 ([8, Theorem 54]). A zonotope Z(V) can be subdivided into half-open paral-
lelotopes that are in bijection with the linearly independent subsets of V.

A linearly independent subset S ⊆ V corresponds under this bijection to the half-
open parallelotope

�S := ∑
v∈S

(0, v].

Theorem 2.3 ([9, Theorem 2.2]). Let Z(V) be a lattice zonotope generated by V. Then

LZ(V)(t) = ∑
S⊆V

lin. indep.

vol(�S) · t|S|. (2.1)

In the statement above and throughout the paper, volumes are normalized so that any
primitive lattice parallelotope has volume 1.

2.3 Fixed polytopes of the permutahedron

The symmetric group Sn acts on Rn by permuting coordinates of points. The permutahe-
dron Πn is the convex hull of the n! permutations of [n].

Let σ ∈ Sn be a permutation with cycles σ1, . . . , σm; their lengths form a partition
λ = (`1, . . . , `m) of n. For each cycle σk of σ, let eσk = ∑i∈σk

ei. The fixed polytope Πσ
n is

defined to be the polytope consisting of all points in Πn that are fixed under the action
of σ. We will use a few results from [2], which we now summarize.

Theorem 2.4 ([2, Theorem 2.12]). The fixed polytope Πσ
n has the following zonotope description:

Πσ
n = ∑

1≤i<j≤m
[`ieσj , `jeσi ] +

m

∑
k=1

`k + 1
2

eσk . (2.2)

Corollary 2.5. The fixed polytope Πσ
n is integral or half-integral. It is a lattice polytope if and

only if all cycles of σ have odd length.

Equation (2.2) also shows that Πσ
n is a rational translation of the zonotope Z(V)

where V = {`ieσj − `jeσi : 1 ≤ i < j ≤ m}. The following result characterizes the linearly
independent subsets of V.

Lemma 2.6 ([2, Lemma 3.2]). The linearly independent subsets of V are in bijection with forests
with vertex set [m], where the vector `ieσj − `jeσi corresponds to the edge connecting vertices i
and j.
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Figure 1: The fixed polytope Π(12)
4 is a half-integral hexagon containing 6 lattice points.

In light of this lemma, the fixed polytope Πσ
n gets subdivided into half-open paral-

lelotopes �F of the form

�F = ∑
{i,j}∈E(F)

[`ieσj , `jeσi ] +
m

∑
k=1

`k + 1
2

eσk + vF, vF ∈ Zn (2.3)

for each forest of F.
When F is a tree T we have that vol(�T) =

(
∏m

i=1 `
degT(i)−1
i

)
gcd(`1, . . . , `m) by

[2, Lemma 3.3]. For a general forest F, the parallelotopes �T corresponding to each
connected component T of F live in orthogonal subspaces, so

vol(�F) =
( m

∏
j=1

`
degF(j)−1
j

)(
∏

conn. comp.
T of F

gcd(`j : j ∈ vert(T))
)

. (2.4)

3 Ehrhart quasipolynomial of Πσ
n

Since Πσ
n is a zonotope, we can decompose it into half-open parallelotopes. However,

since Πσ
n is half-integral, some of the parallelotopes in this decomposition may not con-

tain any lattice points.

Example 3.1. The fixed polytope Π(12)
4 of Figure 1, which corresponds to the cycle type

λ = (2, 1, 1), is

Π(12)
4 = [2e3, e12] + [2e4, e12] + [e4, e3] +

3
2

e12 + e3 + e4.

Figure 2 shows its decomposition into parallelograms indexed by the forests on vertex
set {12, 3, 4}. The three trees give parallelograms with volumes 2, 1, 1 that contain 2, 1, 1
lattice points, respectively. The three forests with one edge give segments of volumes
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Figure 2: Decomposition of the fixed polytope Π(12)
4 into half-open parallelepipeds.

1, 1, 1 and 1, 1, 0 lattice points, respectively. The empty forest gives a point of volume 1
and 0 lattice points. Hence the Ehrhart quasipolynomial of Π(12)

4 is

L
Π(12)

4
(t) =

{
(2 + 1 + 1)t2 + (1 + 1 + 1)t + 1 if t is even
(2 + 1 + 1)t2 + (1 + 1 + 0)t + 0 if t is odd

.

Following the reasoning of Example 3.1, we will find the Ehrhart quasipolynomial of
Πσ

n by examining its decomposition into half-open parallelotopes. In order to find the
number of lattice points in each parallelotope �F, the following observation is crucial.

Lemma 3.2. [1, 6] If � is a half-open lattice parallelotope in Zn and v ∈ Qn, the number of
lattice points in �+ v is

|(�+ v) ∩Zn| =
{

vol(�) if the affine span of �+ v intersects the lattice Zn

0 otherwise
.

We now apply Lemma 3.2 to the parallelotopes �F. Surprisingly, whether aff(�F)
contains lattice points does not depend on the forest F, but only on the set partition π of
the vertex set [m] induced by the connected components of F. To make this precise we
need a definition. Recall that the 2-valuation of a positive integer is the largest power of
2 dividing that integer; for example, val2(24) = 3.

Definition 3.3. Let λ = (`1, . . . , `m) be a partition of the integer n. A set partition
π = {B1, . . . , Bk} of [m] is called λ-compatible if for each block Bi ∈ π, at least one of the
following conditions holds:

(i) `j is odd for some j ∈ Bi, or

(ii) the minimum 2-valuation among {`j : j ∈ Bi} occurs an even number of times.

Example 3.4. Let λ = (`1, `2, `3) and val2(λ) = (v1, v2, v3) and assume that v1 ≥ v2 ≥ v3.
Table 1 shows which partitions of [3] are λ-compatible depending on val2(λ).
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123 12|3 13|2 23|1 1|2|3
v1 = v2 = v3 = 0 • • • • •
v1 = v2 = v3 > 0
v1 = v2 > v3 = 0 • •
v1 = v2 > v3 > 0
v1 > v2 = v3 = 0 • • •
v1 > v2 = v3 > 0 •
v1 > v2 > v3 = 0 •
v1 > v2 > v3 > 0

Table 1: λ-compatibility for m = 3.

Lemma 3.5. Let σ ∈ Sn have cycle type λ = (`1, . . . , `m). Let F be a forest on [m] whose
connected components induce the partition π = {B1, . . . , Bk} of [m]. Then aff(�F) intersects
the lattice Zn if and only if π is λ-compatible.

Proof. First we claim that

aff(�F) =

{
m

∑
j=1

xjeσj : ∑
j∈Bi

`jxj = ∑
j∈Bi

`j(`j + 1)
2

for 1 ≤ i ≤ k

}
. (3.1)

This affine subspace intersects the lattice Zn if and only if (3.1) has integer solutions.
Elementary number theory tells us that this is the case if and only if each block Bi
satisfies

gcd(`j : j ∈ Bi)

∣∣∣∣∣ ∑
j∈Bi

`j(`j + 1)
2

. (3.2)

It is always true that gcd(`j : j ∈ Bi) divides ∑
j∈Bi

`j(`j + 1), so (3.2) holds if and only if

val2
(

gcd(`j : j ∈ Bi)
)
< val2

(
∑
j∈Bi

`j(`j + 1)
)

. (3.3)

We consider two cases.

(i) Suppose `j is odd for some j ∈ Bi. Then gcd(`j : j ∈ Bi) is odd, whereas ∑j∈Bi
`j(`j + 1)

is always even. Hence (3.3) always holds in this case.

(ii) Suppose that `j is even for all j ∈ Bi. For each `j, write `j = 2pj qj for some integer
pj ≥ 1 and odd integer qj. Then val2(gcd(`j : j ∈ Bi)) = minj∈Bi pj; we will call this
integer p. We have

val2
(

∑
j∈Bi

`j(`j + 1)
)
= val2

(
∑
j∈Bi

2pj qj(`j + 1)
)
= p + val2

(
∑
j∈Bi

2pj−pqj(`j + 1)
)

.
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Note that qj(`j + 1) is odd for each j. If the minimum 2-valuation p of {`j : j ∈ Bi}
occurs an odd number of times, then ∑j∈Bi

2pj−pqj(`j + 1) will be odd and we will
have val2(∑j∈Bi

`j(`j + 1)) = p. Otherwise, this sum will be even and we will have
val2(∑j∈Bi

`j(`j + 1)) > p. Therefore (3.3) holds if and only if the minimum 2-valuation
among the `j for j ∈ Bi occurs an even number of times. This is precisely the condition
of λ-compatibility.

We now have all of the tools to compute the Ehrhart quasipolynomial of Πσ
n. Recall

the definition of λ-compatibility in Definition 3.3 and the definition of vπ in (1.1).

Theorem 1.1. Let σ be a permutation of [n] with cycle type λ = (`1, . . . , `m). Then the
Ehrhart quasipolynomial of the fixed polytope Πσ

n is

LΠσ
n(t) =


∑

π�[m]

vπ · tm−|π| if t is even

∑
π�[m]

λ−compatible

vπ · tm−|π| if t is odd.

Proof. We calculate the number of lattice points in each integer dilate tΠσ
n by decompos-

ing it into half-open parallelotopes and adding up the number of lattice points inside of
each parallelotope.

First, suppose that t is even. Then tΠσ
n is a lattice polytope, all parallelotopes in the

decomposition of tΠσ
n have vertices on the integer lattice, and each i-dimensional paral-

lelotope � contains vol(�)ti lattice points [3, Lemma 9.2]. The parallelotopes correspond
to linearly independent subsets of the vector configuration {`ieσj − `jeσi : 1 ≤ i < j ≤ m},
which are in bijection with forests on [m]. It follows from Theorem 2.3 and (2.4) that
when t is even,

LΠσ
n(t) = ∑

π�[m]

vπ · tm−|π|.

Next, suppose t is odd. Then tΠσ
n is half-integral, but it may not be a lattice polytope.

As before, we may decompose tΠσ
n into half-open parallelotopes that are in bijection

with forests on [m]. Lemma 3.2, Lemma 3.5, and [3, Lemma 9.2] tell us that �F contains
vol(�F)tm−|π| lattice points if the set partition π induced by F is λ-compatible, and 0
otherwise. Therefore if t is odd,

LΠσ
n(t) = ∑

π�[m]
λ−compatible

vπ · tm−|π|

as desired.
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Cycle type of σ ∈ S4 χtΠ4(σ) ∑
t≥0

χtΠ4(σ)z
t H∗[z](σ)

(1, 1, 1, 1) 16t3 + 15t2 + 6t + 1
1 + 34z + 55z2 + 6z3

(1− z)4 1 + 34z + 55z2 + 6z3

(2, 1, 1)

{
4t2 + 3t + 1 if t is even
4t2 + 2t if t is odd

1 + 6z + 20z2 + 24z3 + 11z4 + 2z5

(1− z)2(1− z2)(1 + z)2 1 + 4z + 11z2 − 2z3 +
∞

∑
i=4

4(−1)izi

(3, 1) t + 1
1

(1− z)2 =
1 + z + z2

(1− z)(1− z3)
1 + z + z2

(4)

{
1 if t is even
0 if t is odd

1
1− z2 =

1 + z2

1− z4 1 + z2

(2, 2)

{
2t + 1 if t is even
2t if t is odd

1 + 2z + 3z2 + 2z3

(1− z2)2 1 + 2z + 3z2 + 2z3

Table 2: The equivariant H∗-series of Π4

4 The equivariant H∗-series of the permutahedron

We now compute the equivariant H∗-series of the permutahedron and characterize when
it is polynomial and when it is effective, proving Stapledon’s Effectiveness Conjecture 1.2
in this special case.

The Ehrhart series of a rational polytope P is

EhrP(z) = 1 +
∞

∑
t=1

LP(t) · zt.

In computing the Ehrhart series of Πσ
n, Eulerian polynomials naturally arise. The Eulerian

polynomial Ak(z) is defined by the identity

∑
t≥0

tkzt =
Ak(z)

(1− z)k+1 .

Proposition 4.1. Let σ ∈ Sn have cycle type λ = (`1, . . . , `m). The Ehrhart series of Πσ
n is

EhrΠσ
n(z) = ∑

π�[m]
λ-compatible

vπ · Am−|π|(z)

(1− z)m−|π|+1
+ ∑

π�[m]
λ-incompatible

vπ · 2m−|π| · Am−|π|(z2)

(1− z2)m−|π|+1

and the H∗-series of the permutahedron equals H∗[z](σ) = (∏m
i=1(1− z`i)) · EhrΠσ

n(z).

Proof. Omitted.

Table 2 shows the equivariant H∗-series of Π4. Stapledon writes that “The main open
problem is to characterize when H∗[z] is effective”, and he conjectures the following charac-
terization:



10 Federico Ardila, Mariel Supina, and Andrés R. Vindas-Meléndez

Conjecture 1.2 ([10, Effectiveness Conjecture 12.1]). Let P be a lattice polytope fixed by
the action of a group G. The following conditions are equivalent.

(i) The toric variety of P admits a G-invariant non-degenerate hypersurface.

(ii) The equivariant H∗-series of P is effective.

(iii) The equivariant H∗-series of P is a polynomial.

He shows that (i) =⇒ (ii) =⇒ (iii), so only the reverse implications are con-
jectured. Our next goal is to verify Stapledon’s conjecture for the action of Sn on the
permutahedron Πn.

4.1 Polynomiality of H∗[z]

Lemma 4.2. Let σ ∈ Sn have cycle type λ = (`1, . . . , `m). The equivariant H∗-series evaluated
at σ, H∗[z](σ), is a polynomial if and only if the number of even parts in λ is 0, m− 1, or m.

Proof. Omitted.

Proposition 4.3. The equivariant H∗-series of the permutahedron Πn is a polynomial if and only
if n ≤ 3.

Proof. When n ≤ 3, all partitions of n have 0, 1, or all odd parts. Hence H∗[z](σ) is a
polynomial for all σ ∈ Sn, so H∗[z] is a polynomial.

Suppose n ≥ 4. Then there always exists some partition of n with more than 1 but
fewer than all odd parts: if n is even we can take the partition (n− 2, 1, 1), and if n is
odd we can take the partition (n− 3, 1, 1, 1). Therefore H∗[z] is not polynomial.

4.2 Effectiveness of H∗[z]

Proposition 4.4. The equivariant H∗-series of the permutahedron Πn is effective if and only if
n ≤ 3.

Proof. We prove this by computing the decomposition of the H∗ characters into irre-
ducibles.

4.3 Sn-invariant non-degenerate hypersurfaces in the permutahedral
variety

We begin by explaining condition (i) of Conjecture 1.2, which arises from Khovanskii’s
notion of non-degeneracy [5]. We refer the reader to [10, Section 7] for more details.
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Let P ⊂ Rn be a lattice polytope that is invariant under the action of a finite group
G. For v ∈ Zn we write xv := xv1

1 · . . . · xvn
n . The coordinate ring of the projective toric

variety XP of P has the form C[xv : v ∈ P ∩Zn], so a hypersurface in XP is given by a
linear equation ∑v∈P∩Zn avxv = 0 for some complex coefficients av. The group G acts
on the monomials xv by its action on the lattice points v ∈ P ∩ Zn, so the equation
of a G-invariant hypersurface should have av = au whenever u and v are in the same
G-orbit. A projective hypersurface in XP with equation f (x1, . . . , xn) = 0 is smooth if
the gradient (∂ f /∂x1, . . . , ∂ f /∂xn) is never zero when (x1, . . . , xn) ∈ (C∗)n. There is
a unique polynomial in the avs, called the discriminant, such that the hypersurface is
smooth when the discriminant does not vanish at the coefficients av. A hypersurface
in the toric variety of P is non-degenerate if it is smooth and for each face F of P, the
hypersurface ∑v∈F∩Zn avxv = 0 is also smooth.

The permutahedral variety XΠn is the projective toric variety associated to the permu-
tahedron Πn.

Proposition 4.5. The permutahedral variety XΠn admits an Sn-invariant non-degenerate hyper-
surface if and only if n ≤ 3.

Proof. We prove this by checking gradients when n = 1, 2. For n = 3, we compute a
discriminant using a formula from [7].

4.4 Stapledon’s Effectiveness Conjecture

Theorem 1.3 now follows as a corollary.

Theorem 1.3. Stapledon’s Effectiveness Conjecture holds for the permutahedron under
the action of the symmetric group.

Proof. This follows immediately from Propositions 4.3 to 4.5

4.5 Other conjectures

Conjecture 4.6 ([10, Conjecture 12.2]). If H∗[z] is effective, then H∗[1] is a permutation
representation.

Conjecture 4.7 ([10, Conjecture 12.3]). For any g ∈ G, the quantity H∗[1](g) is a non-
negative integer.

Conjecture 4.8 ([10, Conjecture 12.4]). If H∗[z] is a polynomial and the ith coefficient of the
h∗-polynomial of P is positive, then the trivial representation occurs with non-zero multiplicity
in the virtual character H∗i .

Proposition 4.9. Conjectures 4.6 to 4.8 hold for permutahedra under the action of the symmetric
group.

Proof. Omitted.
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