Séminaire Lotharingien de Combinatoire **84B** (2020) Article #10, 12 pp.

Cubillages in odd dimensions

Vladimir I. Danilov^{*1}, Alexander V. Karzanov^{†1}, and Gleb A. Koshevoy^{‡2}

¹Central Institute of Economics and Mathematics of the RAS, Moscow, Russia ²Institute for Information Transmission Problems of the RAS, Moscow, Russia

Abstract. In this abstract we discuss novel results on fine zonotopal tilings (called "cubillages" for short) in odd-dimensional cyclic zonotopes and their relations to generalized weakly separated set-systems, triangulations of cyclic polytopes, and others.

Keywords: cyclic zonotope, cubillage, strong and weak separation, cyclic polytope, triangulation, combined tiling

1 Introduction

For positive integers $n \ge d$, by a *cyclic configuration* of size n in \mathbb{R}^d we mean an ordered set Ξ of n vectors $\xi_i = (\xi_i(1), \dots, \xi_i(d)) \in \mathbb{R}^d$, $i = 1, \dots, n$, satisfying:

(1.1) (a) $\xi_i(1) = 1$ for each *i*; (b) any flag minor of the $d \times n$ matrix formed by ξ_1, \ldots, ξ_n as columns (in this order) is positive; and (c) all 0,1-combinations of these vectors are different.

(A typical sample of such configurations Ξ is generated by Veronese curve: take reals $t_1 < t_2 < \cdots < t_n$ and assign $\xi_i := \xi(t_i)$, where $\xi(t) = (1, t, t^2, \dots, t^{d-1})$.)

We deal with fine zonotopal tilings related to Ξ . Recall that the (cyclic) *zonotope* $Z = Z(\Xi)$ generated by Ξ is the Minkowski sum of line segments $[0, \xi_i]$, i = 1, ..., n. Then a *fine zonotopal tiling* is (the polyhedral complex determined by) a subdivision Q of Z into d-dimensional parallelotopes such that: any two intersecting ones share a common face, and each face of the boundary of Z is entirely contained in some of these parallelotopes. For brevity, we refer to these parallelotopes as *cubes*, and to Q as a *cubillage*. Note that the choice of one or another cyclic configuration Ξ (subject to (1.1)) is not important to us in essence, and we will write Z(n,d) rather than $Z(\Xi)$, referring to it as the *cyclic zonotope* with parameters (n, d).

Let [n] denote the set $\{1, 2, ..., n\}$. Any point v in Z(n, d) occurring as a vertex of a cubillage Q is viewed as $\sum_{i \in X} \xi_i$ for some subset $X \subseteq [n]$ and we identify such v and X. So the set V(Q) of vertices of Q is identified with the corresponding collection (set-system) in $2^{[n]}$, that we call the *spectrum* of Q. It is known that

^{*}danilov@cemi.rssi.ru.

[†]akarzanov7@gmail.com.

[‡]koshevoyga@gmail.com. Supported in part by grant RSF 16-11-10075.

(1.2) the size (cardinality) of V(Q) is equal to $\binom{n}{\leq d} = \binom{n}{d} + \binom{n}{d-1} + \cdots + \binom{n}{0}$.

The above correspondence possesses a number of nice properties. One of them involves so-called *strongly separated* sets and set-systems. We need some definitions.

For $X, Y \subseteq [n]$, we write X < Y if the maximal element $\max(X)$ of X is smaller than the minimal element $\min(Y)$ of Y, letting $\max(\emptyset) := 0$ and $\min(\emptyset) := n + 1$. An *interval* of [n] is a subset of the form $\{a, a + 1, ..., b\}$, denoted as [a, b].

Definition 1.1. For $r \in \mathbb{Z}_{\geq 0}$, sets $A, B \subseteq [n]$ are called *strongly r-separated* if there is no sequence $i_1 < i_2 < \cdots < i_{r+2}$ of elements of [n] such that those with odd indices (namely, i_1, i_3, \ldots) belong to one of A - B or B - A, while those with even indices (i_2, i_4, \ldots) belong to the other (where A' - B' denotes the set difference $\{i: i \in A', i \notin B'\}$). Accordingly, a set-system $S \subseteq 2^{[n]}$ is called *r*-separated if any two members of S are such.

In particular, A, B are strongly 1-separated if $\max(A - B) < \min(B - A)$ or $\max(B - A) < \min(A - B)$. This notion was introduced and studied, under the name of "strong separation", by Leclerc and Zelevinsky [7]. The case r = 2 was studied by Galashin [5]. Extending results in [7, 5] concerning the strong 1- and 2-separation to a general r, Galashin and Postnikov [6] showed that

(1.3) The maximal size $s_{n,r}$ of a strongly *r*-separated collection in $2^{[n]}$ is equal to $\binom{n}{\leq r+1}$; moreover (see (1.2)), for any cubillage Q on Z(n,d), its spectrum V(Q) constitutes a maximal by size strongly (d-1)-separated collection in $2^{[n]}$, and conversely, for any size-maximal strongly(d-1)-separated collection $S \subseteq 2^{[n]}$, there exists a cubillage Q on Z(n,d) with V(Q) = S.

(As a more general version of strong *r*-separation, [6] considers the notion of M-separation in oriented matroids, but this is not needed to us in this paper.)

Another sort of set separation introduced by Leclerc and Zelevinsky is known under the name of *weak separation* (which appeared in [7] in connection with the problem of characterizing quasi-commuting flag minors of a quantum matrix). We generalize that notion to "higher odd dimensions" in the following way. When $A, B \subseteq [n]$ are such that $\min(A - B) < \min(B - A)$ and $\max(A - B) > \max(B - A)$, we say that A surrounds B. When A, B are strongly r-separated but not strongly (r - 1)-separated, they are called (r + 1)-intertwined. In other words, there are intervals $I_1 < I_2 < \cdots < I_{r'}$ in [n] with r' = r + 1, but not r' = r, such that one of $I_1 \cup I_3 \cup \ldots$ and $I_2 \cup I_4 \cup \ldots$ includes A - B, and the other B - A; we say that $(I_1, \ldots, I_{r'})$ is an *interval cortege* for A, B. For example, $A = \{1, 2, 5, 6, 7, 10, 11\}$ and $B = \{1, 3, 4, 6, 9, 11\}$ are 5-intertwined (with an interval cortege $(\{2\}, [3, 4], [5, 7], \{9\}, \{10\})$) and A surrounds B.

Definition 1.2. Let *r* be *odd*. Sets $A, B \subseteq [n]$ are called *weakly r-separated* if they are either strongly *r*-separated, or they are r + 2-intertwined, and in the latter case, if *A* surrounds *B* then $|A| \leq |B|$, while if *B* surrounds *A* then $|B| \leq |A|$. Accordingly, a set-system $\mathcal{W} \subseteq 2^{[n]}$ is called weakly *r*-separated if any two members of \mathcal{W} are such.

In case r = 1, this turns into the weak separation of [7].

Using a machinery of cubillages in cyclic zonotopes of odd dimensions, we generalize, to an arbitrary odd $r \ge 1$, two well-known results on weakly separated collections obtained in [7] and develop a method of constructing a representable class of size-maximal weakly *r*-separated set-systems. One of those results [7] says that

(1.4) the maximal sizes of strongly and weakly separated collections in $2^{[n]}$ are the same (and equal to $\frac{1}{2}n(n+1) + 1 = \binom{n}{2} + \binom{n}{1} + \binom{n}{0}$).

Let $w_{n,r}$ denote the maximal possible size of a weakly *r*-separated collection in $2^{[n]}$. We generalize (1.4) as follows.

Theorem 1.3. Let *r* be odd. Then $w_{n,r} = s_{n,r}$.

(Note that for even r > 0, at present we see no way of defining the notion of weak r-separation ensuring that the maximal size of such collections in $2^{[r+1]}$ does not exceed $s_{n,r}$. So the odd and even cases behave differently. Note also that for an odd $r \ge 3$, a maximal by inclusion weakly r-separated collection need not be maximal by size.)

Another impressive result in [7] says that a weakly separated collection can be transformed into another one by making a *flip* (a sort of mutation) "in the presence of four witnesses". This relies on the following property ([7, Theorem 7.1]):

(1.5) Let $\mathcal{W} \subset 2^{[n]}$ be weakly separated, and suppose that there are elements i < j < k of [n] and a set $X \subseteq [n] - \{i, j, k\}$ such that \mathcal{W} contains four sets ("witnesses") Xi, Xk, Xij, Xjk and a set $U \in \{Xj, Xik\}$; then the collection obtained from \mathcal{W} by replacing U by the other member of $\{Xj, Xik\}$ is again weakly separated.

Hereinafter for disjoint sets *A* and $\{a, ..., b\}$, we write Aa ... b for $A \cup \{a, ..., b\}$. Also for $a \in A$, we abbreviate $A - \{a\}$ as A - a. We generalize (1.5) as follows.

Theorem 1.4. For an odd r, let r' := (r+1)/2. Let $P = \{p_1, \ldots, p_{r'}\}$ and $Q = \{q_0, \ldots, q_{r'}\}$ consist of elements of [n] such that $q_0 < p_1 < q_1 < p_2 < \ldots < p_{r'} < q_{r'}$, and let $X \subseteq [n] - (P \cup Q)$. Define the sets of "upper" and "lower" neighbors (or "witnesses") of P, Q to be

$$\mathcal{N}^{\uparrow}(P,Q) := \{Pq: q \in Q\} \cup \{(P-p)q: p \in P, q \in Q\}; \text{ and } (1.6)$$

$$\mathcal{N}^{\downarrow}(P,Q) := \{Q - q : q \in Q\} \cup \{(Q - q)p : p \in P, q \in Q\}.$$
(1.7)

Suppose that a weakly r-separated collection $W \subset 2^{[n]}$ contains the set $X \cup P$ (resp. $X \cup Q$) and the sets $X \cup S$ for all $S \in \mathcal{N}^{\downarrow}(P,Q)$ (resp. $S \in \mathcal{N}^{\uparrow}(P,Q)$). Then the collection obtained from W by replacing $X \cup P$ by $X \cup Q$ (resp. $X \cup Q$ by $X \cup P$) is weakly r-separated as well.

The above theorems give rise to an important construction. More precisely, for a cubillage Q in Z(n,d), we introduce a natural *fragmentation* Q^{\equiv} of Q, by cutting each "cube" C of Q by the "horizontal" hyperplanes through the vertices of C, and define

a class of (d-1)-dimensional subcomplexes M of Q^{\equiv} , called *weak membranes*. These membranes form a distributive lattice. Based on Theorem 1.4, we show that if r := d - 2 is odd, then the vertex set of M has size exactly $w_{n,r}$ and constitutes a weakly r-separated collection in $2^{[n]}$. This gives a plenty of size-maximal weakly r-separated collections associated with Q, and any two collections among these are linked by a sequence of (lowering or raising) "elementary" *flips*.

In this abstract, Section 2 contains additional definitions and reviews some basic facts. Section 3 outlines a proof of Theorem 1.3. The construction of max-size weakly r-separated collections via weak membranes in cubillages is described in Section 4. The concluding Section 5 discusses issues related to the problem of extending a triangulation in a cyclic polytope to a cubillage and raises some conjectures.

The abstract is based on abridged versions of parts of [4] and [2], and some results are also reflected in the survey [3].

2 Preliminaries

This section contains additional definitions, notation and conventions. Also we review some known properties of cubillages. For details, see [4, 3].

• Let π denote the projection $\mathbb{R}^d \to \mathbb{R}^{d-1}$ given by $(x(1), \ldots, x(d)) \mapsto (x(1), \ldots, x(d-1))$. Due to (1.1)(b), the vectors $\pi(\xi_1), \ldots, \pi(\xi_n)$ form a cyclic configuration as well, and we may say that π projects Z(n, d) to the zonotope Z(n, d-1).

• The 0-, 1-, and (d - 1)-dimensional faces of a cubillage Q in Z(n, d) are called *vertices*, *edges*, and *facets*, respectively. While each vertex is identified with a subset of [n], each edge e is a parallel translation of some segment $[0, \xi_i]$; we say that e has *color* i.

• When a cell (face) *C* of *Q* has the lowest point $X \subseteq [n]$ and when $T \subseteq [n]$ is the set of colors of edges in *C*, we say that *C* has the *root X* and *type T*, and may write C = (X | T). One easily shows that $X \cap T = \emptyset$.

• For a closed subset *U* of points in Z = Z(n, d), let $U^{\text{fr}}(U^{\text{rear}})$ be the subset of *U* "seen" in the direction of the last, *d*-th, coordinate vector e_d (resp. $-e_d$), i.e., formed by the points $x \in \pi^{-1}(x') \cap U$ with x(d) minimum (resp. maximum) for all $x' \in \pi(U)$. It is called the *front* (resp. *rear*) *side* of *U*.

In particular, Z^{fr} and Z^{rear} denote the front and rear sides, respectively, of the zono-tope *Z*. We call $Z^{\text{rim}} := Z^{\text{fr}} \cap Z^{\text{rear}}$ the *rim* of *Z*.

• When a set $X \subseteq [n]$ is the union of k intervals and k is as small as possible, we say that X is a *k*-interval. Then its complementary set [n] - X is a *k*'-interval with $k' \in \{k - 1, k, k + 1\}$. We will use the following known characterization of the sets of vertices in the front and rear sides of a zonotope of an odd dimension.

(2.1) Let *d* be odd. Then for Z = Z(n, d),

(i) $V(Z^{\text{fr}})$ is formed by all *k*-intervals of [n] with $k \leq (d-1)/2$; and

(ii) $V(Z^{\text{rear}})$ is formed by the subsets of [n] complementary to those in $V(Z^{\text{fr}})$; so it consists of all *k*-intervals with k < (d-1)/2, all (d-1)/2-intervals containing at least one of the elements 1 and *n* and all (d+1)/2-intervals with both 1 and *n*.

This implies that the set of *inner* vertices in Z^{fr} , i.e., $V(Z^{\text{fr}}) - V(Z^{\text{rim}})$, consists of the (d-1)/2-intervals containing none of 1 and *n*, whereas $V(Z^{\text{rear}}) - V(Z^{\text{rim}})$ consists of the (d+1)/2-intervals containing both 1 and *n*.

The rest of this section describes an important class of subcomplexes in a cubillage Q and associate with Q a certain path structure (used in the next section).

Definition 2.1. Let *Q* be a cubillage in *Z*(*n*,*d*). A *strong membrane*, or, briefly, an *s*-*membrane*, in *Q* is a subcomplex *M* of *Q* such that *M* (regarded as a subset of \mathbb{R}^d) is *bijectively* projected by π onto *Z*(*n*,*d* - 1).

Then each facet of *Q* occurring in *M* is projected to a cube of dimension d - 1 in Z(n, d - 1) and these cubes constitute a cubillage in Z(n, d - 1), denoted as $\pi(M)$. In view of (1.3) and (1.2) (applied to $\pi(Q)$),

(2.2) all s-membranes *M* in a cubillage *Q* in Z(n,d) have $s_{n,d-2}$ vertices, and the vertex set of *M* (regarded as a collection in $2^{[n]}$) is strongly (d-2)-separated.

Two s-membranes are of a particular interest. These are the front side Z^{fr} and the rear side Z^{rear} of Z = Z(n, d). Following terminology in [2, 3], their projections $\pi(Z^{\text{fr}})$ and $\pi(Z^{\text{rear}})$ are called the *standard* and *anti-standard* cubillages in Z(n, d - 1), respectively.

Next we distinguish certain vertices in cubes. When n = d, the zonotope turns into the cube $C = (\emptyset | [d])$, and there holds:

(2.3) the front side C^{fr} (rear side C^{rear}) of $C = (\emptyset | [d])$ has a unique inner vertex, namely, $t_C := \{i \in [n] : d - i \text{ odd}\}$ (resp. $h_C := \{i \in [n] : d - i \text{ even}\}$.

When *n* is arbitrary and *Q* is a cubillage in Z = Z(n, d), we distinguish vertices t_C and h_C of a cube C(X | T) with $T = (p_1 < ... < p_d)$ in *Q* in a similar way; namely,

(2.4)
$$t_C = X \cup \{p_i : d - i \text{ odd}\} \text{ and } h_C = X \cup \{p_i : d - i \text{ even}\}.$$

Note that for each vertex v of Q, unless v is in Z^{rear} , there is a unique cube $C \in Q$ such that $t_C = v$, and symmetrically, unless v is in Z^{fr} , there is a unique cube $C \in Q$ such that $h_C = v$ (to see this, consider the line going through v and parallel to e_d).

Therefore, by drawing for each cube $C \in Q$, the edge-arrow from t_C to h_C , we obtain a directed graph whose connected components are directed paths going from $Z^{\text{fr}} - Z^{\text{rim}}$ to $Z^{\text{rear}} - Z^{\text{rim}}$. We call these paths *bead-threads* in Q. It is convenient to add to this graph the elements of $V(Z^{\text{rim}})$ as isolated vertices, forming *degenerate* bead-threads, each going from a vertex to itself. Let B_Q be the resulting directed graph. Then (2.5) B_Q contains all vertices of Q, and each component of B_Q is a bead-thread going from Z^{fr} to Z^{rear} .

Note that the heights |X| of vertices X along a bead-thread are monotone increasing when d is odd (whereas they are constant when d is even).

3 Proof of Theorem 1.3

Let *r* be odd and n > r. We have to show that

(3.1) if \mathcal{W} is a weakly *r*-separated collection in $2^{[n]}$, then $|\mathcal{W}| \leq {n \choose < r+1}$.

This is valid when r = 1 (see (1.4)) and is trivial when n = r + 1. So one may assume that $3 \le r \le n - 2$. We prove (3.1) by induction, assuming that the corresponding inequality holds for \mathcal{W}', n', r' when $n' \le n, r' \le r$, and $(n', r') \ne (n, r)$. Define the following subcollections in \mathcal{W} :

$$\mathcal{W}^{-} := \{A \subseteq [n-1] : \{A, An\} \cap \mathcal{W} \neq \emptyset\}, \text{ and}$$
$$\mathcal{T} := \{A \subseteq [n-1] : \{A, An\} \subseteq \mathcal{W}\},$$

One easily shows that \mathcal{W}^- is weakly *r*-separated. Then by induction, $|\mathcal{W}^-| \leq \binom{n-1}{\leq r+1}$. Also $|\mathcal{W}| = |\mathcal{W}^-| + |\mathcal{T}|$. Therefore, in view of the identity $\binom{n}{j} = \binom{n-1}{j} + \binom{n-1}{j-1}$ for any $j \leq n-1$, it suffices to show that

$$\mathcal{T}| \le \binom{n-1}{< r}.\tag{3.2}$$

For i = 0, 1, ..., n - 1, define $\mathcal{T}^i := \{A \in \mathcal{T} : |A| = i\}$. We rely on two claims.

Claim 1 For each *i*, the collection \mathcal{T}^i is strongly (r-1)-separated; moreover, \mathcal{T}^i is weakly (r-2)-separated.

Proof. Let $A, B \in \mathcal{T}^i$. Take an interval cortege $(I_1, \ldots, I_{r'})$ for A, B, and we may assume that $I_{r'} \cap (A - B) \neq \emptyset$. Then $(I_1, \ldots, I_{r'}, I_{r'+1} := \{n\})$ is an interval cortege for A and B' := Bn. Since |A| < |B'| and $\max(A - B') < \max(B' - A) = n$, and since A, B' are weakly *r*-separated, r' + 1 < r + 2. Then $r' \leq r$, implying that A, B are (r - 1)-separated. Since |A| = |B| and r is odd, we also can conclude that A, B are weakly (r - 2)-separated.

Now consider the zonotope Z = Z(n - 1, r). For j = 0, 1, ..., n - 1, define $S^j(A^j)$ to be the set of vertices X of Z^{fr} (resp. Z^{rear}) with |X| = j. We extend each collection \mathcal{T}^i to

$$\mathcal{D}^{i} := \mathcal{T}^{i} \cup (\mathcal{S}^{i+1} \cup \ldots \cup \mathcal{S}^{n-1}) \cup (\mathcal{A}^{0} \cup \mathcal{A}^{1} \cup \ldots \cup \mathcal{A}^{i-1}).$$
(3.3)

Claim 2 \mathcal{D}^i is weakly (r-2)-separated.

Proof. The vertex sets of Z^{fr} and $\pi(Z^{\text{fr}})$ are essentially the same (regarding a vertex as a subset of [n-1]), and similarly for Z^{rear} and $\pi(Z^{\text{rear}})$. Since $\pi(Z^{\text{fr}})$ and $\pi(Z^{\text{rear}})$ are cubillages on Z(n-1, r-1) (the so-called "standard" and "anti-standard" ones), (1.3) implies that both collections $V(Z^{\text{fr}}) = S^0 \cup \ldots \cup S^{n-1}$ and $V(Z^{\text{rear}}) = \mathcal{A}^0 \cup \ldots \cup \mathcal{A}^{n-1}$ are (r-2)-separated, and therefore, they are weakly (r-2)-separated as well.

Next, by (2.1)(i), each vertex *X* of *Z*^{fr} is a *k*-interval with $k \leq (r-1)/2$. Such an *X* and any subset $Y \subseteq [n-1]$ are *k*'-intertwined with $k' \leq 2k + 1$. Then $k' \leq r$ and this holds with equality when *X* and *Y* are *r*-intertwined and *Y* surrounds *X*. It follows that *X* is weakly (r-2)-separated from any $Y \subseteq [n-1]$ with $|Y| \leq |X|$ (in particular, if $X \in S^j$ and $j \geq i$, then *X* is weakly (r-2)-separated from each member of $\mathcal{T}^i \cup \mathcal{A}^0 \cup \ldots \cup \mathcal{A}^{i-1}$).

Symmetrically, by (2.1)(ii), each vertex *X* of Z^{rear} is the complement to [n - 1] of a *k*-interval with $k \le (r - 1)/2$. We can conclude that such an *X* is weakly (r - 2)-separated from any $Y \subseteq [n - 1]$ with $|Y| \ge |X|$.

Now the result is provided by the inequalities |X| > |A| > |X'| for any $A \in \mathcal{T}^i$, $X \in \mathcal{S}^{i+1} \cup \ldots \cup \mathcal{S}^{n-1}$, and $X' \in \mathcal{A}^0 \cup \ldots \cup \mathcal{A}^{i-1}$.

By induction, $|\mathcal{D}^i| \leq \binom{n-1}{< r-1}$. Then, using (2.2) (for n-1 and r-2), we have

$$|\mathcal{D}^{i}| \le \binom{n-1}{\le r-1} = s_{n-1,r-2} = |V(Z^{\rm fr})|.$$
(3.4)

Let $\mathcal{S}' := \mathcal{S}^0 \cup \mathcal{S}^1 \cup \ldots \cup \mathcal{S}^i$ and $\mathcal{A}' := \mathcal{A}^0 \cup \mathcal{A}^1 \cup \ldots \cup \mathcal{A}^{i-1}$. Since $\mathcal{S}^{i+1} \cup \ldots \cup \mathcal{S}^{n-1} = V(Z^{\text{fr}}) - \mathcal{S}'$, we obtain from (3.3) and (3.4) that

$$|\mathcal{T}^{i}| = |\mathcal{D}^{i}| - (|V(Z^{\mathrm{fr}}) - \mathcal{S}'|) - |\mathcal{A}'| \le |\mathcal{S}'| - |\mathcal{A}'|.$$
(3.5)

We now finish the proof by using a bead-thread technique (see Section 2). Fix an arbitrary cubillage Q in Z = Z(n - 1, r). Let \mathcal{R}^i be the set of vertices X of Q with |X| = i, and let \mathcal{B} be the set of paths in the graph B_Q beginning at Z^{fr} and ending at Z^{rear} . Since r is odd, each edge (X, Y) of B_Q is "ascending" (satisfies |Y| > |X|). This implies that each path $P \in \mathcal{P}$ beginning at \mathcal{S}' must meet either \mathcal{R}^i or \mathcal{A}' , and conversely, each path meeting $\mathcal{R}^i \cup \mathcal{A}'$ begins at \mathcal{S}' . This and (3.5) imply $|\mathcal{T}^i| \leq |\mathcal{R}^i|$. Summing up these inequalities for i = 0, 1, ..., n - 1, we have

$$|\mathcal{T}| = \sum_{i} |\mathcal{T}^{i}| \leq \sum_{i} |\mathcal{R}^{i}| = |V_{Q}| = s_{n-1,r-1} = \binom{n-1}{\leq r},$$

yielding (3.2) and completing the proof of Theorem 1.3.

4 Weakly *r*-separated collections generated by cubillages

We have seen an interrelation between strongly *-separated collections on the one hand, and cubillages and s-membranes on the other hand (see (1.3) and (2.2)). This section is

devoted to geometric aspects of the weak *r*-separation when *r* is odd. Being motivated by geometric constructions for maximal weakly 1-separated collections elaborated in [1, 2], we explain how to construct maximal by size weakly *r*-separated collections by use of *weak membranes*, which are analogs of *s*-membranes in *fragmentations* of cubillages.

4.1 Fragmentation and weak membranes.

Let *Q* be a cubillage in *Z*(*n*,*d*). The *fragmentation* of *Q* is the complex Q^{\equiv} obtained by cutting *Q* by the "horizontal" hyperplanes $H_{\ell} := \{x \in \mathbb{R}^d : x(1) = \ell\}, \ \ell = 1, ..., n - 1.$

Such hyperplanes subdivide each cube C = (X | T) of Q into pieces $C_1^{\equiv}, \ldots, C_d^{\equiv}$, where C_h^{\equiv} is the portion of C between $H_{|X|+h-1}$ and $H_{|X|+h}$, called a *fragment* of C (and of Q^{\equiv}). Let $S_h(C)$ denote *h*-th horizontal section $C \cap H_{|X|+h}$ of C; this is the convex hull of the set of vertices $(X | {T \choose h}) := \{X \cup A : A \subset T, |A| = h\}$ (forming a *hyper-simplex* and turning into a simplex when h = 1 or d - 1). We call $S_{h-1}(C)$ and $S_h(C)$ the *lower* and *upper* (horizontal) facets of the fragment C_h^{\equiv} , respectively. (Here $S_0(C)$ and $S_d(C)$ degenerate to the single points X and $X \cup T$, respectively.) The other facets of C_h^{\equiv} are conditionally called *vertical* ones.

Note that the horizontal facets are "not fully seen" under the projection π . To make all facets of fragments of Q^{\equiv} visible, we look at them as though "from the front and slightly from below", i.e., by using the projection $\pi^{\epsilon} : \mathbb{R}^d \to \mathbb{R}^{d-1}$ defined by

$$x = (x(1), \dots, x(d)) \mapsto (x(1) - \epsilon x(d), x(2), \dots, x(d-1)) =: \pi^{\epsilon}(x)$$
(4.1)

for a sufficiently small $\epsilon > 0$. (Compare π^{ϵ} with π .)

This projection makes slanting front and rear sides of objects in Q^{\equiv} . More precisely, for a closed set U of points in Z = Z(n, d), let $U^{\epsilon, \text{fr}}(U^{\epsilon, \text{rear}})$ be the subset of U formed by the points $x \in (\pi^{\epsilon})^{-1}(x') \cap U$ with x(d) minimum (resp. maximum) for all $x' \in \pi^{\epsilon}(U)$. We call it the ϵ -front (resp. ϵ -rear) side of U.

Obviously, $Z^{\epsilon, \text{fr}} = Z^{\text{fr}}$ and $Z^{\epsilon, \text{rear}} = Z^{\text{rear}}$, and similarly for any cube C = (X|T) in *Z*. As to fragments of *C*, their ϵ -front and ϵ -rear sides are viewed as follows:

(4.2) for $h = 1, \ldots, d$, $C_h^{\epsilon, \text{fr}} = C_h^{\text{fr}} \cup S_{h-1}(C)$ and $C_h^{\epsilon, \text{rear}} = C_h^{\text{rear}} \cup S_h(C)$.

So $C_h^{\epsilon, \operatorname{fr}} \cup C_h^{\epsilon, \operatorname{rear}}$ is just the boundary of C_h^{\equiv} .

Next we explain the notion of weak membranes. They represent certain (d-1)-dimensional subcomplexes of the fragmentation Q^{\equiv} of Q and use the projection π^{ϵ} (in contrast to strong membranes which deal with Q and π).

To introduce them, we slightly modify cyclic zonotopes in \mathbb{R}^{d-1} . Specifically, given a cyclic configuration $\Xi = (\xi_1, \dots, \xi_n)$ as in (1.1), define $\psi_i^{\epsilon} := \pi^{\epsilon}(\xi_i)$, $i = 1, \dots, n$. When ϵ is small enough, $\Psi^{\epsilon} = (\psi_1^{\epsilon}, \dots, \psi_n^{\epsilon})$ obeys the condition (1.1)(b), though slightly violates (1.1)(a). Yet we keep the term "cyclic configuration" for Ψ^{ϵ} as well, and consider the zonotope in \mathbb{R}^{d-1} generated by Ψ^{ϵ} , denoted as $Z^{\epsilon}(n, d-1)$. **Definition 4.1.** A *weak membrane*, or, briefly, a *w*-membrane, of a cubillage Q in Z(n,d) is a subcomplex M of the fragmentation Q^{\equiv} such that M (regarded as a subset of \mathbb{R}^d) is bijectively projected by π^{ϵ} to $Z^{\epsilon}(n, d-1)$.

A w-membrane M uses facets of fragments in Q^{\equiv} which are of two sorts, namely, "horizontal" and "vertical" ones as mentioned above. The set $\mathcal{M}^w(Q)$ of w-membranes of Q is rich and forms a distributive lattice. To see this, for fragments $\Delta = C_i^{\equiv}$ and $\Delta' = (C')_j^{\equiv}$ of Q^{\equiv} , let us say that Δ *immediately precedes* Δ' if the ϵ -rear side of Δ and the ϵ -front side of Δ' share a facet. In other words, either $C \neq C'$ and $\Delta^{\text{rear}} \cap (\Delta')^{\text{fr}}$ is a vertical facet, or C = C' and j = i + 1. A nice property of this relation is that the directed graph whose vertices are the fragments in Q^{\equiv} and whose edges are the pairs (Δ, Δ') of fragments such that Δ immediately precedes Δ' is acyclic (see [4, 3]).

It follows that the transitive closure of this relation forms a partial order on the fragments of Q^{\equiv} ; denote it as (Q^{\equiv}, \prec) . To see that it is a lattice, associate with each wmembrane M the set $Q^{\equiv}(M)$ of fragments in Q^{\equiv} lying in the region of Z(n,d) between Z^{fr} and M. One easily shows that for fragments Δ, Δ' of Q^{\equiv} , if Δ immediately precedes Δ' and if $\Delta' \in Q^{\equiv}(M)$, then $\Delta \in Q^{\equiv}(M)$ as well. This implies a similar property for fragments Δ, Δ' with $\Delta \prec \Delta'$. So $Q^{\equiv}(M)$ is an ideal of (Q^{\equiv}, \prec) . A converse property is true as well. Thus,

(4.3) *M*^w(*Q*) is a distributive lattice in which for *M*, *M'* ∈ *M*^w(*Q*), the w-membranes *M* ∧ *M'* and *M* ∨ *M'* satisfy *Q*[≡](*M* ∧ *M'*) = *Q*[≡](*M*) ∩ *Q*[≡](*M'*) and *Q*[≡](*M* ∨ *M'*) = *Q*[≡](*M*) ∪ *Q*[≡](*M'*); the minimal and maximal elements of this lattice are the s-membranes *Z*^{fr} and *Z*^{rear}, respectively.

Next, if $M \in \mathcal{M}^{w}(Q)$ is different from Z^{fr} , then $Q^{\equiv}(M) \neq \emptyset$. Take a maximal (w.r.t. \prec) fragment Δ in $Q^{\equiv}(M)$. Then $\Delta^{\epsilon,\text{rear}}$ is entirely contained in M and the set $Q^{\equiv}(M) - \{\Delta\}$ is again an ideal of (Q^{\equiv}, \prec) ; so it is expressed as $Q^{\equiv}(M')$ for a w-membrane M'. Moreover, M' is obtained from M by replacing the disk $\Delta^{\epsilon,\text{rear}}$ by $\Delta^{\epsilon,\text{fr}}$. We call the transformation $M \mapsto M'$ the *lowering flip* in M using Δ , and call the reverse transformation $M' \mapsto M$ the *raising flip* in M' using Δ . As a result, we obtain that

(4.4) for any $M \in \mathcal{M}^{w}(Q)$, there exists a sequence of w-membranes $M_0, M_1, \ldots, M_k \in \mathcal{M}^{w}(Q)$ such that $M_0 = Z^{\text{fr}}, M_k = M$, and for $i = 1, \ldots, k, M_i$ is obtained from M_{i-1} by the raising flip using some fragment in Q^{\equiv} .

4.2 Weakly *r*-separated collections via w-membranes.

Based on Theorem 1.4 (see [4, Section 5] for the proof), we establish the following

Theorem 4.2. Let r be odd and d = r + 2. For each w-membrane M of a cubillage Q in Z = Z(n, d), its spectrum V(M) has size $w_{n,r}$ and constitutes a maximal by size weakly r-separated collection in $2^{[n]}$.

Proof. For $M \in \mathcal{M}^{w}(Q)$, consider a sequence $Z^{\text{fr}} = M_0, M_1, \ldots, M_k = M$ as in (4.4). Let M_i (i > 0) be obtained from M_{i-1} by the raising flip using a fragment Δ_i of Q^{\equiv} . Since $V(Z^{\text{fr}})$ is strongly r-separated and $V(Z^{\text{fr}}) = s_{n,r} = w_{n,r}$ (see (2.2)), it suffices to show that if $V(M_{i-1})$ has size $w_{n,r}$ and is weakly *r*-separated, then so is $V(M_i)$.

To show this, let $\Delta := \Delta_i = C_h^{\pm}$ for a cube C = (X | T = (p(1) < ... < p(d)))and $h \in [d]$. Then $V(C^{\text{fr}}) = V(C^{\text{rim}}) \cup \{t_C\}$ and $V(C^{\text{rear}}) = V(C^{\text{rim}}) \cup \{h_C\}$, where $t_C = Xp(2)p(4) \dots p(d-1)$ and $h_C = Xp(1)p(3) \dots p(d)$ (see (2.3)). Let *R* be the set of vertices in $C^{\text{rim}} \cap \Delta$, and let r' := (d-1)/2. Then r' is an integer, t_C lies in the section $S_{r'}(C)$, and h_C lies in $S_{r'+1}(C)$. Three cases are possible.

Case 1: $h \le r'$. Since the vertices of Δ are formed by the sections $S_{h-1}(C)$ and $S_h(C)$,

$$V(\Delta) = (X \mid {T \choose h-1}) \cup (X \mid {T \choose h})$$
 and $R \subseteq V(\Delta^{\text{fr}}) \cup V(\Delta^{\text{rear}}).$

Also $V(\Delta^{\text{fr}}) \subseteq V(\Delta^{\epsilon,\text{fr}})$ and $V(\Delta^{\text{rear}}) \subseteq V(\Delta^{\epsilon,\text{rear}})$. When h < r', all vertices of Δ belong to C^{rim} , implying $V(\Delta^{\epsilon,\text{fr}}) = R = V(\Delta^{\epsilon,\text{rear}})$. And when h = r', the only vertex of Δ not in R is t_C . Since $t_C \in V(C^{\text{fr}})$, t_C belongs to $\Delta^{\epsilon,\text{fr}}$. But t_C also lies in the upper facet $S_{r'}(C)$, and this facet is included in $\Delta^{\epsilon,\text{rear}}$. Hence $t_C \in \Delta^{\epsilon,\text{fr}} \cap \Delta^{\epsilon,\text{rear}}$, implying $V(\Delta^{\epsilon,\text{fr}}) = V(\Delta^{\epsilon,\text{rear}})$.

Case 2: $h \ge r' + 2$. This is "symmetric" to the previous case.

Thus, in both cases the raising flip $M \mapsto M'$ using Δ gives V(M) = V(M'). *Case 3*: h = r' + 1. This case is most important. Here the lower facet $S_{h-1=r'}(C)$ of Δ contains t_C , and the upper facet $S_{h=r'+1}(C)$ contains h_C . Hence $t_C \in V(\Delta^{\epsilon, \text{fr}})$ and $h_C \in V(\Delta^{\epsilon, \text{rear}})$. On the other hand, neither t_C belongs to $\Delta^{\epsilon, \text{rear}} (= \Delta^{\text{rear}} \cup S_{r'+1}(C))$, nor h_C belongs to $\Delta^{\epsilon, \text{fr}} (= \Delta^{\text{fr}} \cup S_{r'}(C))$.

It follows that $V(\Delta^{\epsilon,\text{rear}}) = (V(\Delta^{\epsilon,\text{fr}}) - \{t_C\}) \cup \{h_C\}$. Hence the raising flip $M \mapsto M'$ using Δ replaces t_C by h_C , while preserving the other vertices of the w-membrane. Also the vertices of Δ different from t_C, h_C form just the collection of sets XS such that Sruns over $\mathcal{N}^{\downarrow}(\tilde{P}, \tilde{Q})$, the set of lower neighbors of $\tilde{P} := p(2)p(4) \dots p(d-1)$ and $\tilde{Q} :=$ $p(1)p(3) \dots p(d)$. Now applying Theorem 1.4 to $\mathcal{W} := V(M), X, \tilde{P}, \tilde{Q}$, we conclude that V(M') is weakly *r*-separated, as required.

Note that the case r = 1 of Theorem 4.2 is obtained in [2, Corollary 6.5].

A natural question is whether any two size-maximal weakly separated collections in $2^{[n]}$ can be connected by a sequence of flips. This is strengthened in the following conjecture (which was proved for r = 1 in [2, Theorem 7.1]):

Conjecture 4.3. for *r* odd, any size-maximal weakly *r*-separated collection in $2^{[n]}$ is representable as the spectrum of a weak membrane of some cubillage Q in Z(n, r + 2).

5 Triangulations, hyper-combies, and cubillages

Consider the polytope P = P(n, d - 1) that is the section of the zonotope Z(n, d) by the hyperplane $H_1 = \{x \in \mathbb{R}^d : x(1) = 1\}$, called the *cyclic polytope* with *n* vertices of dimension d - 1. Let $\mathcal{T}(P)$ be the set of *triangulations* of *P* that are subdivisions of *P* into (d - 1)-dimensional simplexes whose vertices are vertices of *P* (i.e., occur in Ξ as in (1.1)). It has been known (see [8] for details) that

(5.1) for any $\tau \in \mathcal{T}(P(n, d - 1))$, there exists a cubillage Q in Z(n, d) whose section by H_1 (formed by the simplexes $C \cap H_1$ for cubes C with the root \emptyset in Q) is τ .

To define more general objects, consider the projection π^{ϵ} and the modified zonotope $Z^{\epsilon}(n, d-1)$ as in Section 4. Let $\mathcal{F}(n, d)$ be the set of facets in fragments C_{h}^{\equiv} of all (abstract) cubes C = (X | T) in Z(n, d) (running $X, T \subset [n]$ with |T| = d and $X \cap T = \emptyset$).

Definition 5.1. A *hyper-combi K* is a subdivision of $Z^{\epsilon}(n, d - 1)$ into (d - 1)-dimensional polytopes of the form $\pi^{\epsilon}(F)$, where $F \in \mathcal{F}(n, d)$.

In particular, any w-membrane *M* of a cubillage in *Z*(*n*,*d*) generates the hyper-combi $\pi^{\epsilon}(M)$. An important special case arises when *M* is a *principal* w-membrane in level $\ell \in [1, n-1]$. This means that *M* is the section by $H_{\ell} = \{x \in \mathbb{R}^d : x(1) = \ell\}$ of some cubillage in Z = Z(n, d) to which the boundary parts

$$Z_{\ell\uparrow}^{\text{fr}} := Z^{\text{fr}} \cap \{ x \in \mathbb{R}^d : x(1) \ge \ell \} \text{ and } Z_{\ell\downarrow}^{\text{rear}} := Z^{\text{rear}} \cap \{ x \in \mathbb{R}^d : x(1) \le \ell \}$$

are added, where Z^{fr} and Z^{rear} are the (properly fragmented) front and rear sides of *Z*. Then the essential ("horizontal") part of a principal w-membrane in level 1 is just a triangulation in $\mathcal{T}(P(n, d-1))$ (while for an arbitrary ℓ it is known as "hypersimplicial subdivision" of the corresponding section of the zonotope, see [8]).

Conjecture 5.2. For any hyper-combi K in $Z^{\epsilon}(n, d-1)$ with d odd, there exists a cubillage Q in Z(n, d) and a w-membrane M in (the fragmentation) of Q such that $\pi^{\epsilon}(M) = K$.

The validity of Conjecture 5.2 for d = 3 is proved in [2, Section 7] (where the desired Q and M are explicitly constructed for an arbitrary (properly triangulated) combi K in $Z^{\epsilon}(n, 2)$); also we are able to prove this for d = 5.

Next, Oppermann and Thomas [9] revealed a nice property of triangulations of a cyclic polytope P = P(n, 2r) having an even dimension 2r = d - 1. More precisely, identify each *r*-dimensional face in a triangulation of τ (regarded as a complex) with the corresponding increasing (r + 1)-tuple in [n]. Let $e(\tau)$ denote the set of sparse *r*-faces in τ , where a face (tuple) is called *sparse* if it has no pair i, i + 1. For increasing tuples $A = (a_0, \ldots, a_r)$ and $B = (b_0, \ldots, b_r)$, one says that *A* intertwines *B* if $a_0 < b_0 < a_1 < b_1 < \cdots < a_r < b_r$, and a collection \mathcal{A} of (r + 1)-tuples is called *non-intertwining* if no two tuples in \mathcal{A} intertwine. In other words, \mathcal{A} is weakly (2r - 1 = d - 2)-separated (since all elements of \mathcal{A} have the same size). By [9, Theorems 2.4 and 2.5],

(5.2) (a) For P = P(n, 2r) and $\tau \in \mathcal{T}(P)$, the collection $e(\tau)$ has cardinality $\binom{n-r-1}{r}$ and is non-intertwining. (b) Conversely, any non-intertwining collection \mathcal{A} of $\binom{n-r-1}{r}$ sparse (r+1)-tuples in [n] represents $e(\tau)$ for a unique $\tau \in \mathcal{T}(P)$.

We can use this as follows. Consider \mathcal{A} and τ as in (5.2)(b). By (5.1), there exists a cubillage Q in Z = Z(n, d) such that τ is the section of Q by H_1 . Then each element $A \in \mathcal{A} = e(\tau)$ labels a vertex of Q contained in level r. This vertex is not in Z^{fr} , which follows from (2.1) and the fact that A is sparse. Let M be the principal w-membrane for Q in level r. Then $|V(Z_{r\uparrow}^{\text{fr}})| + |\mathcal{A}| + |V(Z_{(r-1)\downarrow}^{\text{rear}})| \leq |V(M)| = w_{n,d-2}$ (in view of Theorem 4.2). Moreover, the inequality here holds with equality (which is seen by directly counting the first and third summands and using $|\mathcal{A}| = \binom{n-r-1}{r}$).

As a consequence, (5.1) implies a weakened version of Conjecture 4.3: for *d* odd, any size-maximal collection of weakly (d - 2)-separated subsets $A \subset [n]$ with |A| = (d-1)/2 is contained in the spectrum of a w-membrane of some cubillage in Z(n, d).

References

- V. Danilov, A. Karzanov, and G. Koshevoy. "Combined tilings and the purity phenomenon on separated set-systems". *Selecta Math. New Ser.* 23.2 (2017), pp. 1175–1203. Link.
- [2] V. Danilov, A. Karzanov, and G. Koshevoy. "On interrelations between strongly, weakly and chord separated set-systems". 2018. arXiv:1805.09595.
- [3] V. Danilov, A. Karzanov, and G. Koshevoy. "Cubillages of cyclic zonotopes". *Russian Math. Surveys* **74 (6)** (2019), pp. 1013–1074.
- [4] V. Danilov, A. Karzanov, and G. Koshevoy. "The weak separation in higher dimensions". 2019. arXiv:1904.09798v3.
- [5] P. Galashin. "Plabic graphs and zonotopal tilings". *Proc. London Math. Soc.* **117 (4)** (2018), pp. 661–681. Link.
- [6] P. Galashin and A. Postnikov. "Purity and separation for oriented matroids". Preprint. 2017. arXiv:1708.01329.
- [7] B. Leclerc and A. Zelevinsky. "Quasicommuting families of quantum Plücker coordinates". *Amer. Math. Soc. Trans. Ser.* 2 181 (1998), pp. 85–108. Link.
- [8] J. Olarte and F. Santos. "Hypersimplicial subdivisions". 2019. arXiv:1906.05764.
- [9] A. Oppermann and H. Thomas. "Triangulations of cyclic polytopes". DMTCS proceedings (FPSAC 2012, Nagoya) AR (2012), pp. 619–630.