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Cubillages in odd dimensions
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Abstract. In this abstract we discuss novel results on fine zonotopal tilings (called
“cubillages” for short) in odd-dimensional cyclic zonotopes and their relations to gen-
eralized weakly separated set-systems, triangulations of cyclic polytopes, and others.
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1 Introduction

For positive integers n > d, by a cyclic configuration of size n in R? we mean an ordered
set Z of n vectors & = (&(1),...,&(d)) € RY,i=1,...,n, satisfying:

(1.1) (a) ¢;(1) =1 for each i; (b) any flag minor of the d x n matrix formed by ¢y, ...,
as columns (in this order) is positive; and (c) all 0,1-combinations of these vectors
are different.

(A typical sample of such configurations & is generated by Veronese curve: take reals
t] <ty <--- <ty and assign &; := ¢(t;), where ¢(t) = (1,¢, tz,...,td_l).)

We deal with fine zonotopal tilings related to E. Recall that the (cyclic) zonotope
Z = Z(E) generated by Z is the Minkowski sum of line segments [0,&;], i = 1,...,n.
Then a fine zonotopal tiling is (the polyhedral complex determined by) a subdivision
Q of Z into d-dimensional parallelotopes such that: any two intersecting ones share
a common face, and each face of the boundary of Z is entirely contained in some of
these parallelotopes. For brevity, we refer to these parallelotopes as cubes, and to Q as a
cubillage. Note that the choice of one or another cyclic configuration E (subject to (1.1))
is not important to us in essence, and we will write Z(n,d) rather than Z(E), referring
to it as the cyclic zonotope with parameters (n,d).

Let [n] denote the set {1,2,...,n}. Any point v in Z(n,d) occurring as a vertex of
a cubillage Q is viewed as ) ;cx {; for some subset X C [n] and we identify such v
and X. So the set V(Q) of vertices of Q is identified with the corresponding collection
(set-system) in 20", that we call the spectrum of Q. It is known that
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(1.2) the size (cardinality) of V(Q) is equal to () (= (3) + (;"4) +--- + (§))-

The above correspondence possesses a number of nice properties. One of them in-
volves so-called strongly separated sets and set-systems. We need some definitions.

For X,Y C [n], we write X < Y if the maximal element max(X) of X is smaller than
the minimal element min(Y) of Y, letting max(®) := 0 and min(®) := n + 1. An interval
of [n] is a subset of the form {a,a+1,...,b}, denoted as [g, ].

Definition 1.1. For r € Z>, sets A, B C [n] are called strongly r-separated if there is no
sequence i1 < ip < --- < ir4p of elements of [n] such that those with odd indices (namely,
i1,13,...) belong to one of A — B or B — A, while those with even indices (i3, i, . . .) belong
to the other (where A’ — B’ denotes the set difference {i: i € A’, i ¢ B'}). Accordingly,
a set-system S C 21| is called r-separated if any two members of S are such.

In particular, A,B are strongly 1-separated if max(A — B) < min(B — A) or
max(B — A) < min(A — B). This notion was introduced and studied, under the name
of “strong separation”, by Leclerc and Zelevinsky [7]. The case r = 2 was studied by
Galashin [5]. Extending results in [7, 5] concerning the strong 1- and 2-separation to a
general 7, Galashin and Postnikov [6] showed that

(1.3) The maximal size s,,, of a strongly r-separated collection in 2["! is equal to (_ )i
moreover (see (1.2)), for any cubillage Q on Z(n,d), its spectrum V(Q) constitutes
a maximal by size strongly (d — 1)-separated collection in 2["], and conversely,
for any size-maximal strongly(d — 1)-separated collection S C 2[], there exists a

cubillage Q on Z(n,d) with V(Q) = S.

(As a more general version of strong r-separation, [6] considers the notion of M-
separation in oriented matroids, but this is not needed to us in this paper.)

Another sort of set separation introduced by Leclerc and Zelevinsky is known under
the name of weak separation (which appeared in [7] in connection with the problem of
characterizing quasi-commuting flag minors of a quantum matrix). We generalize that
notion to “higher odd dimensions” in the following way. When A, B C [n] are such that
min(A — B) < min(B — A) and max(A — B) > max(B — A), we say that A surrounds B.
When A, B are strongly r-separated but not strongly (r — 1)-separated, they are called
(r + 1)-intertwined. In other words, there are intervals I; < I < --- < I, in [n] with
' =r+1,butnotr =r, suchthatoneof [ ULU... and L UI;U... includes A — B,
and the other B — A; we say that (I3, ..., I,/) is an interval cortege for A, B. For example,
A = {1,2,5,6,7,10,11} and B = {1,3,4,6,9,11} are 5-intertwined (with an interval
cortege ({2},1[3,4],15,7],{9},{10})) and A surrounds B.

Definition 1.2. Let r be odd. Sets A, B C [n] are called weakly r-separated if they are either
strongly r-separated, or they are r 4- 2-intertwined, and in the latter case, if A surrounds
B then |A| < |B|, while if B surrounds A then |B| < |A|. Accordingly, a set-system
W C 21" is called weakly r-separated if any two members of W are such.



Cubillages in odd dimensions 3

In case r = 1, this turns into the weak separation of [7].

Using a machinery of cubillages in cyclic zonotopes of odd dimensions, we gen-
eralize, to an arbitrary odd r > 1, two well-known results on weakly separated col-
lections obtained in [7] and develop a method of constructing a representable class of
size-maximal weakly r-separated set-systems. One of those results [7] says that

(1.4) the maximal sizes of strongly and weakly separated collections in 2["] are the same
(and equal to in(n+1)+1=(3) + ({) + (}))

Let w,,, denote the maximal possible size of a weakly r-separated collection in 20",
We generalize (1.4) as follows.

Theorem 1.3. Let r be odd. Then wy, = sy,

(Note that for even r > 0, at present we see no way of defining the notion of weak
r-separation ensuring that the maximal size of such collections in 2["*1] does not exceed
Sur. So the odd and even cases behave differently. Note also that for an odd r > 3, a
maximal by inclusion weakly r-separated collection need not be maximal by size.)

Another impressive result in [7] says that a weakly separated collection can be trans-
formed into another one by making a flip (a sort of mutation) “in the presence of four
witnesses”. This relies on the following property ([7, Theorem 7.1]):

(1.5) Let W C 2["] be weakly separated, and suppose that there are elements i < j < k of
[n] and a set X C [n] — {i, ], k} such that W contains four sets (“witnesses”) Xi, Xk,
Xij, Xjk and a set U € {Xj, Xik}; then the collection obtained from )V by replacing
U by the other member of {Xj, Xik} is again weakly separated.

Hereinafter for disjoint sets A and {a,...,b}, we write Aa...b for AU{a,...,b}. Also
for a € A, we abbreviate A — {a} as A — a. We generalize (1.5) as follows.

Theorem 1.4. Foran odd r, let ' := (r +1)/2. Let P = {p1,...,pr} and Q = {qo,...,q,}
consist of elements of [n] such that g0 < p1 < g1 < p2 < ... < pp < qp, and let X C
[n] — (P U Q). Define the sets of “upper” and “lower” neighbors (or “witnesses”) of P, Q to be

NT(P,Q) == {Pg: g€ QIU{(P—p)g:peP,qeQ}; and (1.6)
NP, Q) == {Q-9:9€Q}U{(Q—q)p: pE P, q€Q}. (1.7)

Suppose that a weakly r-separated collection VW C 2["] contains the set X U P (resp. X U Q) and
the sets X US forall S € N*(P,Q) (resp. S € NT(P,Q)). Then the collection obtained from
W by replacing X U P by X U Q (resp. X U Q by X U P) is weakly r-separated as well.

The above theorems give rise to an important construction. More precisely, for a
cubillage Q in Z(n,d), we introduce a natural fragmentation Q= of Q, by cutting each
“cube” C of Q by the “horizontal” hyperplanes through the vertices of C, and define
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a class of (d — 1)-dimensional subcomplexes M of Q=, called weak membranes. These
membranes form a distributive lattice. Based on Theorem 1.4, we show thatif r :=d — 2
is odd, then the vertex set of M has size exactly w,, and constitutes a weakly r-separated
collection in 2/". This gives a plenty of size-maximal weakly r-separated collections
associated with Q, and any two collections among these are linked by a sequence of
(lowering or raising) “elementary” flips.

In this abstract, Section 2 contains additional definitions and reviews some basic
facts. Section 3 outlines a proof of Theorem 1.3. The construction of max-size weakly
r-separated collections via weak membranes in cubillages is described in Section 4. The
concluding Section 5 discusses issues related to the problem of extending a triangulation
in a cyclic polytope to a cubillage and raises some conjectures.

The abstract is based on abridged versions of parts of [4] and [2], and some results
are also reflected in the survey [3].

2 Preliminaries

This section contains additional definitions, notation and conventions. Also we review
some known properties of cubillages. For details, see [4, 3].
e Let 7t denote the projection RY — R%~! given by (x(1),...,x(d)) — (x(1),...,x(d —
1)). Due to (1.1)(b), the vectors 71(&1), ..., (&n) form a cyclic configuration as well, and
we may say that 7t projects Z(n,d) to the zonotope Z(n,d —1).
e The 0-, 1-, and (d — 1)-dimensional faces of a cubillage Q in Z(n,d) are called vertices,
edges, and facets, respectively. While each vertex is identified with a subset of [n], each
edge e is a parallel translation of some segment [0, {;]; we say that e has color i.
e When a cell (face) C of Q has the lowest point X C [n] and when T C [n] is the set of
colors of edges in C, we say that C has the root X and type T, and may write C = (X | T).
One easily shows that XN T = @.
e For a closed subset U of points in Z = Z(n,d), let U (') be the subset of U “seen”
in the direction of the last, d-th, coordinate vector e; (resp. —e ), i.e., formed by the
points x € 77~ 1(x') N U with x(d) minimum (resp. maximum) for all x’ € 7(U). It is
called the front (resp. rear) side of U.

In particular, Zf and Z™" denote the front and rear sides, respectively, of the zono-
tope Z. We call Z"™ := Zfr 0 Z™ the rim of Z.
e When a set X C [n] is the union of k intervals and k is as small as possible, we
say that X is a k-interval. Then its complementary set [n] — X is a k’-interval with k’ €
{k—1,k,k+1}. We will use the following known characterization of the sets of vertices
in the front and rear sides of a zonotope of an odd dimension.

(2.1) Let d be odd. Then for Z = Z(n,d),
i v(z fr) is formed by all k-intervals of [n] with k < (d —1)/2; and
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(ii) V(Z™) is formed by the subsets of [1] complementary to those in V(Z); so
it consists of all k-intervals with k < (d —1)/2, all (d — 1) /2-intervals containing at
least one of the elements 1 and # and all (d + 1) /2-intervals with both 1 and n.

This implies that the set of inner vertices in Z, i.e., V(Z) — V(Z™™), consists of the
(d — 1) /2-intervals containing none of 1 and 1, whereas V(Z) — V(Z"™) consists of
the (d + 1) /2-intervals containing both 1 and n.

The rest of this section describes an important class of subcomplexes in a cubillage Q
and associate with Q a certain path structure (used in the next section).

Definition 2.1. Let Q be a cubillage in Z(n,d). A strong membrane, or, briefly, an s-
membrane, in Q is a subcomplex M of Q such that M (regarded as a subset of R?) is
bijectively projected by 7 onto Z(n,d —1).

Then each facet of Q occurring in M is projected to a cube of dimension d — 1 in
Z(n,d — 1) and these cubes constitute a cubillage in Z(n,d — 1), denoted as 7t(M). In
view of (1.3) and (1.2) (applied to 7(Q)),

(2.2) all s-membranes M in a cubillage Q in Z(n,d) have s, ;_, vertices, and the vertex
set of M (regarded as a collection in 2["]) is strongly (d — 2)-separated.

Two s-membranes are of a particular interest. These are the front side Z T and the rear
side Z™ of Z = Z(n,d). Following terminology in [2, 3], their projections 7r(Z ") and
71(Z"") are called the standard and anti-standard cubillages in Z(n,d — 1), respectively.

Next we distinguish certain vertices in cubes. When n = d, the zonotope turns into
the cube C = (Q|[d]), and there holds:

(2.3) the front side C (rear side C™) of C = (@|[d]) has a unique inner vertex, namely,
tc:={i € [n]: d—iodd} (resp. hc := {i € [n]: d —i even}.

When 7 is arbitrary and Q is a cubillage in Z = Z(n,d), we distinguish vertices tc
and h¢c of a cube C(X |T) with T = (p; < ... < py) in Q in a similar way; namely,

(24) tc=XU{pi:d—iodd}and hc = XU{p;: d —ieven}.

Note that for each vertex v of Q, unless v is in Z™, there is a unique cube C € Q
such that tc = v, and symmetrically, unless v is in Z, there is a unique cube C € Q
such that hc = v (to see this, consider the line going through v and parallel to e;).

Therefore, by drawing for each cube C € Q, the edge-arrow from f¢ to hc, we obtain
a directed graph whose connected components are directed paths going from Z fr — Zrim
to Z ™ — 7™M We call these paths bead-threads in Q. It is convenient to add to this graph
the elements of V(Z™™) as isolated vertices, forming degenerate bead-threads, each going
from a vertex to itself. Let By be the resulting directed graph. Then
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(2.5) Bp contains all vertices of Q, and each component of By is a bead-thread goin
Q p Q gomng
from Zfr to Zrear,

Note that the heights | X| of vertices X along a bead-thread are monotone increasing
when d is odd (whereas they are constant when d is even).

3 Proof of Theorem 1.3

Let r be odd and n > r. We have to show that

(3.1) if W is a weakly r-separated collection in 21"}, then |[W| < ( <)

This is valid when r = 1 (see (1.4)) and is trivial when n = r + 1. So one may assume
that 3 < r < n —2. We prove (3.1) by induction, assuming that the corresponding
inequality holds for W, n',7 when n’ < n, ¥ < r, and (#,7") # (n,r). Define the
following subcollections in W:

W— = {ACn—-1]: {AAn}NW # @}, and
T = {AC[n—1]: {A An} C W},

One easily shows that W~ is weakly r-separated. Then by induction, [W~| < (7] +11)

Also |W| = |[W~| 4 |T|. Therefore, in view of the identity (7) = (”]71) + (?:11) for any
j < n —1, it suffices to show that
71 < (). (62

Fori=0,1,...n—1,define T':= {A € T : |A| = i}. We rely on two claims.
Claim 1 For each i, the collection T is strongly (r — 1)-separated; moreover, T" is weakly

(r — 2)-separated.

Proof. Let A,B € 7. Take an interval cortege (I,...,I) for A, B, and we may assume
that I, N (A — B) # @. Then (L,..., L+, 1,1 := {n}) is an interval cortege for A and
B’ := Bn. Since |A| < |B’| and max(A — B') < max(B’ — A) = n, and since A, B’
are weakly r-separated, ¥ +1 < r+2. Then ' < r, implying that A, B are (r — 1)-
separated. Since |A| = |B| and r is odd, we also can conclude that A, B are weakly
(r — 2)-separated. O

Now consider the zonotope Z = Z(n —1,r). For j =0,1,...,n — 1, define Si (Aj‘) to
be the set of vertices X of ZfT (resp. Z ™) with | X| = j. We extend each collection 7" to

D =T'U(S T u...us"HuAuAdlu...uAd. (3.3)

Claim 2 D' is weakly (r — 2)-separated.
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Proof. The vertex sets of Z and 77(Z ) are essentially the same (regarding a vertex as
a subset of [ — 1]), and similarly for Z™ and 7r(Z ). Since 71(Z) and 7r(Z ) are
cubillages on Z(n — 1,7 — 1) (the so-called “standard” and “anti-standard” ones), (1.3)
implies that both collections V(Zf) = SOU...uS8" ! and V(Zr) = A%y... U A"!
are (r — 2)-separated, and therefore, they are weakly (r — 2)-separated as well.

Next, by (2.1)(i), each vertex X of ZT is a k-interval with k < (r —1) /2. Such an X and
any subset Y C [n — 1] are k’-intertwined with k¥’ < 2k + 1. Then k' < r and this holds
with equality when X and Y are r-intertwined and Y surrounds X. It follows that X is
weakly (7 — 2)-separated from any Y C [n — 1] with |Y| < |X| (in particular, if X € S/
and j > i, then X is weakly (r — 2)-separated from each member of 7' U A°U...U A1),

Symmetrically, by (2.1)(ii), each vertex X of Z™" is the complement to [n — 1] of a k-
interval with k < (r — 1) /2. We can conclude that such an X is weakly (r — 2)-separated
from any Y C [n — 1] with |Y] > |X].

Now the result is provided by the inequalities |X| > |A| > |X'| for any A € T,
XeSTu...u8"and X' € A2U...uAL O

By induction, |D'| < ( S”r__ll) Then, using (2.2) (for n — 1 and r — 2), we have

D < (27 = su_1p2 = [V(Z)]. (3.4)

<r—1

Let S':=S'UStU...uS and A’ := A2UA'U...UA"L Since S"TU...US" 1 =
V(Z) — &', we obtain from (3.3) and (3.4) that

T =D = (IV(Z7) = ') = | A < |S'] = | AL, (3.5)

We now finish the proof by using a bead-thread technique (see Section 2). Fix an
arbitrary cubillage Q in Z = Z(n —1,7). Let R’ be the set of vertices X of Q with
|X| = i, and let B be the set of paths in the graph B beginning at Z and ending at
Z™ Since r is odd, each edge (X,Y) of By is “ascending” (satisfies |Y| > |X|). This
implies that each path P € P beginning at S’ must meet either R’ or .A’, and conversely,
each path meeting R’ U A’ begins at S’. This and (3.5) imply | 77| < |R!|. Summing up
these inequalities for i = 0,1,...,n — 1, we have

71 =Y 1T < AR = Vol = w11 = ('),

yielding (3.2) and completing the proof of Theorem 1.3.

4 Weakly r-separated collections generated by cubillages

We have seen an interrelation between strongly *-separated collections on the one hand,
and cubillages and s-membranes on the other hand (see (1.3) and (2.2)). This section is
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devoted to geometric aspects of the weak r-separation when r is odd. Being motivated
by geometric constructions for maximal weakly 1-separated collections elaborated in [1,
2], we explain how to construct maximal by size weakly r-separated collections by use
of weak membranes, which are analogs of s-membranes in fragmentations of cubillages.

4.1 Fragmentation and weak membranes.

Let Q be a cubillage in Z(n,d). The fragmentation of Q is the complex Q= obtained by
cutting Q by the “horizontal” hyperplanes H; := {x ¢ R : x(1) =/(}, {=1,...,n—1.

Such hyperplanes subdivide each cube C = (X |T) of Q into pieces CT,...,C5,
where C;” is the portion of C between H x|, ,_1 and H|x|,, called a fragment of C (and
of Q). Let 5,(C) denote h-th horizontal section C N Hx|, of C; this is the convex hull
of the set of vertices (X | (Z)) ={XUA: A CT, |A| = h} (forming a hyper-simplex
and turning into a simplex when i = 1 or d — 1). We call S, _1(C) and Sj,(C) the lower
and upper (horizontal) facets of the fragment C;-, respectively. (Here So(C) and S;(C)
degenerate to the single points X and X U T, respectively.) The other facets of C;- are
conditionally called vertical ones.

Note that the horizontal facets are “not fully seen” under the projection 7r. To make
all facets of fragments of Q= visible, we look at them as though “from the front and
slightly from below”, i.e., by using the projection 7€ : R — R?~! defined by

x=(x(1),...,x(d)) — (x(1) —ex(d),x(2),...,x(d —1)) =: 7°(x) (4.1)

for a sufficiently small € > 0. (Compare 7€ with 7r.)

This projection makes slanting front and rear sides of objects in Q=. More precisely,
for a closed set U of points in Z = Z(n,d), let U™ (U¢"") be the subset of U formed by
the points x € (7€) ~!(x’) N U with x(d) minimum (resp. maximum) for all x’ € 7¢(U).
We call it the e-front (resp. e-rear) side of U.

Obviously, Zéf = Zfr and z¢érar = 7 and similarly for any cube C = (X|T) in
Z. As to fragments of C, their e-front and e-rear sides are viewed as follows:

42) forh=1,...,d, Co% = CfrUS;, 1(C) and CE™ = Crear U 5,,(C).

So C&" U CE™™ is just the boundary of C-.

Next we explain the notion of weak membranes. They represent certain (d — 1)-
dimensional subcomplexes of the fragmentation Q= of Q and use the projection 7€ (in
contrast to strong membranes which deal with Q and ).

To introduce them, we slightly modify cyclic zonotopes in R*~!. Specifically, given
a cyclic configuration & = ({y,...,8,) as in (1.1), define ¢¢ := 7°(¢;), i = 1,...,n.
When e is small enough, ¥¢ = (5, ..., ;) obeys the condition (1.1)(b), though slightly
violates (1.1)(a). Yet we keep the term “cyclic configuration” for ¥¢ as well, and consider
the zonotope in R¥~! generated by ¥¢, denoted as Z¢(n,d — 1).
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Definition 4.1. A weak membrane, or, briefly, a w-membrane, of a cubillage Q in Z(n,d) is
a subcomplex M of the fragmentation Q= such that M (regarded as a subset of RY) is
bijectively projected by 7€ to Z¢(n,d — 1).

A w-membrane M uses facets of fragments in Q= which are of two sorts, namely,
“horizontal” and “vertical” ones as mentioned above. The set MY (Q) of w-membranes
of Q is rich and forms a distributive lattice. To see this, for fragments A = C:- and

A" = (C')7 of Q, let us say that A immediately precedes A" if the e-rear side of A and

the e-front side of A’ share a facet. In other words, either C # C’ and A™ N (A")f is a
vertical facet, or C = C" and j = i + 1. A nice property of this relation is that the directed
graph whose vertices are the fragments in Q= and whose edges are the pairs (A, A’) of
fragments such that A immediately precedes A’ is acyclic (see [4, 3]).

It follows that the transitive closure of this relation forms a partial order on the
fragments of Q= ; denote it as (Q=, <). To see that it is a lattice, associate with each w-
membrane M the set Q=(M) of fragments in Q= lying in the region of Z(n,d) between
Zfr and M. One easily shows that for fragments A, A’ of Q=, if A immediately precedes
A and if A" € Q=(M), then A € Q=(M) as well. This implies a similar property for
fragments A, A’ with A < A’. So Q=(M) is an ideal of (Q=, <). A converse property is
true as well. Thus,

(4.3) MY(Q) is a distributive lattice in which for M, M’ € M"Y (Q), the w-membranes
MAM and MV M satisfy Q=(MAM') = Q=(M)NQ=(M') and Q=(MV M') =
Q=(M) U Q=(M’); the minimal and maximal elements of this lattice are the s-
membranes Z and Z ™, respectively.

Next, if M € MW(Q) is different from Z, then Q=(M) # @. Take a maximal
(w.rt. <) fragment A in Q=(M). Then A®™@" is entirely contained in M and the set
Q=(M) — {A} is again an ideal of (Q=,<); so it is expressed as Q=(M’) for a w-
membrane M’. Moreover, M’ is obtained from M by replacing the disk A by AT,
We call the transformation M +— M’ the lowering flip in M using A, and call the reverse
transformation M’ — M the raising flip in M’ using A. As a result, we obtain that

(4.4) for any M € MY(Q), there exists a sequence of w-membranes My, My, ..., My €
MW(Q) such that My = Z, My = M, and for i = 1,...,k, M; is obtained from
M;_1 by the raising flip using some fragment in Q=.

4.2 Weakly r-separated collections via w-membranes.

Based on Theorem 1.4 (see [4, Section 5] for the proof), we establish the following

Theorem 4.2. Let r be odd and d = r + 2. For each w-membrane M of a cubillage Q in
Z = Z(n,d), its spectrum V(M) has size wy,, and constitutes a maximal by size weakly r-
separated collection in 20",
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Proof. For M € MY (Q), consider a sequence ZT = My, M;,...,My = M as in (4.4). Let
M; (i > 0) be obtained from M;_; by the raising flip using a fragment A; of Q=. Since
V(Z) is strongly r-separated and V(Z) = s,, = w,, (see (2.2)), it suffices to show
that if V(M;_1) has size w,, and is weakly r-separated, then so is V(M;).

To show this, let A := A; = Cj for a cube C = (X[T = (p(1) < ... < p(d)))
and 1 € [d]. Then V(C) = V(C™) U {tc} and V(C™) = V(C"™) U {hc}, where
tc = Xp(2)p(4)...p(d—1) and hec = Xp(1)p(3)...p(d) (see (2.3)). Let R be the set of
vertices in C"™ N A, and let 7' := (d — 1)/2. Then 7’ is an integer, tc lies in the section
S,/(C), and h¢ lies in S,/ 1(C). Three cases are possible.

Case 1: h < r'. Since the vertices of A are formed by the sections S;,_1(C) and S;,(C),

V(a) = (XI()U(X[(]) and RC V(AT UV(A™).

Also V(AT) C V(ASfr) and V(A™) C V(AS™). When h < 7/, all vertices of A belong
to C'™, implying V(A*') = R = V(A®™). And when h = 1/, the only vertex of A
not in R is fc. Since tc € V(C fr), tc belongs to ASfT But tc also lies in the upper
facet S,/(C), and this facet is included in A®™¥. Hence tc € AT N A®™ implying
V(Ae,fr) — V(Ae,rear).

Case 2: h > r' 4 2. This is “symmetric” to the previous case.

Thus, in both cases the raising flip M — M’ using A gives V(M) = V(M').

Case 3: h = ' +1. This case is most important. Here the lower facet S,_1_,(C) of
A contains tc, and the upper facet S;_,.1(C) contains hc. Hence tc € V(A9f) and
hc € V(A9™). On the other hand, neither f¢ belongs to A“™®" (= A™ U S,/,1(C)), nor
hc belongs to AT (= AT US,.(C)).

It follows that V(A9™) = (V(AS!r) — {tc}) U {hc}. Hence the raising flip M +— M’
using A replaces tc by hc, while preserving the other vertices of the w-membrane. Also
the vertices of A different from tc,hc form just the collection of sets XS such that S
runs over N*(P,Q), the set of lower neighbors of P := p(2)p(4)...p(d —1) and Q :=
p(1)p(3)...p(d). Now applying Theorem 1.4 to W := V(M), X, P, Q, we conclude that
V(M') is weakly r-separated, as required. O

Note that the case r = 1 of Theorem 4.2 is obtained in [2, Corollary 6.5].

A natural question is whether any two size-maximal weakly separated collections
in 2["] can be connected by a sequence of flips. This is strengthened in the following
conjecture (which was proved for r = 1 in [2, Theorem 7.1]):

Conjecture 4.3. for r odd, any size-maximal weakly r-separated collection in 2["] is representable
as the spectrum of a weak membrane of some cubillage Q in Z(n,r + 2).
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5 Triangulations, hyper-combies, and cubillages

Consider the polytope P = P(n,d — 1) that is the section of the zonotope Z(n,d) by
the hyperplane H; = {x € R%: x(1) = 1}, called the cyclic polytope with n vertices of
dimension d — 1. Let 7 (P) be the set of triangulations of P that are subdivisions of P
into (d — 1)-dimensional simplexes whose vertices are vertices of P (i.e., occur in E as
in (1.1)). It has been known (see [8] for details) that

(5.1) for any T € T(P(n,d — 1)), there exists a cubillage Q in Z(n,d) whose section by
H; (formed by the simplexes C N H; for cubes C with the root @ in Q) is 7.

To define more general objects, consider the projection 77¢ and the modified zonotope
Z¢(n,d — 1) as in Section 4. Let F(n,d) be the set of facets in fragments C;- of all
(abstract) cubes C = (X | T) in Z(n,d) (running X, T C [n] with |T| =dand XNT = Q).

Definition 5.1. A hyper-combi K is a subdivision of Z¢(n,d — 1) into (d — 1)-dimensional
polytopes of the form 7t¢(F), where F € F(n,d).

In particular, any w-membrane M of a cubillage in Z(n, d) generates the hyper-combi
71¢(M). An important special case arises when M is a principal w-membrane in level
¢ € [1,n —1]. This means that M is the section by H; = {x € R%: x(1) = £} of some
cubillage in Z = Z(n,d) to which the boundary parts

ZE=Z"n{xeR?: x(1) > ¢} and Z;":=Z""N{xeR?: x(1) < (}

are added, where Z and Z™ are the (properly fragmented) front and rear sides of
Z. Then the essential (“horizontal”) part of a principal w-membrane in level 1 is just a
triangulation in 7 (P(n,d — 1)) (while for an arbitrary ¢ it is known as “hypersimplicial
subdivision” of the corresponding section of the zonotope, see [8]).

Conjecture 5.2. For any hyper-combi K in Z¢(n,d — 1) with d odd, there exists a cubillage Q
in Z(n,d) and a w-membrane M in (the fragmentation) of Q such that 7¢(M) = K.

The validity of Conjecture 5.2 for d = 3 is proved in [2, Section 7] (where the desired
Q and M are explicitly constructed for an arbitrary (properly triangulated) combi K in
Z¢(n,2)); also we are able to prove this for d = 5.

Next, Oppermann and Thomas [9] revealed a nice property of triangulations of a
cyclic polytope P = P(n,2r) having an even dimension 2r = d — 1. More precisely,
identify each r-dimensional face in a triangulation of T (regarded as a complex) with the
corresponding increasing (v + 1)-tuple in [n]. Let e(7) denote the set of sparse r-faces
in T, where a face (tuple) is called sparse if it has no pair i,7 + 1. For increasing tuples
A= (ag,...,ar) and B = (by, ..., b,), one says that A intertwines B if ag < by < a; < by <

- < a, < by, and a collection A of (r + 1)-tuples is called non-intertwining if no two
tuples in A intertwine. In other words, A is weakly (2r — 1 = d — 2)-separated (since all
elements of A have the same size). By [9, Theorems 2.4 and 2.5],
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(5.2) (a) For P = P(n,2r) and T € T(P), the collection ¢(7) has cardinality ("~/~') and
is non-intertwining. (b) Conversely, any non-intertwining collection A of ("~7~1)

sparse (r + 1)-tuples in [n] represents e(7) for a unique T € 7 (P).

We can use this as follows. Consider A and T as in (5.2)(b). By (5.1), there exists a
cubillage Q in Z = Z(n,d) such that 7 is the section of Q by H;y. Then each element A €
A = e(7) labels a vertex of Q contained in level . This vertex is not in Zt, which follows
from (2.1) and the fact that A is sparse. Let M be the principal w-membrane for Q in
level r. Then |V(er%)| + |A| + ]V(Z(rrei_’rl)i)] <|V(M)| = w, 4 (in view of Theorem 4.2).
Moreover, the inequality here holds with equality (which is seen by directly counting
the first and third summands and using |A| = ("~I1)).

As a consequence, (5.1) implies a weakened version of Conjecture 4.3: for d odd,
any size-maximal collection of weakly (d — 2)-separated subsets A C [n] with |A| =

(d —1)/2 is contained in the spectrum of a w-membrane of some cubillage in Z(n, d).
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