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Cubillages in odd dimensions
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Abstract. In this abstract we discuss novel results on fine zonotopal tilings (called
“cubillages” for short) in odd-dimensional cyclic zonotopes and their relations to gen-
eralized weakly separated set-systems, triangulations of cyclic polytopes, and others.
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1 Introduction

For positive integers n ≥ d, by a cyclic configuration of size n in Rd we mean an ordered
set Ξ of n vectors ξi = (ξi(1), . . . , ξi(d)) ∈ Rd, i = 1, . . . , n, satisfying:

(1.1) (a) ξi(1) = 1 for each i; (b) any flag minor of the d× n matrix formed by ξ1, . . . , ξn
as columns (in this order) is positive; and (c) all 0,1-combinations of these vectors
are different.

(A typical sample of such configurations Ξ is generated by Veronese curve: take reals
t1 < t2 < · · · < tn and assign ξi := ξ(ti), where ξ(t) = (1, t, t2, . . . , td−1).)

We deal with fine zonotopal tilings related to Ξ. Recall that the (cyclic) zonotope
Z = Z(Ξ) generated by Ξ is the Minkowski sum of line segments [0, ξi], i = 1, . . . , n.
Then a fine zonotopal tiling is (the polyhedral complex determined by) a subdivision
Q of Z into d-dimensional parallelotopes such that: any two intersecting ones share
a common face, and each face of the boundary of Z is entirely contained in some of
these parallelotopes. For brevity, we refer to these parallelotopes as cubes, and to Q as a
cubillage. Note that the choice of one or another cyclic configuration Ξ (subject to (1.1))
is not important to us in essence, and we will write Z(n, d) rather than Z(Ξ), referring
to it as the cyclic zonotope with parameters (n, d).

Let [n] denote the set {1, 2, . . . , n}. Any point v in Z(n, d) occurring as a vertex of
a cubillage Q is viewed as ∑i∈X ξi for some subset X ⊆ [n] and we identify such v
and X. So the set V(Q) of vertices of Q is identified with the corresponding collection
(set-system) in 2[n], that we call the spectrum of Q. It is known that
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(1.2) the size (cardinality) of V(Q) is equal to ( n
≤d)

(
= (n

d) + ( n
d−1) + · · ·+ (n

0)
)
.

The above correspondence possesses a number of nice properties. One of them in-
volves so-called strongly separated sets and set-systems. We need some definitions.

For X, Y ⊆ [n], we write X < Y if the maximal element max(X) of X is smaller than
the minimal element min(Y) of Y, letting max(∅) := 0 and min(∅) := n + 1. An interval
of [n] is a subset of the form {a, a + 1, . . . , b}, denoted as [a, b].

Definition 1.1. For r ∈ Z≥0, sets A, B ⊆ [n] are called strongly r-separated if there is no
sequence i1 < i2 < · · · < ir+2 of elements of [n] such that those with odd indices (namely,
i1, i3, . . .) belong to one of A− B or B− A, while those with even indices (i2, i4, . . .) belong
to the other (where A′ − B′ denotes the set difference {i : i ∈ A′, i /∈ B′}). Accordingly,
a set-system S ⊆ 2[n] is called r-separated if any two members of S are such.

In particular, A, B are strongly 1-separated if max(A − B) < min(B − A) or
max(B− A) < min(A− B). This notion was introduced and studied, under the name
of “strong separation”, by Leclerc and Zelevinsky [7]. The case r = 2 was studied by
Galashin [5]. Extending results in [7, 5] concerning the strong 1- and 2-separation to a
general r, Galashin and Postnikov [6] showed that

(1.3) The maximal size sn,r of a strongly r-separated collection in 2[n] is equal to ( n
≤r+1);

moreover (see (1.2)), for any cubillage Q on Z(n, d), its spectrum V(Q) constitutes
a maximal by size strongly (d − 1)-separated collection in 2[n], and conversely,
for any size-maximal strongly(d− 1)-separated collection S ⊆ 2[n], there exists a
cubillage Q on Z(n, d) with V(Q) = S .

(As a more general version of strong r-separation, [6] considers the notion of M-
separation in oriented matroids, but this is not needed to us in this paper.)

Another sort of set separation introduced by Leclerc and Zelevinsky is known under
the name of weak separation (which appeared in [7] in connection with the problem of
characterizing quasi-commuting flag minors of a quantum matrix). We generalize that
notion to “higher odd dimensions” in the following way. When A, B ⊆ [n] are such that
min(A− B) < min(B− A) and max(A− B) > max(B− A), we say that A surrounds B.
When A, B are strongly r-separated but not strongly (r − 1)-separated, they are called
(r + 1)-intertwined. In other words, there are intervals I1 < I2 < · · · < Ir′ in [n] with
r′ = r + 1, but not r′ = r, such that one of I1 ∪ I3 ∪ . . . and I2 ∪ I4 ∪ . . . includes A− B,
and the other B− A; we say that (I1, . . . , Ir′) is an interval cortege for A, B. For example,
A = {1, 2, 5, 6, 7, 10, 11} and B = {1, 3, 4, 6, 9, 11} are 5-intertwined (with an interval
cortege ({2}, [3, 4], [5, 7], {9}, {10})) and A surrounds B.

Definition 1.2. Let r be odd. Sets A, B ⊆ [n] are called weakly r-separated if they are either
strongly r-separated, or they are r + 2-intertwined, and in the latter case, if A surrounds
B then |A| ≤ |B|, while if B surrounds A then |B| ≤ |A|. Accordingly, a set-system
W ⊆ 2[n] is called weakly r-separated if any two members ofW are such.
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In case r = 1, this turns into the weak separation of [7].
Using a machinery of cubillages in cyclic zonotopes of odd dimensions, we gen-

eralize, to an arbitrary odd r ≥ 1, two well-known results on weakly separated col-
lections obtained in [7] and develop a method of constructing a representable class of
size-maximal weakly r-separated set-systems. One of those results [7] says that

(1.4) the maximal sizes of strongly and weakly separated collections in 2[n] are the same
(and equal to 1

2 n(n + 1) + 1 = (n
2) + (n

1) + (n
0)).

Let wn,r denote the maximal possible size of a weakly r-separated collection in 2[n].
We generalize (1.4) as follows.

Theorem 1.3. Let r be odd. Then wn,r = sn,r.

(Note that for even r > 0, at present we see no way of defining the notion of weak
r-separation ensuring that the maximal size of such collections in 2[r+1] does not exceed
sn,r. So the odd and even cases behave differently. Note also that for an odd r ≥ 3, a
maximal by inclusion weakly r-separated collection need not be maximal by size.)

Another impressive result in [7] says that a weakly separated collection can be trans-
formed into another one by making a flip (a sort of mutation) “in the presence of four
witnesses”. This relies on the following property ([7, Theorem 7.1]):

(1.5) LetW ⊂ 2[n] be weakly separated, and suppose that there are elements i < j < k of
[n] and a set X ⊆ [n]− {i, j, k} such thatW contains four sets (“witnesses”) Xi, Xk,
Xij, Xjk and a set U ∈ {Xj, Xik}; then the collection obtained fromW by replacing
U by the other member of {Xj, Xik} is again weakly separated.

Hereinafter for disjoint sets A and {a, . . . , b}, we write Aa . . . b for A ∪ {a, . . . , b}. Also
for a ∈ A, we abbreviate A− {a} as A− a. We generalize (1.5) as follows.

Theorem 1.4. For an odd r, let r′ := (r + 1)/2. Let P = {p1, . . . , pr′} and Q = {q0, . . . , qr′}
consist of elements of [n] such that q0 < p1 < q1 < p2 < . . . < pr′ < qr′ , and let X ⊆
[n]− (P ∪Q). Define the sets of “upper” and “lower” neighbors (or “witnesses”) of P, Q to be

N ↑(P, Q) := {Pq : q ∈ Q} ∪ {(P− p)q : p ∈ P, q ∈ Q}; and (1.6)
N ↓(P, Q) := {Q− q : q ∈ Q} ∪ {(Q− q)p : p ∈ P, q ∈ Q}. (1.7)

Suppose that a weakly r-separated collectionW ⊂ 2[n] contains the set X ∪ P (resp. X ∪Q) and
the sets X ∪ S for all S ∈ N ↓(P, Q) (resp. S ∈ N ↑(P, Q)). Then the collection obtained from
W by replacing X ∪ P by X ∪Q (resp. X ∪Q by X ∪ P) is weakly r-separated as well.

The above theorems give rise to an important construction. More precisely, for a
cubillage Q in Z(n, d), we introduce a natural fragmentation Q≡ of Q, by cutting each
“cube” C of Q by the “horizontal” hyperplanes through the vertices of C, and define
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a class of (d − 1)-dimensional subcomplexes M of Q≡, called weak membranes. These
membranes form a distributive lattice. Based on Theorem 1.4, we show that if r := d− 2
is odd, then the vertex set of M has size exactly wn,r and constitutes a weakly r-separated
collection in 2[n]. This gives a plenty of size-maximal weakly r-separated collections
associated with Q, and any two collections among these are linked by a sequence of
(lowering or raising) “elementary” flips.

In this abstract, Section 2 contains additional definitions and reviews some basic
facts. Section 3 outlines a proof of Theorem 1.3. The construction of max-size weakly
r-separated collections via weak membranes in cubillages is described in Section 4. The
concluding Section 5 discusses issues related to the problem of extending a triangulation
in a cyclic polytope to a cubillage and raises some conjectures.

The abstract is based on abridged versions of parts of [4] and [2], and some results
are also reflected in the survey [3].

2 Preliminaries

This section contains additional definitions, notation and conventions. Also we review
some known properties of cubillages. For details, see [4, 3].
• Let π denote the projection Rd → Rd−1 given by (x(1), . . . , x(d)) 7→ (x(1), . . . , x(d−
1)). Due to (1.1)(b), the vectors π(ξ1), . . . , π(ξn) form a cyclic configuration as well, and
we may say that π projects Z(n, d) to the zonotope Z(n, d− 1).
• The 0-, 1-, and (d− 1)-dimensional faces of a cubillage Q in Z(n, d) are called vertices,
edges, and facets, respectively. While each vertex is identified with a subset of [n], each
edge e is a parallel translation of some segment [0, ξi]; we say that e has color i.
• When a cell (face) C of Q has the lowest point X ⊆ [n] and when T ⊆ [n] is the set of
colors of edges in C, we say that C has the root X and type T, and may write C = (X | T).
One easily shows that X ∩ T = ∅.
• For a closed subset U of points in Z = Z(n, d), let Ufr (Urear) be the subset of U “seen”
in the direction of the last, d-th, coordinate vector ed (resp. −ed), i.e., formed by the
points x ∈ π−1(x′) ∩U with x(d) minimum (resp. maximum) for all x′ ∈ π(U). It is
called the front (resp. rear) side of U.

In particular, Z fr and Z rear denote the front and rear sides, respectively, of the zono-
tope Z. We call Z rim := Z fr ∩ Z rear the rim of Z.
• When a set X ⊆ [n] is the union of k intervals and k is as small as possible, we
say that X is a k-interval. Then its complementary set [n]− X is a k′-interval with k′ ∈
{k− 1, k, k + 1}. We will use the following known characterization of the sets of vertices
in the front and rear sides of a zonotope of an odd dimension.

(2.1) Let d be odd. Then for Z = Z(n, d),

(i) V(Z fr) is formed by all k-intervals of [n] with k ≤ (d− 1)/2; and
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(ii) V(Z rear) is formed by the subsets of [n] complementary to those in V(Z fr); so
it consists of all k-intervals with k < (d− 1)/2, all (d− 1)/2-intervals containing at
least one of the elements 1 and n and all (d + 1)/2-intervals with both 1 and n.

This implies that the set of inner vertices in Z fr, i.e., V(Z fr)− V(Z rim), consists of the
(d− 1)/2-intervals containing none of 1 and n, whereas V(Z rear)−V(Z rim) consists of
the (d + 1)/2-intervals containing both 1 and n.

The rest of this section describes an important class of subcomplexes in a cubillage Q
and associate with Q a certain path structure (used in the next section).

Definition 2.1. Let Q be a cubillage in Z(n, d). A strong membrane, or, briefly, an s-
membrane, in Q is a subcomplex M of Q such that M (regarded as a subset of Rd) is
bijectively projected by π onto Z(n, d− 1).

Then each facet of Q occurring in M is projected to a cube of dimension d − 1 in
Z(n, d− 1) and these cubes constitute a cubillage in Z(n, d− 1), denoted as π(M). In
view of (1.3) and (1.2) (applied to π(Q)),

(2.2) all s-membranes M in a cubillage Q in Z(n, d) have sn,d−2 vertices, and the vertex
set of M (regarded as a collection in 2[n]) is strongly (d− 2)-separated.

Two s-membranes are of a particular interest. These are the front side Z fr and the rear
side Z rear of Z = Z(n, d). Following terminology in [2, 3], their projections π(Z fr) and
π(Z rear) are called the standard and anti-standard cubillages in Z(n, d− 1), respectively.

Next we distinguish certain vertices in cubes. When n = d, the zonotope turns into
the cube C = (∅|[d]), and there holds:

(2.3) the front side C fr (rear side C rear) of C = (∅|[d]) has a unique inner vertex, namely,
tC := {i ∈ [n] : d− i odd} (resp. hC := {i ∈ [n] : d− i even}.

When n is arbitrary and Q is a cubillage in Z = Z(n, d), we distinguish vertices tC
and hC of a cube C(X | T) with T = (p1 < . . . < pd) in Q in a similar way; namely,

(2.4) tC = X ∪ {pi : d− i odd} and hC = X ∪ {pi : d− i even}.

Note that for each vertex v of Q, unless v is in Z rear, there is a unique cube C ∈ Q
such that tC = v, and symmetrically, unless v is in Z fr, there is a unique cube C ∈ Q
such that hC = v (to see this, consider the line going through v and parallel to ed).

Therefore, by drawing for each cube C ∈ Q, the edge-arrow from tC to hC, we obtain
a directed graph whose connected components are directed paths going from Z fr− Z rim

to Z rear−Z rim. We call these paths bead-threads in Q. It is convenient to add to this graph
the elements of V(Z rim) as isolated vertices, forming degenerate bead-threads, each going
from a vertex to itself. Let BQ be the resulting directed graph. Then
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(2.5) BQ contains all vertices of Q, and each component of BQ is a bead-thread going
from Z fr to Z rear.

Note that the heights |X| of vertices X along a bead-thread are monotone increasing
when d is odd (whereas they are constant when d is even).

3 Proof of Theorem 1.3

Let r be odd and n > r. We have to show that

(3.1) ifW is a weakly r-separated collection in 2[n], then |W| ≤ ( n
≤r+1).

This is valid when r = 1 (see (1.4)) and is trivial when n = r + 1. So one may assume
that 3 ≤ r ≤ n − 2. We prove (3.1) by induction, assuming that the corresponding
inequality holds for W ′, n′, r′ when n′ ≤ n, r′ ≤ r, and (n′, r′) 6= (n, r). Define the
following subcollections inW :

W− := {A ⊆ [n− 1] : {A, An} ∩W 6= ∅}, and
T := {A ⊆ [n− 1] : {A, An} ⊆ W},

One easily shows thatW− is weakly r-separated. Then by induction, |W−| ≤ ( n−1
≤r+1).

Also |W| = |W−|+ |T |. Therefore, in view of the identity (n
j) = (n−1

j ) + (n−1
j−1) for any

j ≤ n− 1, it suffices to show that
|T | ≤ (n−1

≤r ). (3.2)

For i = 0, 1, . . . n− 1, define T i := {A ∈ T : |A| = i}. We rely on two claims.

Claim 1 For each i, the collection T i is strongly (r − 1)-separated; moreover, T i is weakly
(r− 2)-separated.

Proof. Let A, B ∈ T i. Take an interval cortege (I1, . . . , Ir′) for A, B, and we may assume
that Ir′ ∩ (A− B) 6= ∅. Then (I1, . . . , Ir′ , Ir′+1 := {n}) is an interval cortege for A and
B′ := Bn. Since |A| < |B′| and max(A − B′) < max(B′ − A) = n, and since A, B′

are weakly r-separated, r′ + 1 < r + 2. Then r′ ≤ r, implying that A, B are (r − 1)-
separated. Since |A| = |B| and r is odd, we also can conclude that A, B are weakly
(r− 2)-separated.

Now consider the zonotope Z = Z(n− 1, r). For j = 0, 1, . . . , n− 1, define S j (Aj) to
be the set of vertices X of Z fr (resp. Z rear) with |X| = j. We extend each collection T i to

Di := T i ∪ (S i+1 ∪ . . . ∪ Sn−1) ∪ (A0 ∪A1 ∪ . . . ∪Ai−1). (3.3)

Claim 2 Di is weakly (r− 2)-separated.
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Proof. The vertex sets of Z fr and π(Z fr) are essentially the same (regarding a vertex as
a subset of [n− 1]), and similarly for Z rear and π(Z rear). Since π(Z fr) and π(Z rear) are
cubillages on Z(n− 1, r− 1) (the so-called “standard” and “anti-standard” ones), (1.3)
implies that both collections V(Z fr) = S0 ∪ . . . ∪ Sn−1 and V(Z rear) = A0 ∪ . . . ∪ An−1

are (r− 2)-separated, and therefore, they are weakly (r− 2)-separated as well.
Next, by (2.1)(i), each vertex X of Z fr is a k-interval with k ≤ (r− 1)/2. Such an X and

any subset Y ⊆ [n− 1] are k′-intertwined with k′ ≤ 2k + 1. Then k′ ≤ r and this holds
with equality when X and Y are r-intertwined and Y surrounds X. It follows that X is
weakly (r − 2)-separated from any Y ⊆ [n− 1] with |Y| ≤ |X| (in particular, if X ∈ S j

and j ≥ i, then X is weakly (r− 2)-separated from each member of T i ∪A0 ∪ . . .∪Ai−1).
Symmetrically, by (2.1)(ii), each vertex X of Z rear is the complement to [n− 1] of a k-

interval with k ≤ (r− 1)/2. We can conclude that such an X is weakly (r− 2)-separated
from any Y ⊆ [n− 1] with |Y| ≥ |X|.

Now the result is provided by the inequalities |X| > |A| > |X′| for any A ∈ T i,
X ∈ S i+1 ∪ . . . ∪ Sn−1, and X′ ∈ A0 ∪ . . . ∪Ai−1.

By induction, |Di| ≤ ( n−1
≤r−1). Then, using (2.2) (for n− 1 and r− 2), we have

|Di| ≤ ( n−1
≤r−1) = sn−1,r−2 = |V(Z fr)|. (3.4)

Let S ′ := S0 ∪S1 ∪ . . .∪S i and A′ := A0 ∪A1 ∪ . . .∪Ai−1. Since S i+1 ∪ . . .∪Sn−1 =
V(Z fr)− S ′, we obtain from (3.3) and (3.4) that

|T i| = |Di| − (|V(Z fr)− S ′|)− |A′| ≤ |S ′| − |A′|. (3.5)

We now finish the proof by using a bead-thread technique (see Section 2). Fix an
arbitrary cubillage Q in Z = Z(n − 1, r). Let Ri be the set of vertices X of Q with
|X| = i, and let B be the set of paths in the graph BQ beginning at Z fr and ending at
Z rear. Since r is odd, each edge (X, Y) of BQ is “ascending” (satisfies |Y| > |X|). This
implies that each path P ∈ P beginning at S ′ must meet either Ri or A′, and conversely,
each path meeting Ri ∪A′ begins at S ′. This and (3.5) imply |T i| ≤ |Ri|. Summing up
these inequalities for i = 0, 1, . . . , n− 1, we have

|T | = ∑i |T
i| ≤∑i |R

i| = |VQ| = sn−1,r−1 = (n−1
≤r ),

yielding (3.2) and completing the proof of Theorem 1.3.

4 Weakly r-separated collections generated by cubillages

We have seen an interrelation between strongly ∗-separated collections on the one hand,
and cubillages and s-membranes on the other hand (see (1.3) and (2.2)). This section is
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devoted to geometric aspects of the weak r-separation when r is odd. Being motivated
by geometric constructions for maximal weakly 1-separated collections elaborated in [1,
2], we explain how to construct maximal by size weakly r-separated collections by use
of weak membranes, which are analogs of s-membranes in fragmentations of cubillages.

4.1 Fragmentation and weak membranes.

Let Q be a cubillage in Z(n, d). The fragmentation of Q is the complex Q≡ obtained by
cutting Q by the “horizontal” hyperplanes H` := {x ∈ Rd : x(1) = `}, ` = 1, . . . , n− 1.

Such hyperplanes subdivide each cube C = (X | T) of Q into pieces C≡1 , . . . , C≡d ,
where C≡h is the portion of C between H|X|+h−1 and H|X|+h, called a fragment of C (and
of Q≡). Let Sh(C) denote h-th horizontal section C ∩ H|X|+h of C; this is the convex hull
of the set of vertices (X | (T

h)) := {X ∪ A : A ⊂ T, |A| = h} (forming a hyper-simplex
and turning into a simplex when h = 1 or d− 1). We call Sh−1(C) and Sh(C) the lower
and upper (horizontal) facets of the fragment C≡h , respectively. (Here S0(C) and Sd(C)
degenerate to the single points X and X ∪ T, respectively.) The other facets of C≡h are
conditionally called vertical ones.

Note that the horizontal facets are “not fully seen” under the projection π. To make
all facets of fragments of Q≡ visible, we look at them as though “from the front and
slightly from below”, i.e., by using the projection πε : Rd → Rd−1 defined by

x = (x(1), . . . , x(d)) 7→ (x(1)− εx(d), x(2), . . . , x(d− 1)) =: πε(x) (4.1)

for a sufficiently small ε > 0. (Compare πε with π.)
This projection makes slanting front and rear sides of objects in Q≡. More precisely,

for a closed set U of points in Z = Z(n, d), let Uε,fr (Uε,rear) be the subset of U formed by
the points x ∈ (πε)−1(x′) ∩U with x(d) minimum (resp. maximum) for all x′ ∈ πε(U).
We call it the ε-front (resp. ε-rear) side of U.

Obviously, Zε,fr = Z fr and Zε,rear = Z rear, and similarly for any cube C = (X|T) in
Z. As to fragments of C, their ε-front and ε-rear sides are viewed as follows:

(4.2) for h = 1, . . . , d, Cε,fr
h = C fr

h ∪ Sh−1(C) and Cε,rear
h = C rear

h ∪ Sh(C).

So Cε,fr
h ∪ Cε,rear

h is just the boundary of C≡h .
Next we explain the notion of weak membranes. They represent certain (d − 1)-

dimensional subcomplexes of the fragmentation Q≡ of Q and use the projection πε (in
contrast to strong membranes which deal with Q and π).

To introduce them, we slightly modify cyclic zonotopes in Rd−1. Specifically, given
a cyclic configuration Ξ = (ξ1, . . . , ξn) as in (1.1), define ψε

i := πε(ξi), i = 1, . . . , n.
When ε is small enough, Ψε = (ψε

1, . . . , ψε
n) obeys the condition (1.1)(b), though slightly

violates (1.1)(a). Yet we keep the term “cyclic configuration” for Ψε as well, and consider
the zonotope in Rd−1 generated by Ψε, denoted as Zε(n, d− 1).



Cubillages in odd dimensions 9

Definition 4.1. A weak membrane, or, briefly, a w-membrane, of a cubillage Q in Z(n, d) is
a subcomplex M of the fragmentation Q≡ such that M (regarded as a subset of Rd) is
bijectively projected by πε to Zε(n, d− 1).

A w-membrane M uses facets of fragments in Q≡ which are of two sorts, namely,
“horizontal” and “vertical” ones as mentioned above. The setMw(Q) of w-membranes
of Q is rich and forms a distributive lattice. To see this, for fragments ∆ = C≡i and
∆′ = (C′)≡j of Q≡, let us say that ∆ immediately precedes ∆′ if the ε-rear side of ∆ and
the ε-front side of ∆′ share a facet. In other words, either C 6= C′ and ∆rear ∩ (∆′)fr is a
vertical facet, or C = C′ and j = i + 1. A nice property of this relation is that the directed
graph whose vertices are the fragments in Q≡ and whose edges are the pairs (∆, ∆′) of
fragments such that ∆ immediately precedes ∆′ is acyclic (see [4, 3]).

It follows that the transitive closure of this relation forms a partial order on the
fragments of Q≡ ; denote it as (Q≡,≺). To see that it is a lattice, associate with each w-
membrane M the set Q≡(M) of fragments in Q≡ lying in the region of Z(n, d) between
Z fr and M. One easily shows that for fragments ∆, ∆′ of Q≡, if ∆ immediately precedes
∆′ and if ∆′ ∈ Q≡(M), then ∆ ∈ Q≡(M) as well. This implies a similar property for
fragments ∆, ∆′ with ∆ ≺ ∆′. So Q≡(M) is an ideal of (Q≡,≺). A converse property is
true as well. Thus,

(4.3) Mw(Q) is a distributive lattice in which for M, M′ ∈ Mw(Q), the w-membranes
M ∧M′ and M ∨M′ satisfy Q≡(M ∧M′) = Q≡(M)∩Q≡(M′) and Q≡(M ∨M′) =
Q≡(M) ∪ Q≡(M′); the minimal and maximal elements of this lattice are the s-
membranes Z fr and Z rear, respectively.

Next, if M ∈ Mw(Q) is different from Z fr, then Q≡(M) 6= ∅. Take a maximal
(w.r.t. ≺) fragment ∆ in Q≡(M). Then ∆ε,rear is entirely contained in M and the set
Q≡(M) − {∆} is again an ideal of (Q≡,≺); so it is expressed as Q≡(M′) for a w-
membrane M′. Moreover, M′ is obtained from M by replacing the disk ∆ε,rear by ∆ε,fr.
We call the transformation M 7→ M′ the lowering flip in M using ∆, and call the reverse
transformation M′ 7→ M the raising flip in M′ using ∆. As a result, we obtain that

(4.4) for any M ∈ Mw(Q), there exists a sequence of w-membranes M0, M1, . . . , Mk ∈
Mw(Q) such that M0 = Z fr, Mk = M, and for i = 1, . . . , k, Mi is obtained from
Mi−1 by the raising flip using some fragment in Q≡.

4.2 Weakly r-separated collections via w-membranes.

Based on Theorem 1.4 (see [4, Section 5] for the proof), we establish the following

Theorem 4.2. Let r be odd and d = r + 2. For each w-membrane M of a cubillage Q in
Z = Z(n, d), its spectrum V(M) has size wn,r and constitutes a maximal by size weakly r-
separated collection in 2[n].
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Proof. For M ∈ Mw(Q), consider a sequence Z fr = M0, M1, . . . , Mk = M as in (4.4). Let
Mi (i > 0) be obtained from Mi−1 by the raising flip using a fragment ∆i of Q≡. Since
V(Z fr) is strongly r-separated and V(Z fr) = sn,r = wn,r (see (2.2)), it suffices to show
that if V(Mi−1) has size wn,r and is weakly r-separated, then so is V(Mi).

To show this, let ∆ := ∆i = C≡h for a cube C = (X | T = (p(1) < . . . < p(d)))
and h ∈ [d]. Then V(C fr) = V(C rim) ∪ {tC} and V(C rear) = V(C rim) ∪ {hC}, where
tC = Xp(2)p(4) . . . p(d− 1) and hC = Xp(1)p(3) . . . p(d) (see (2.3)). Let R be the set of
vertices in C rim ∩ ∆, and let r′ := (d− 1)/2. Then r′ is an integer, tC lies in the section
Sr′(C), and hC lies in Sr′+1(C). Three cases are possible.
Case 1: h ≤ r′. Since the vertices of ∆ are formed by the sections Sh−1(C) and Sh(C),

V(∆) = (X | ( T
h−1)) ∪ (X | (T

h)) and R ⊆ V(∆ fr) ∪V(∆ rear).

Also V(∆ fr) ⊆ V(∆ε,fr) and V(∆ rear) ⊆ V(∆ε,rear). When h < r′, all vertices of ∆ belong
to C rim, implying V(∆ε,fr) = R = V(∆ε,rear). And when h = r′, the only vertex of ∆
not in R is tC. Since tC ∈ V(C fr), tC belongs to ∆ε,fr. But tC also lies in the upper
facet Sr′(C), and this facet is included in ∆ε,rear. Hence tC ∈ ∆ε,fr ∩ ∆ε,rear, implying
V(∆ε,fr) = V(∆ε,rear).
Case 2: h ≥ r′ + 2. This is “symmetric” to the previous case.

Thus, in both cases the raising flip M 7→ M′ using ∆ gives V(M) = V(M′).
Case 3: h = r′ + 1. This case is most important. Here the lower facet Sh−1=r′(C) of
∆ contains tC, and the upper facet Sh=r′+1(C) contains hC. Hence tC ∈ V(∆ε,fr) and
hC ∈ V(∆ε,rear). On the other hand, neither tC belongs to ∆ε,rear (= ∆ rear ∪ Sr′+1(C)), nor
hC belongs to ∆ε,fr (= ∆ fr ∪ Sr′(C)).

It follows that V(∆ε,rear) = (V(∆ε,fr)− {tC}) ∪ {hC}. Hence the raising flip M 7→ M′

using ∆ replaces tC by hC, while preserving the other vertices of the w-membrane. Also
the vertices of ∆ different from tC, hC form just the collection of sets XS such that S
runs over N ↓(P̃, Q̃), the set of lower neighbors of P̃ := p(2)p(4) . . . p(d− 1) and Q̃ :=
p(1)p(3) . . . p(d). Now applying Theorem 1.4 to W := V(M), X, P̃, Q̃, we conclude that
V(M′) is weakly r-separated, as required.

Note that the case r = 1 of Theorem 4.2 is obtained in [2, Corollary 6.5].
A natural question is whether any two size-maximal weakly separated collections

in 2[n] can be connected by a sequence of flips. This is strengthened in the following
conjecture (which was proved for r = 1 in [2, Theorem 7.1]):

Conjecture 4.3. for r odd, any size-maximal weakly r-separated collection in 2[n] is representable
as the spectrum of a weak membrane of some cubillage Q in Z(n, r + 2).
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5 Triangulations, hyper-combies, and cubillages

Consider the polytope P = P(n, d − 1) that is the section of the zonotope Z(n, d) by
the hyperplane H1 = {x ∈ Rd : x(1) = 1}, called the cyclic polytope with n vertices of
dimension d − 1. Let T (P) be the set of triangulations of P that are subdivisions of P
into (d − 1)-dimensional simplexes whose vertices are vertices of P (i.e., occur in Ξ as
in (1.1)). It has been known (see [8] for details) that

(5.1) for any τ ∈ T (P(n, d− 1)), there exists a cubillage Q in Z(n, d) whose section by
H1 (formed by the simplexes C ∩ H1 for cubes C with the root ∅ in Q) is τ.

To define more general objects, consider the projection πε and the modified zonotope
Zε(n, d − 1) as in Section 4. Let F (n, d) be the set of facets in fragments C≡h of all
(abstract) cubes C = (X | T) in Z(n, d) (running X, T ⊂ [n] with |T| = d and X ∩ T = ∅).

Definition 5.1. A hyper-combi K is a subdivision of Zε(n, d− 1) into (d− 1)-dimensional
polytopes of the form πε(F), where F ∈ F (n, d).

In particular, any w-membrane M of a cubillage in Z(n, d) generates the hyper-combi
πε(M). An important special case arises when M is a principal w-membrane in level
` ∈ [1, n− 1]. This means that M is the section by H` = {x ∈ Rd : x(1) = `} of some
cubillage in Z = Z(n, d) to which the boundary parts

Z fr
`↑ := Z fr ∩ {x ∈ Rd : x(1) ≥ `} and Z rear

`↓ := Z rear ∩ {x ∈ Rd : x(1) ≤ `}

are added, where Z fr and Z rear are the (properly fragmented) front and rear sides of
Z. Then the essential (“horizontal”) part of a principal w-membrane in level 1 is just a
triangulation in T (P(n, d− 1)) (while for an arbitrary ` it is known as “hypersimplicial
subdivision” of the corresponding section of the zonotope, see [8]).

Conjecture 5.2. For any hyper-combi K in Zε(n, d− 1) with d odd, there exists a cubillage Q
in Z(n, d) and a w-membrane M in (the fragmentation) of Q such that πε(M) = K.

The validity of Conjecture 5.2 for d = 3 is proved in [2, Section 7] (where the desired
Q and M are explicitly constructed for an arbitrary (properly triangulated) combi K in
Zε(n, 2)); also we are able to prove this for d = 5.

Next, Oppermann and Thomas [9] revealed a nice property of triangulations of a
cyclic polytope P = P(n, 2r) having an even dimension 2r = d − 1. More precisely,
identify each r-dimensional face in a triangulation of τ (regarded as a complex) with the
corresponding increasing (r + 1)-tuple in [n]. Let e(τ) denote the set of sparse r-faces
in τ, where a face (tuple) is called sparse if it has no pair i, i + 1. For increasing tuples
A = (a0, . . . , ar) and B = (b0, . . . , br), one says that A intertwines B if a0 < b0 < a1 < b1 <
· · · < ar < br, and a collection A of (r + 1)-tuples is called non-intertwining if no two
tuples in A intertwine. In other words, A is weakly (2r− 1 = d− 2)-separated (since all
elements of A have the same size). By [9, Theorems 2.4 and 2.5],
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(5.2) (a) For P = P(n, 2r) and τ ∈ T (P), the collection e(τ) has cardinality (n−r−1
r ) and

is non-intertwining. (b) Conversely, any non-intertwining collection A of (n−r−1
r )

sparse (r + 1)-tuples in [n] represents e(τ) for a unique τ ∈ T (P).

We can use this as follows. Consider A and τ as in (5.2)(b). By (5.1), there exists a
cubillage Q in Z = Z(n, d) such that τ is the section of Q by H1. Then each element A ∈
A = e(τ) labels a vertex of Q contained in level r. This vertex is not in Z fr, which follows
from (2.1) and the fact that A is sparse. Let M be the principal w-membrane for Q in
level r. Then |V(Z fr

r↑)|+ |A|+ |V(Z rear
(r−1)↓)| ≤ |V(M)| = wn,d−2 (in view of Theorem 4.2).

Moreover, the inequality here holds with equality (which is seen by directly counting
the first and third summands and using |A| = (n−r−1

r )).
As a consequence, (5.1) implies a weakened version of Conjecture 4.3: for d odd,

any size-maximal collection of weakly (d − 2)-separated subsets A ⊂ [n] with |A| =
(d− 1)/2 is contained in the spectrum of a w-membrane of some cubillage in Z(n, d).
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