Cubillages in odd dimensions

Vladimir I. Danilov* ${ }^{* 1}$, Alexander V. Karzanov ${ }^{\dagger 1}$, and Gleb A. Koshevoy ${ }^{\ddagger 2}$
${ }^{1}$ Central Inst. of Economics and Mathematics of the RAS, Moscow, Russia
${ }^{2}$ Institute for Information Transmission Problems of the RAS, Moscow, Russia

Abstract

In this abstract we discuss novel results on fine zonotopal tilings (called "cubillages" for short) in odd-dimensional cyclic zonotopes and their relations to generalized weakly separated set-systems, triangulations of cyclic polytopes, and others.

Keywords: cyclic zonotope, cubillage, strong and weak separation, cyclic polytope, triangulation, combined tiling

1 Introduction

For positive integers $n \geq d$, by a cyclic configuration of size n in \mathbb{R}^{d} we mean an ordered set Ξ of n vectors $\xi_{i}=\left(\xi_{i}(1), \ldots, \xi_{i}(d)\right) \in \mathbb{R}^{d}, i=1, \ldots, n$, satisfying:
(1.1) (a) $\xi_{i}(1)=1$ for each i; (b) any flag minor of the $d \times n$ matrix formed by ξ_{1}, \ldots, ξ_{n} as columns (in this order) is positive; and (c) all 0,1-combinations of these vectors are different.
(A typical sample of such configurations Ξ is generated by Veronese curve: take reals $t_{1}<t_{2}<\cdots<t_{n}$ and assign $\xi_{i}:=\xi\left(t_{i}\right)$, where $\xi(t)=\left(1, t, t^{2}, \ldots, t^{d-1}\right)$.)

We deal with fine zonotopal tilings related to Ξ. Recall that the (cyclic) zonotope $Z=Z(\Xi)$ generated by Ξ is the Minkowski sum of line segments $\left[0, \mathcal{\zeta}_{i}\right], i=1, \ldots, n$. Then a fine zonotopal tiling is (the polyhedral complex determined by) a subdivision Q of Z into d-dimensional parallelotopes such that: any two intersecting ones share a common face, and each face of the boundary of Z is entirely contained in some of these parallelotopes. For brevity, we refer to these parallelotopes as cubes, and to Q as a cubillage. Note that the choice of one or another cyclic configuration Ξ (subject to (1.1)) is not important to us in essence, and we will write $Z(n, d)$ rather than $Z(\Xi)$, referring to it as the cyclic zonotope with parameters (n, d).

Let $[n]$ denote the set $\{1,2, \ldots, n\}$. Any point v in $Z(n, d)$ occurring as a vertex of a cubillage Q is viewed as $\sum_{i \in X} \xi_{i}$ for some subset $X \subseteq[n]$ and we identify such v and X. So the set $V(Q)$ of vertices of Q is identified with the corresponding collection (set-system) in $2^{[n]}$, that we call the spectrum of Q.

[^0](1.2) the size (cardinality) of $V(Q)$ is equal to $\binom{n}{\leq d} \quad\left(=\binom{n}{d}+\binom{n}{d-1}+\cdots+\binom{n}{0}\right)$.

The above correspondence possesses a number of nice properties. One of them involves so-called strongly separated sets and set-systems. We need some definitions.

For $X, Y \subseteq[n]$, we write $X<Y$ if the maximal element $\max (X)$ of X is smaller than the minimal element $\min (Y)$ of Y, letting $\max (\varnothing):=0$ and $\min (\varnothing):=n+1$. An interval of $[n]$ is a subset of the form $\{a, a+1, \ldots, b\}$, denoted as $[a, b]$.
Definition 1.1. For $r \in \mathbb{Z}_{\geq 0}$, sets $A, B \subseteq[n]$ are called strongly r-separated if there is no sequence $i_{1}<i_{2}<\cdots<i_{r+2}$ of elements of $[n]$ such that those with odd indices (namely, $\left.i_{1}, i_{3}, \ldots\right)$ belong to one of $A-B$ or $B-A$, while those with even indices (i_{2}, i_{4}, \ldots) belong to the other (where $A^{\prime}-B^{\prime}$ denotes the set difference $\left\{i: A^{\prime} \ni i \notin B^{\prime}\right\}$). Accordingly, a set-system $\mathcal{S} \subseteq 2^{[n]}$ is called r-separated if any two members of \mathcal{S} are such.

In particular, A, B are strongly 1 -separated if $\max (A-B)<\min (B-A)$ or $\max (B-A)<\min (A-B)$. This notion was introduced and studied, under the name of "strong separation", by Leclerc and Zelevinsky [LZ??]. The case $r=2$ was studied by Galashin [gal??]. Extending results in [LZ??, gal??] concerning the strong 1- and 2-separation to a general r, Galashin and Postnikov showed that
(1.3) [GP??] The maximal size $s_{n, r}$ of a strongly r-separated collection in $2^{[n]}$ is equal to $\binom{n}{\leq r+1}$; moreover (see (1.2)), for any cubillage Q on $Z(n, d)$, its spectrum $V(Q)$ constitutes a maximal by size strongly $(d-1)$-separated collection in $2^{[n]}$, and conversely, for any size-maximal strongly $(d-1)$-separated collection $\mathcal{S} \subseteq 2^{[n]}$, there exists a cubillage Q on $Z(n, d)$ with $V(Q)=\mathcal{S}$.
(As a more general version of strong r-separation, [GP??] considers the notion of M-separation in oriented matroids, but this is not needed to us in this paper.)

Another sort of set separation introduced by Leclerc and Zelevinsky is known under the name of weak separation (which appeared in [LZ??] in connection with the problem of characterizing quasi-commuting flag minors of a quantum matrix). We generalize that notion to "higher odd dimensions" in the following way. When $A, B \subseteq[n]$ are such that $\min (A-B)<\min (B-A)$ and $\max (A-B)>\max (B-A)$, we say that A surrounds B. When A, B are strongly r-separated but not strongly $(r-1)$-separated, they are called $(r+1)$-intertwined. In other words, there are intervals $I_{1}<I_{2}<\cdots<I_{r^{\prime}}$ in [n] with $r^{\prime}=r+1$, but not $r^{\prime}=r$, such that one of $I_{1} \cup I_{3} \cup \ldots$ and $I_{2} \cup I_{4} \cup \ldots$ includes $A-B$, and the other $B-A$; we say that $\left(I_{1}, \ldots, I_{r^{\prime}}\right)$ is an interval cortege for A, B. For example, $A=\{1,2,5,6,7,10,11\}$ and $B=\{1,3,4,6,9,11\}$ are 5 -intertwined (with an interval cortege $(\{2\},[3,4],[5,7],\{9\},\{10\}))$ and A surrounds B.
Definition 1.2. Let r be odd. Sets $A, B \subseteq[n]$ are called weakly r-separated if they are either strongly r-separated, or they are $r+2$-intertwined, and in the latter case, if A surrounds B then $|A| \leq|B|$, while if B surrounds A then $|B| \leq|A|$. Accordingly, a set-system $\mathcal{W} \subseteq 2^{[n]}$ is called weakly r-separated if any two members of \mathcal{W} are such.

In case $r=1$, this turns into the weak separation of [LZ??].
Using a machinery of cubillages in cyclic zonotopes of odd dimensions, we generalize, to an arbitrary odd $r \geq 1$, two well-known results on weakly separated collections obtained in [LZ??] and develop a method of constructing a representable class of sizemaximal weakly r-separated set-systems. One of those results says that
(1.4) [LZ??] the maximal sizes of strongly and weakly separated collections in $2^{[n]}$ are the same (and equal to $\frac{1}{2} n(n+1)+1=\binom{n}{2}+\binom{n}{1}+\binom{n}{0}$.
Let $w_{n, r}$ denote the maximal possible size of a weakly r-separated collection in $2^{[n]}$. We generalize (1.4) as follows.

Theorem 1.3. Let r be odd. Then $w_{n, r}=s_{n, r}$.
(Note that for even $r>0$, at present we see no way of defining the notion of weak r-separation ensuring that the maximal size of such collections in $2^{[r+1]}$ does not exceed $s_{n, r}$. So the odd and even cases behave differently. Note also that for an odd $r \geq 3$, a maximal by inclusion weakly r-separated collection need not be maximal by size.)

Another impressive result in [LZ??] says that a weakly separated collection can be transformed into another one by making a flip (a sort of mutation) "in the presence of four witnesses". This relies on the following property (Theorem 7.1 in [LZ??]):
(1.5) let $\mathcal{W} \subset 2^{[n]}$ be weakly separated, and suppose that there are elements $i<j<k$ of $[n]$ and a set $X \subseteq[n]-\{i, j, k\}$ such that \mathcal{W} contains four sets ("witnesses") $X i, X k$, $X i j, X j k$ and a set $U \in\{X j, X i k\}$; then the collection obtained from \mathcal{W} by replacing U by the other member of $\{X j, X i k\}$ is again weakly separated.

Hereinafter for disjoint sets A and $\{a, \ldots, b\}$, we write $A a \ldots b$ for $A \cup\{a, \ldots, b\}$. Also for $a \in A$, we abbreviate $A-\{a\}$ as $A-a$. We generalize (1.5) as follows.

Theorem 1.4. For an odd r, let $r^{\prime}:=(r+1) / 2$. Let $P=\left\{p_{1}, \ldots, p_{r^{\prime}}\right\}$ and $Q=\left\{q_{0}, \ldots, q_{r^{\prime}}\right\}$ consist of elements of $[n]$ such that $q_{0}<p_{1}<q_{1}<p_{2}<\ldots<p_{r^{\prime}}<q_{r^{\prime}}$, and let $X \subseteq$ $[n]-(P \cup Q)$. Define the sets of "upper" and "lower" neighbors (or "witnesses") of P, Q to be

$$
\begin{align*}
\mathcal{N}^{\uparrow}(P, Q) & :=\{P q: q \in Q\} \cup\{(P-p) q: p \in P, q \in Q\} ; \quad \text { and } \tag{1.6}\\
\mathcal{N}^{\downarrow}(P, Q) & :=\{Q-q: q \in Q\} \cup\{(Q-q) p: p \in P, q \in Q\} . \tag{1.7}
\end{align*}
$$

Suppose that a weakly r-separated collection $\mathcal{W} \subset 2^{[n]}$ contains the set $X \cup P(r e s p . X \cup Q)$ and the sets $X \cup S$ for all $S \in \mathcal{N}^{\downarrow}(P, Q)$ (resp. $S \in \mathcal{N}^{\uparrow}(P, Q)$). Then the collection obtained from \mathcal{W} by replacing $X \cup P$ by $X \cup Q$ (resp. $X \cup Q$ by $X \cup P$) is weakly r-separated as well.

The above theorems give rise to an important construction. More precisely, for a cubillage Q in $Z(n, d)$, we introduce a natural fragmentation $Q \equiv$ of Q, by cutting each "cube" C of Q by the "horizontal" hyperplanes through the vertices of C, and define
a class of $(d-1)$-dimensional subcomplexes M of Q^{\equiv}, called weak membranes. These membranes form a distributive lattice. Based on Theorem 1.4, we show that if $r:=d-2$ is odd, then the vertex set of M has size exactly $w_{n, r}$ and constitutes a weakly r-separated collection in $2{ }^{[n]}$. This gives a plenty of size-maximal weakly r-separated collections associated with Q, and any two collections among these are linked by a sequence of (lowering or raising) "elementary" flips.

In this abstract, Section 2 contains additional definitions and reviews some basic facts. ?? outlines a proof of Theorem 1.3. The construction of max-size weakly r-separated collections via weak membranes in cubillages is described in ??. The concluding ?? discusses issues related to the problem of extending a triangulation in a cyclic polytope to a cubillage and raises some conjectures.

The abstract is based on abridged versions of parts of [DKK4??] and [DKK2??], and some results are also reflected in the survey [DKK3??].

2 Preliminaries

This section contains additional definitions, notation and conventions. Also we review some known properties of cubillages. For details, see [DKK4??, DKK3??].

- Let π denote the projection $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d-1}$ given by $(x(1), \ldots, x(d)) \mapsto(x(1), \ldots, x(d-$ $1)$). Due to (1.1)(b), the vectors $\pi\left(\xi_{1}\right), \ldots, \pi\left(\xi_{n}\right)$ form a cyclic configuration as well, and we may say that π projects $Z(n, d)$ to the zonotope $Z(n, d-1)$.
- The $0-1-$, and $(d-1)$-dimensional faces of a cubillage Q in $Z(n, d)$ are called vertices, edges, and facets, respectively. While each vertex is identified with a subset of [n], each edge e is a parallel translation of some segment $\left[0, \xi_{i}\right]$; we say that e has color i.
- When a cell (face) C of Q has the lowest point $X \subseteq[n]$ and when $T \subseteq[n]$ is the set of colors of edges in C, we say that C has the root X and type T, and may write $C=(X \mid T)$. One easily shows that $X \cap T=\varnothing$.
- For a closed subset U of points in $Z=Z(n, d)$, let $U^{f r}\left(U^{\text {rear }}\right)$ be the subset of U "seen" in the direction of the last, d-th, coordinate vector e_{d} (resp. $-e_{d}$), i.e., formed by the points $x \in \pi^{-1}\left(x^{\prime}\right) \cap U$ with $x(d)$ minimum (resp. maximum) for all $x^{\prime} \in \pi(U)$. It is called the front (resp. rear) side of U.

In particular, Z^{fr} and $Z^{\text {rear }}$ denote the front and rear sides, respectively, of the zonotope Z. We call $Z^{\text {rim }}:=Z^{\mathrm{fr}} \cap Z^{\text {rear }}$ the rim of Z.

- When a set $X \subseteq[n]$ is the union of k intervals and k is as small as possible, we say that X is a k-interval. Then its complementary set $[n]-X$ is a k^{\prime}-interval with $k^{\prime} \in$ $\{k-1, k, k+1\}$. We will use the following known characterization of the sets of vertices in the front and rear sides of a zonotope of an odd dimension.
(2.1) Let d be odd. Then for $Z=Z(n, d)$,
(i) $V\left(Z^{\text {fr }}\right)$ is formed by all k-intervals of $[n]$ with $k \leq(d-1) / 2$; and
(ii) $V\left(Z^{\text {rear }}\right)$ is formed by the subsets of $[n]$ complementary to those in $V\left(Z^{\text {fr }}\right)$; so it consists of all k-intervals with $k<(d-1) / 2$, all $(d-1) / 2$-intervals containing at least one of the elements 1 and n and all $(d+1) / 2$-intervals with both 1 and n.

This implies that the set of inner vertices in $Z^{\text {fr }}$, i.e., $V\left(Z^{\mathrm{fr}}\right)-V\left(Z^{\text {rim }}\right)$, consists of the $(d-1) / 2$-intervals containing none of 1 and n, whereas $V\left(Z^{\text {rear }}\right)-V\left(Z^{\text {rim }}\right)$ consists of the $(d+1) / 2$-intervals containing both 1 and n.

The rest of this section describes an important class of subcomplexes in a cubillage Q and associate with Q a certain path structure (used in the next section).

Definition 2.1. Let Q be a cubillage in $Z(n, d)$. A strong membrane, or, briefly, an smembrane, in Q is a subcomplex M of Q such that M (regarded as a subset of \mathbb{R}^{d}) is bijectively projected by π onto $Z(n, d-1)$.

Then each facet of Q occurring in M is projected to a cube of dimension $d-1$ in $Z(n, d-1)$ and these cubes constitute a cubillage in $Z(n, d-1)$, denoted as $\pi(M)$. In view of (1.3) and (1.2) (applied to $\pi(Q)$),
(2.2) all s-membranes M in a cubillage Q in $Z(n, d)$ have $s_{n, d-2}$ vertices, and the vertex set of M (regarded as a collection in $2^{[n]}$) is strongly $(d-2)$-separated.

Two s-membranes are of an especial interest. These are the front side Z^{fr} and the rear side $Z^{\text {rear }}$ of $Z=Z(n, d)$. Following terminology in [DKK2??, DKK3??], their projections $\pi\left(Z^{\mathrm{fr}}\right)$ and $\pi\left(Z^{\text {rear }}\right)$ are called the standard and anti-standard cubillages in $Z(n, d-1)$, respectively.

Next we distinguish certain vertices in cubes. When $n=d$, the zonotope turns into the cube $C=(\varnothing \mid[d])$, and there holds:
(2.3) the front side $C^{\text {fr }}$ (rear side $C^{\text {rear }}$) of $C=(\varnothing \mid[d])$ has a unique inner vertex, namely, $t_{C}:=\{i \in[n]: d-i$ odd $\}\left(\right.$ resp. $h_{C}:=\{i \in[n]: d-i$ even $\}$.

When n is arbitrary and Q is a cubillage in $Z=Z(n, d)$, we distinguish vertices t_{C} and h_{C} of a cube $C(X \mid T)$ with $\left.T=\left(p_{1}<\ldots<p_{d}\right)\right)$ in Q in a similar way; namely,

$$
\begin{equation*}
t_{C}=X \cup\left\{p_{i}: d-i \text { odd }\right\} \text { and } h_{C}=X \cup\left\{p_{i}: d-i \text { even }\right\} \tag{2.4}
\end{equation*}
$$

Note that for each vertex v of Q, unless v is in $Z^{\text {rear, there is a unique cube } C \in Q}$ such that $t_{C}=v$, and symmetrically, unless v is in Z^{fr}, there is a unique cube $C \in Q$ such that $h_{C}=v$ (to see this, consider the line going through v and parallel to e_{d}).

Therefore, by drawing for each cube $C \in Q$, the edge-arrow from t_{C} to h_{C}, we obtain a directed graph whose connected components are directed paths going from $Z^{f r}-Z^{\text {rim }}$ to $Z^{\text {rear }}-Z^{\text {rim }}$. We call these paths bead-threads in Q. It is convenient to add to this graph the elements of $V\left(Z^{\text {rim }}\right)$ as isolated vertices, forming degenerate bead-threads, each going from a vertex to itself. Let B_{Q} be the resulting directed graph. Then
(2.5) B_{Q} contains all vertices of Q, and each component of B_{Q} is a bead-thread going from $Z^{\text {fr }}$ to $Z^{\text {rear }}$.

Note that the heights $|X|$ of vertices X along a bead-thread are monotone increasing when d is odd (whereas it is constant when d is even).

3 Proof of Theorem 1.3

Let r be odd and $n>r$. We have to show that
(3.1) if \mathcal{W} is a weakly r-separated collection in $2^{[n]}$, then $|\mathcal{W}| \leq\binom{ n}{\leq r+1}$.

This is valid when $r=1$ (see (1.4)) and is trivial when $n=r+1$. So one may assume that $3 \leq r \leq n-2$. We prove (3.1) by induction, assuming that the corresponding inequality holds for $\mathcal{W}^{\prime}, n^{\prime}, r^{\prime}$ when $n^{\prime} \leq n, r^{\prime} \leq r$, and $\left(n^{\prime}, r^{\prime}\right) \neq(n, r)$. Define the following subcollections in \mathcal{W} :

$$
\begin{aligned}
\mathcal{W}^{-} & :=\{A \subseteq[n-1]:\{A, A n\} \cap \mathcal{W} \neq \varnothing\}, \quad \text { and } \\
\mathcal{T} & :=\{A \subseteq[n-1]:\{A, A n\} \subseteq \mathcal{W}\}
\end{aligned}
$$

One easily shows that \mathcal{W}^{-}is weakly r-separated. Then by induction, $\left|\mathcal{W}^{-}\right| \leq\binom{ n-1}{\leq r+1}$. Also $|\mathcal{W}|=\left|\mathcal{W}^{-}\right|+|\mathcal{T}|$. Therefore, in view of the identity $\binom{n}{j}=\binom{n-1}{j}+\binom{n-1}{j-1}$ for any $j \leq n-1$, it suffices to show that

$$
\begin{equation*}
|\mathcal{T}| \leq\binom{ n-1}{\leq r} \tag{3.2}
\end{equation*}
$$

For $i=0,1, \ldots n-1$, define $\mathcal{T}^{i}:=\{A \in \mathcal{T}:|A|=i\}$. We rely on two claims.
Claim 1 For each i, the collection \mathcal{T}^{i} is strongly $(r-1)$-separated; moreover, \mathcal{T}^{i} is weakly ($r-2$)-separated.

Proof. Let $A, B \in \mathcal{T}^{i}$. Take an interval cortege $\left(I_{1}, \ldots, I_{r^{\prime}}\right)$ for A, B, and let for definiteness $I_{r^{\prime}} \subseteq A-B$. Then $\left(I_{1}, \ldots, I_{r^{\prime}}, I_{r^{\prime}+1}:=\{n\}\right)$ is an interval cortege for A and $B^{\prime}:=B n$. Since $|A|<\left|B^{\prime}\right|$ and $\max \left(A-B^{\prime}\right)<\max \left(B^{\prime}-A\right)=n$, and since A, B^{\prime} are weakly r separated, $r^{\prime}+1<r+2$. Then $r^{\prime} \leq r$, implying that A, B are $(r-1)$-separated. Since $|A|=|B|$ and r is odd, we also can conclude that A, B are weakly $(r-2)$-separated.

Now consider the zonotope $Z=Z(n-1, r)$. For $j=0,1, \ldots, n-1$, define $\mathcal{S}^{j}\left(\mathcal{A}^{j}\right)$ to be the set of vertices X of $Z^{\text {fr }}$ (resp. $Z^{\text {rear }}$) with $|X|=j$. We extend each collection \mathcal{T}^{i} to

$$
\begin{equation*}
\mathcal{D}^{i}:=\mathcal{T}^{i} \cup\left(\mathcal{S}^{i+1} \cup \ldots \cup \mathcal{S}^{n-1}\right) \cup\left(\mathcal{A}^{0} \cup \mathcal{A}^{1} \cup \ldots \cup \mathcal{A}^{i-1}\right) \tag{3.3}
\end{equation*}
$$

Claim $2 \mathcal{D}^{i}$ is weakly $(r-2)$-separated.

Proof. The vertex sets of Z^{fr} and $\pi\left(\mathrm{Z}^{\mathrm{fr}}\right)$ are essentially the same (regarding a vertex as a subset of $[n-1])$, and similarly for $Z^{\text {rear }}$ and $\pi\left(Z^{\text {rear }}\right)$. Since $\pi\left(Z^{\text {fr }}\right)$ and $\pi\left(Z^{\text {rear }}\right)$ are cubillages on $Z(n-1, r-1)$ (the so-called "standard" and "anti-standard" ones), (1.3) implies that both collections $V\left(Z^{\text {fr }}\right)=\mathcal{S}^{0} \cup \ldots \cup \mathcal{S}^{n-1}$ and $V\left(Z^{\text {rear }}\right)=\mathcal{A}^{0} \cup \ldots \cup \mathcal{A}^{n-1}$ are $(r-2)$-separated, and therefore, they are weakly $(r-2)$-separated as well.

Next, by (2.1)(i), each vertex X of $Z^{\text {fr }}$ is a k-interval with $k \leq(r-1) / 2$. Such an X and any subset $Y \subseteq[n-1]$ are k^{\prime}-intertwined with $k^{\prime} \leq 2 k+1$. Then $k^{\prime} \leq r$ and this holds with equality when X and Y are r-intertwined and Y surrounds X. It follows that X is weakly $(r-2)$-separated from any $Y \subseteq[n-1]$ with $|Y| \leq|X|$ (in particular, if $X \in \mathcal{S}^{j}$ and $j \geq i$, then X is weakly $(r-2)$-separated from each member of $\left.\mathcal{T}^{i} \cup \mathcal{A}^{0} \cup \ldots \cup \mathcal{A}^{i-1}\right)$.

Symmetrically, by (2.1)(ii), each vertex X of $Z^{\text {rear }}$ is the complement to $[n-1]$ of a k interval with $k \leq(r-1) / 2$. We can conclude that such an X is weakly $(r-2)$-separated from any $Y \subseteq[n-1]$ with $|Y| \geq|X|$.

Now the result is provided by the inequalities $|X|>|A|>\left|X^{\prime}\right|$ for any $X \in \mathcal{S}^{i+1} \cup$ $\ldots \cup \mathcal{S}^{n-1}, A \in \mathcal{T}^{i}$, and $X^{\prime} \in \mathcal{A}^{0} \cup \ldots \cup \mathcal{A}^{i-1}$.

By induction, $\left|\mathcal{D}^{i}\right| \leq\binom{ n-1}{\leq r-1}$. Then, using (2.2) (for $n-1$ and $r-2$), we have

$$
\begin{equation*}
\left|\mathcal{D}^{i}\right| \leq\binom{ n-1}{\leq r-1}=s_{n-1, r-2}=\left|V\left(Z^{\mathrm{fr}}\right)\right| . \tag{3.4}
\end{equation*}
$$

Let $\mathcal{S}^{\prime}:=\mathcal{S}^{0} \cup \mathcal{S}^{1} \cup \ldots \cup \mathcal{S}^{i}$ and $\mathcal{A}^{\prime}:=\mathcal{A}^{0} \cup \mathcal{A}^{1} \cup \ldots \cup \mathcal{A}^{i-1}$. Since $\mathcal{S}^{i+1} \cup \ldots \cup \mathcal{S}^{n-1}=$ $V\left(Z^{\mathrm{fr}}\right)-\mathcal{S}^{\prime}$, we obtain from (3.3) and (3.4) that

$$
\begin{equation*}
\left|\mathcal{T}^{i}\right|=\left|\mathcal{D}^{i}\right|-\left(\left|V\left(\mathrm{Z}^{\mathrm{fr}}\right)-\mathcal{S}^{\prime}\right|\right)-\left|\mathcal{A}^{\prime}\right| \leq\left|\mathcal{S}^{\prime}\right|-\left|\mathcal{A}^{\prime}\right| . \tag{3.5}
\end{equation*}
$$

We now finish the proof by using a bead-thread technique (see Section 2). Fix an arbitrary cubillage Q in $Z=Z(n-1, r)$. Let \mathcal{R}^{i} be the set of vertices X of Q with $|X|=i$, and let \mathcal{B} be the set of paths in the graph B_{Q} beginning at Z^{fr} and ending at $Z^{\text {rear. Since } r}$ is odd, each edge (X, Y) of B_{Q} is "ascending" (satisfies $\left.|Y|>|X|\right)$. This implies that each path $P \in \mathcal{P}$ beginning at \mathcal{S}^{\prime} must meet either \mathcal{R}^{i} or \mathcal{A}^{\prime}, and conversely, each path meeting $\mathcal{R}^{i} \cup \mathcal{A}^{\prime}$ begins at \mathcal{S}^{\prime}. This and (3.5) imply $\left|\mathcal{T}^{i}\right| \leq\left|\mathcal{R}^{i}\right|$. Summing up these inequalities for $i=0,1, \ldots, n-1$, we have

$$
|\mathcal{T}|=\sum_{i}\left|\mathcal{T}^{i}\right| \leq \sum_{i}\left|\mathcal{R}^{i}\right|=\left|V_{Q}\right|=s_{n-1, r-1}=\binom{n-1}{\leq r},
$$

yielding (3.2) and completing the proof of Theorem 1.3.

4 Weakly r-separated collections generated by cubillages

We have seen an interrelation between strongly *-separated collections on the one hand, and cubillages and s-membranes on the other hand (see (1.3),(2.2)). This section is
devoted to geometric aspects of the weak r-separation when r is odd. Being motivated by geometric constructions for maximal weakly 1-separated collections elaborated in [DKK1??, DKK2??], we explain how to construct maximal by size weakly r-separated collections by use of weak membranes, which are analogs of s-membranes in fragmentations of cubillages.

4.1 Fragmentation and weak membranes.

Let Q be a cubillage in $Z(n, d)$. The fragmentation of Q is the complex Q^{\equiv} obtained by cutting Q by the "horizontal" hyperplanes $H_{\ell}:=\left\{x \in \mathbb{R}^{d}: x(1)=\ell\right\}, \ell=1, \ldots, n-1$.

Such hyperplanes subdivide each cube $C=(X \mid T)$ of Q into pieces $C_{1}^{\equiv}, \ldots, C_{\bar{d}}^{\overline{\bar{d}}}$, where $C_{\bar{h}}^{\equiv}$ is the portion of C between $H_{|X|+h-1}$ and $H_{|X|+h}$, called a fragment of C (and of $\left.Q^{\equiv}\right)$. Let $S_{h}(C)$ denote h-th horizontal section $C \cap H_{|X|+h}$ of C; this is the convex hull of the set of vertices $\left(X \left\lvert\,\binom{ T}{h}\right.\right):=\{X \cup A: A \subset T,|A|=h\}$ (forming a hyper-simplex and turning into a simplex when $h=1$ or $d-1)$. We call $S_{h-1}(C)$ and $S_{h}(C)$ the lower and upper (horizontal) facets of the fragment $C \overline{\bar{h}}$, respectively. (Here $S_{0}(C)$ and $S_{d}(C)$ degenerate to the single points X and $X \cup T$, respectively.) The other facets of $C \overline{\bar{h}}$ are conditionally called vertical ones.

Note that the horizontal facets are "not fully seen" under the projection π. To make all facets of fragments of Q^{\equiv} visible, we look at them as though "from the front and slightly from below", i.e., by using the projection $\pi^{\epsilon}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d-1}$ defined by

$$
\begin{equation*}
x=(x(1), \ldots, x(d)) \mapsto(x(1)-\epsilon x(d), x(2), \ldots, x(d-1))=: \pi^{\epsilon}(x) \tag{4.1}
\end{equation*}
$$

for a sufficiently small $\epsilon>0$. (Compare π^{ϵ} with π.)
This projection makes slanting front and rear sides of objects in Q^{\equiv}. More precisely, for a closed set U of points in $Z=Z(n, d)$, let $U^{e, \text { fr }}\left(U^{\varepsilon, \text { rear }}\right)$ be the subset of U formed by the points $x \in\left(\pi^{\epsilon}\right)^{-1}\left(x^{\prime}\right) \cap U$ with $x(d)$ minimum (resp. maximum) for all $x^{\prime} \in \pi^{\epsilon}(U)$. We call it the ϵ-front (resp. ϵ-rear) side of U.

Obviously, $Z^{\epsilon, \text { fr }}=Z^{\text {fr }}$ and $Z^{\epsilon, \text { rear }}=Z^{\text {rear }}$, and similarly for any cube $C=(X \mid T)$ in Z. As to fragments of C, their ϵ-front and ϵ-rear sides are viewed as follows:
(4.2) for $h=1, \ldots, d, C_{h}^{\epsilon, \mathrm{fr}}=C_{h}^{\mathrm{fr}} \cup S_{h-1}(C)$ and $C_{h}^{\epsilon, \text { rear }}=C_{h}^{\text {rear }} \cup S_{h}(C)$.

So $C_{h}^{\epsilon, f r} \cup C_{h}^{\epsilon, \text { rear }}$ is just the boundary of $C_{\bar{h}}^{\overline{\bar{h}}}$.
Next we explain the notion of weak membranes. They represent certain $(d-1)$ dimensional subcomplexes of the fragmentation Q^{\equiv} of Q and use the projection π^{ϵ} (in contrast to strong membranes which deal with Q and π).

To introduce them, we slightly modify cyclic zonotopes in \mathbb{R}^{d-1}. Specifically, given a cyclic configuration $\Xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ as in (1.1), define $\psi_{i}^{\epsilon}:=\pi^{\epsilon}\left(\xi_{i}\right), i=1, \ldots, n$. When ϵ is small enough, $\Psi^{\epsilon}=\left(\psi_{1}^{\epsilon}, \ldots, \psi_{n}^{\epsilon}\right)$ obeys the condition (1.1)(b), though slightly
violates (1.1)(a). Yet we keep the term "cyclic configuration" for Ψ^{ϵ} as well, and consider the zonotope in \mathbb{R}^{d-1} generated by Ψ^{ϵ}, denoted as $Z^{\epsilon}(n, d-1)$.

Definition 4.1. A weak membrane, or, briefly, a w-membrane, of a cubillage Q in $Z(n, d)$ is a subcomplex M of the fragmentation Q^{\equiv} such that M (regarded as a subset of \mathbb{R}^{d}) is bijectively projected by π^{ϵ} to $Z^{\epsilon}(n, d-1)$.

A w-membrane M uses facets of fragments in $Q \equiv$ which are of two sorts, namely, "horizontal" and "vertical" ones as mentioned above. The set $\mathcal{M}^{\mathrm{w}}(Q)$ of w-membranes of Q is rich and forms a distributive lattice. To see this, for fragments $\Delta=C_{i}^{\equiv}$ and $\Delta^{\prime}=\left(C^{\prime}\right)_{j}^{\equiv}$ of Q^{\equiv}, let us say that Δ immediately precedes Δ^{\prime} if the ϵ-rear side of Δ and the ϵ-front side of Δ^{\prime} share a facet. In other words, either $C \neq C^{\prime}$ and $\Delta^{\text {rear }} \cap\left(\Delta^{\prime}\right)^{\mathrm{fr}}$ is a vertical facet, or $C=C^{\prime}$ and $j=i+1$. A nice property of this relation is that the directed graph whose vertices are the fragments in Q^{\equiv} and whose edges are the pairs $\left(\Delta, \Delta^{\prime}\right)$ of fragments such that Δ immediately precedes Δ^{\prime} is acyclic (see [DKK4??, DKK3??]).

It follows that the transitive closure of this relation forms a partial order on the fragments of Q^{\equiv}; denote it as $\left(Q^{\equiv}, \prec\right)$. To see that it is a lattice, associate with each w^{-} membrane M the set $Q^{\equiv}(M)$ of fragments in Q^{\equiv} lying in the region of $Z(n, d)$ between Z^{fr} and M. One easily shows that for fragments Δ, Δ^{\prime} of Q^{\equiv}, if Δ immediately precedes Δ^{\prime} and if $\Delta^{\prime} \in Q^{\equiv}(M)$, then $\Delta \in Q^{\equiv}(M)$ as well. This implies a similar property for fragments Δ, Δ^{\prime} with $\Delta \prec \Delta^{\prime}$. So $Q^{\equiv}(M)$ is an ideal of $\left(Q^{\equiv}, \prec\right)$. A converse property is true as well. Thus,
(4.3) $\mathcal{M}^{\mathrm{w}}(Q)$ is a distributive lattice in which for $M, M^{\prime} \in \mathcal{M}^{\mathrm{w}}(Q)$, the w-membranes $M \wedge M^{\prime}$ and $M \vee M^{\prime}$ satisfy $Q^{\equiv}\left(M \wedge M^{\prime}\right)=Q^{\equiv}(M) \cap Q^{\equiv}\left(M^{\prime}\right)$ and $Q^{\equiv}\left(M \vee M^{\prime}\right)=$ $Q^{\equiv}(M) \cup Q^{\equiv}\left(M^{\prime}\right)$; the minimal and maximal elements of this lattice are the smembranes Z^{fr} and $Z^{\text {rear }}$, respectively.

Next, if $M \in \mathcal{M}^{\mathrm{w}}(Q)$ is different from Z^{fr}, then $Q^{\equiv}(M) \neq \varnothing$. Take a maximal (w.r.t. \prec) fragment Δ in $Q^{\equiv}(M)$. Then $\Delta^{\epsilon, \text { rear }}$ is entirely contained in M and the set $Q^{\equiv}(M)-\{\Delta\}$ is again an ideal of $\left(Q^{\equiv, \prec)}\right.$; so it is expressed as $Q^{\equiv}\left(M^{\prime}\right)$ for a w^{-} membrane M^{\prime}. Moreover, M^{\prime} is obtained from M by replacing the disk $\Delta^{\epsilon, \text { rear }}$ by $\Delta^{\epsilon, \mathrm{fr}}$. We call the transformation $M \mapsto M^{\prime}$ the lowering flip in M using Δ, and call the reverse transformation $M^{\prime} \mapsto M$ the raising flip in M^{\prime} using Δ. As a result, we obtain that
(4.4) for any $M \in \mathcal{M}^{\mathrm{w}}(Q)$, there exists a sequence of w-membranes $M_{0}, M_{1}, \ldots, M_{k} \in$ $\mathcal{M}^{\mathrm{w}}(Q)$ such that $M_{0}=Z^{\mathrm{fr}}, M_{k}=M$, and for $i=1, \ldots, k, M_{i}$ is obtained from M_{i-1} by the raising flip using some fragment in Q^{\equiv}.

4.2 Weakly r-separated collections via w-membranes.

Based on Theorem 1.4 (see [DKK4??] for the proof), we establish the following

Theorem 4.2. Let r be odd and $d=r+2$. For each w-membrane M of a cubillage Q in $Z=Z(n, d)$, its spectrum $V(M)$ has size $w_{n, r}$ and constitutes a maximal by size weakly r separated collection in $2^{[n]}$.

Proof. For $M \in \mathcal{M}^{\mathrm{w}}(Q)$, consider a sequence $Z^{\mathrm{fr}}=M_{0}, M_{1}, \ldots, M_{k}=M$ as in (4.4). Let $M_{i}(i>0)$ be obtained from M_{i-1} by the raising flip using a fragment Δ_{i} of Q^{\equiv}. Since $V\left(Z^{\mathrm{fr}}\right)$ is strongly r-separated and $V\left(Z^{\mathrm{fr}}\right)=s_{n, r}=w_{n, r}$ (see (2.2)), it suffices to show that if $V\left(M_{i-1}\right)$ has size $w_{n, r}$ and is weakly r-separated, then so is $V\left(M_{i}\right)$.

To show this, let $\Delta:=\Delta_{i}=C_{\bar{h}}^{\equiv}$ for a cube $C=(X \mid T=(p(1)<\ldots<p(d)))$ and $h \in[d]$. Then $V\left(C^{\text {fr }}\right)=V\left(C^{\text {rim }}\right) \cup\left\{t_{C}\right\}$ and $V\left(C^{\text {rear }}\right)=V\left(C^{\text {rim }}\right) \cup\left\{h_{C}\right\}$, where $t_{C}=X p(2) p(4) \ldots p(d-1)$ and $h_{C}=X p(1) p(3) \ldots p(d)$ (see (2.3)). Let R be the set of vertices in $C^{\text {rim }} \cap \Delta$, and let $r^{\prime}:=(d-1) / 2$. Then r^{\prime} is an integer, t_{C} lies in the section $S_{r^{\prime}}(C)$, and h_{C} lies in $S_{r^{\prime}+1}(C)$. Three cases are possible.
Case 1: $h \leq r^{\prime}$. Since the vertices of Δ are formed by the sections $S_{h-1}(C)$ and $S_{h}(C)$,

$$
V(\Delta)=\left(X \left\lvert\,\binom{ T}{h-1}\right.\right) \cup\left(X \left\lvert\,\binom{ T}{h}\right.\right) \quad \text { and } \quad R \subseteq V\left(\Delta^{\mathrm{fr}}\right) \cup V\left(\Delta^{\text {rear }}\right)
$$

Also $V\left(\Delta^{\mathrm{fr}}\right) \subseteq V\left(\Delta^{\epsilon, \mathrm{fr}}\right)$ and $V\left(\Delta^{\text {rear }}\right) \subseteq V\left(\Delta^{\epsilon, \text { rear }}\right)$. When $h<r^{\prime}$, all vertices of Δ belong to $C^{\text {rim }}$, implying $V\left(\Delta^{\epsilon, \mathrm{fr}}\right)=R=V\left(\Delta^{\epsilon, \text { rear }}\right)$. And when $h=r^{\prime}$, the only vertex of Δ not in R is t_{C}. Since $t_{C} \in V\left(C^{\text {fr }}\right)$, t_{C} belongs to $\Delta^{\epsilon, \mathrm{fr}}$. But t_{C} also lies in the upper facet $S_{r^{\prime}}(C)$, and this facet is included in $\Delta^{\epsilon, \text { rear }}$. Hence $t_{C} \in \Delta^{\epsilon, \text { fr }} \cap \Delta^{\epsilon, \text { rear }}$, implying $V\left(\Delta^{\epsilon, \mathrm{fr}}\right)=V\left(\Delta^{\epsilon, \text { rear }}\right)$.
Case 2: $h \geq r^{\prime}+2$. This is "symmetric" to the previous case.
Thus, in both cases the raising flip $M \mapsto M^{\prime}$ using Δ gives $V(M)=V\left(M^{\prime}\right)$.
Case 3: $h=r^{\prime}+1$. This case is most important. Here the lower facet $S_{h-1=r^{\prime}}(C)$ of Δ contains t_{C}, and the upper facet $S_{h=r^{\prime}+1}(C)$ contains h_{C}. Hence $t_{C} \in V\left(\Delta^{\epsilon, \mathrm{fr}}\right)$ and $h_{C} \in V\left(\Delta^{\epsilon, \text { rear }}\right)$. On the other hand, neither t_{C} belongs to $\Delta^{\epsilon, \text { rear }}\left(=\Delta^{\text {rear }} \cup S_{r^{\prime}+1}(C)\right.$), nor h_{C} belongs to $\Delta^{\epsilon, \mathrm{fr}}\left(=\Delta^{\mathrm{fr}} \cup S_{r^{\prime}}(C)\right)$.

It follows that $V\left(\Delta^{\epsilon, \text { rear }}\right)=\left(V\left(\Delta^{\epsilon, \text { fr }}\right)-\left\{t_{C}\right\}\right) \cup\left\{h_{C}\right\}$. Hence the raising flip $M \mapsto M^{\prime}$ using Δ replaces t_{C} by h_{C}, while preserving the other vertices of the w -membrane. Also the vertices of Δ different from t_{C}, h_{C} form just the collection of sets $X S$ such that S runs over $\mathcal{N}^{\downarrow}(\widetilde{P}, \widetilde{Q})$, the set of lower neighbors of $\widetilde{P}:=p(2) p(4) \ldots p(d-1)$ and $\widetilde{Q}:=$ $p(1) p(3) \ldots p(d)$. Now applying Theorem 1.4 to $\mathcal{W}:=V(M), X, \widetilde{P}, \widetilde{Q}$, we conclude that $V\left(M^{\prime}\right)$ is weakly r-separated, as required.

Note that the case $r=1$ of Theorem 4.2 is obtained in [DKK2??].
A natural question is whether any two size-maximal weakly separated collections in $2^{[n]}$ can be connected by a sequence of flips. This is strengthened in the following conjecture (which was proved for $r=1$ in [DKK2??]):

Conjecture 4.3. for r odd, any size-maximal weakly r-separated collection in $2^{[n]}$ is representable as the spectrum of a weak membrane of some cubillage Q in $Z(n, r+2)$.

5 Triangulations, hyper-combies, and cubillages

Consider the polytope $P=P(n, d-1)$ that is the section of the zonotope $Z(n, d)$ by the hyperplane $H_{1}=\left\{x \in \mathbb{R}^{d}: x(1)=1\right\}$, called the cyclic polytope with n vertices of dimension $d-1$. Let $\mathcal{T}(P)$ be the set of triangulations of P that are subdivisions of P into $(d-1)$-dimensional simplexes whose vertices are vertices of P (i.e., occur in Ξ as in (1.1)). It has been known (see [OS??] for details) that
(5.1) for any $\tau \in \mathcal{T}(P(n, d-1))$, there exists a cubillage Q in $Z(n, d)$ whose section by H_{1} (formed by the simplexes $C \cap H_{1}$ for cubes C with the root \varnothing in Q) is τ.

To define more general objects, consider the projection π^{ϵ} and the modified zonotope $Z^{\epsilon}(n, d-1)$ as in ??. Let $\mathcal{F}(n, d)$ be the set of facets in fragments $C_{\bar{h}}^{\equiv}$ of all (abstract) cubes $C=(X \mid T)$ in $Z(n, d)$ (running $X, T \subset[n]$ with $|T|=n$ and $X \cap T=\varnothing$).

Definition 5.1. A hyper-combi K is a subdivision of $Z^{\epsilon}(n, d-1)$ into $(d-1)$-dimensional polytopes of the form $\pi^{\epsilon}(F)$, where $F \in \mathcal{F}(n, d)$.
(In case $d=3$, this matches the notion of a (quasi-)combi studied in [DKK1??, DKK2??].) In particular, any w-membrane M of a cubillage in $Z(n, d)$ generates the hyper-combi $\pi^{\epsilon}(M)$. An important special case arises when M is a principal w -membrane in level $\ell \in[1, n-1]$. This means that M is the section by $H_{\ell}=\left\{x \in \mathbb{R}^{d}: x(1)=\ell\right\}$ of some cubillage in $Z=Z(n, d)$ to which the boundary parts

$$
Z_{\ell \uparrow}^{\mathrm{fr}}:=Z^{\mathrm{fr}} \cap\left\{x \in \mathbb{R}^{d}: x(1) \geq \ell\right\} \quad \text { and } \quad Z_{\ell \downarrow}^{\text {rear }}:=Z^{\text {rear }} \cap\left\{x \in \mathbb{R}^{d}: x(1) \leq \ell\right\}
$$

are added, where $Z^{\text {fr }}$ and $Z^{\text {rear }}$ are the (dually fragmented) front and rear sides of Z. Then the essential ("horizontal") part of a principal w-membrane in level 1 is just a triangulation in $\mathcal{T}(P(n, d-1))$ (while for an arbitrary ℓ it is known as "hypersimplicial subdivision" of the corresponding section of the zonotope, see [OS??]).

Conjecture 5.2. For any hyper-combi K in $Z^{\epsilon}(n, d-1)$ with d odd, there exists a cubillage Q in $Z(n, d)$ and a w-membrane M in (the fragmentation) of Q such that $\pi^{\epsilon}(M)=K$.

The validity of Conjecture 5.2 for $d=3$ is proved in [DKK2??] (where the desired Q and M are explicitly constructed for a arbitrary (quasi-)combi K in $Z^{\epsilon}(n, 2)$); also we are able to prove this for $d=5$.

Next, Oppermann and Thomas [OT2??] revealed a nice property of triangulations of a cyclic polytope $P=P(n, 2 r)$ having an even dimension $2 r=d-1$. More precisely, identify each r-dimensional face in a triangulation of τ (regarded as a complex) with the corresponding increasing $(r+1)$-tuple in $[n]$. Let $e(\tau)$ denote the set of sparse r-faces in τ, where a face (tuple) is called sparse if it has no pair $i, i+1$. For increasing tuples $A=\left(a_{0}, \ldots, a_{r}\right)$ and $B=\left(b_{0}, \ldots, b_{r}\right)$, one says that A intertwines B if $a_{0}<b_{0}<a_{1}<b_{1}<$
$\cdots<a_{r}<b_{r}$, and a collection \mathcal{A} of $(r+1)$-tuples is called non-intertwining if no two tuples in \mathcal{A} intertwine. In other words, \mathcal{A} is weakly $(2 r-1=d-2)$-separated (since all elements of \mathcal{A} have the same size). By [OT2??],
(5.2) (a) For $P=P(n, 2 r)$ and $\tau \in \mathcal{T}(P)$, the collection $e(\tau)$ has cardinality $\binom{n-r-1}{r}$ and is non-intertwining. (b) Conversely, any non-intertwining collection \mathcal{A} of $\binom{n-r-1}{r}$ sparse $(r+1)$-tuples in [n] represents $e(\tau)$ for a unique $\tau \in \mathcal{T}(P)$.

We can use this as follows. Consider \mathcal{A} and τ as in (5.2)(b). By (5.1), there exists a cubillage Q in $Z=Z(n, d)$ such that τ is the section of Q by H_{1}. Then each element $A \in$ $\mathcal{A}=e(\tau)$ labels a vertex of Q contained in level r. This vertex is not in Z^{fr}, which follows from (2.1) and the fact that A is sparse. Let M be the principal w-membrane for Q in level r. Then $\left|V\left(Z_{r \uparrow}^{\mathrm{fr}}\right)\right|+|\mathcal{A}|+\left|V\left(Z_{(r-1) \downarrow}^{\text {rear }}\right)\right| \leq|V(M)|=w_{n, d-2}$ (in view of Theorem 4.2). Moreover, the inequality here holds with equality (which is seen by directly counting the first and third summands and using $|\mathcal{A}|=\binom{n-r-1}{r}$).

As a consequence, (5.1) implies a weakened version of Conjecture 4.3: for d odd, any size-maximal collection of weakly $(d-2)$-separated subsets $A \subset[n]$ with $|A|=$ $(d-1) / 2$ is contained in the spectrum of a w-membrane of some cubillage in $Z(n, d)$.

References

[1] V.I. Danilov, A.V. Karzanov and G.A. Koshevoy, Combined tilings and the purity phenomenon on separated set-systems, Selecta Math. New Ser. 23 (2017) 1175-1203.
[2] V.I. Danilov, A.V. Karzanov and G.A. Koshevoy, On interrelations between strongly, weakly and chord separated set-systems, arXiv:1805.09595 [math.CO], 2018, 30 pp.
[3] V.I. Danilov, A.V. Karzanov and G.A. Koshevoy, The weak separation in higher dimensions, arXiv:1904.09798v3[math.CO], 2019, 28 pp.
[4] V.I. Danilov, A.V. Karzanov and G.A. Koshevoy, Cubillages of cyclic zonotopes, English Translation in Russian Math. Surveys 74 (6) (2019) 1013-1074.
[5] P. Galashin, Plabic graphs and zonotopal tilings, Proc. London Math. Soc. 117 (4) (2018) 661-681.
[6] P. Galashin and A. Postnikov, Purity and separation for oriented matroids, ArXiv:1708.01329[math.CO], 2017.
[7] B. Leclerc and A. Zelevinsky, Quasicommuting families of quantum Plücker coordinates, Amer. Math. Soc. Trans., Ser. 2181 (1998) 85-108.
[8] J. Olarte and F. Santos, Hypersimplicial subdivisions, arXiv:1906.05764[math.CO].
[9] A. Oppermann and H. Thomas, Triangulations of cyclic polytopes, in:DMTCS proc. (FPSAC 2012, Nagoya), AR, 2012, 619-630.

[^0]: *danilov@cemi.rssi.ru.
 †akarzanov7@gmail.com
 $\ddagger_{\text {koshevoyga@gmail.com. Supported in part by grant RSF 16-11-10075. }}^{\text {. }}$

