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Abstract. A c-arrangement is an arrangement of dimension-c subspaces such that
all their sums have dimension a multiple of c. Matroids arising as normalized rank
functions of c-arrangements are also known as multilinear matroids. We prove that
there is no algorithm to decide whether a matroid is multilinear. In particular there
is no algorithm to decide whether there exists a representable multiple of a given
polymatroid.

Keywords: subspace arrangements, c-arrangements, matroids, polymatroids, word
problems

1 Introduction

The main objects in this extended abstract are matroids and their generalizations poly-
matroids.

Definition 1.1. A polymatroid is a pair of a ground set E together with a rank function
r : P(E)→ R such that r is

(a) monotone, i.e. for each S ⊆ T ⊆ E it holds that r(S) ≤ r(T) and

(b) submodular, i.e. for each S, T ⊆ E it holds that r(S) + r(T) ≥ r(S ∪ T) + r(S ∩ T).

The pair (E, r) is a matroid if r takes only integer values and r(S) ≤ |S| holds for all
S ⊆ E.

It is common to study matroid representations by vector configurations or equiv-
alently hyperplane arrangements over some field, for an overview see [9, Chapter 6].
Goresky and MacPherson extended this notion by introducing c-arrangements in the con-
text of stratified Morse theory [3]. For a fixed integer c ≥ 1, these are arrangements of
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c-dimensional subspaces in a vector space over a field such that the dimension of each
sum of a subset of these subspaces has dimension a multiple of c (this is dual, but equiv-
alent, to the definition of [3]). This condition ensures that the associated normalized
rank function is the rank function of a matroid.

Matroids which are representable as c-arrangements are also called multilinear ma-
troids. The following is the multilinear representability problem over a field F posed by
Björner in [1].

Problem 1.2. Given a matroid M, does there exist a c ≥ 1 such that M admits a c-arrangement
representation over F?

Our main contribution is a computability theoretic result for c-arrangement repre-
sentations.

Theorem 1.3. The multilinear representability problem is undecidable. This is true for any field
F. Moreover, the problem remains undecidable if the field remains unspecified, or is allowed to be
taken from some given set.

Note that c-arrangement rank functions are polymatroids. In particular, it is im-
possible to test whether a polymatroid r : P(E) → R has a positive multiple which
admits a linear representation over any given field F. Here a linear representation of a
polymatroid r on E is a collection of subspaces {Ue}e∈E of a vector space V such that
dim (∑s∈S Us) = r(S) holds for all S ⊆ E.

Motivation and Future Work

A primary motivation for this work is that extensions of these results to limits of rank
functions have implications for rank inequalities. The following is a "limit variant" of the
above, over a single field:

Problem 1.4. Let F be a field. Given a polymatroid M = (E, r), does there exist a sequence of
polymatroids (Mi)

∞
i=1 with Mi = (Ei, ri) such that each Mi has a positive multiple ni · ri which

is representable over F and such that r = limi→∞ ri?

For a given field F, consider the set of all representable polymatroids on the ground
set [n], and identify their rank functions with points of RP([n]). The convex hull of these
rank functions forms a convex cone Γn,F, and its closure Γn,F is therefore defined by the
linear inequalities it satisfies. These include Ingleton and Kinser’s various inequalities
([4], [5]). An undecidability result for the limit problem above would imply that there is
no algorithm which, given n ∈N, outputs a finite set of linear inequalities defining Γn,F.
It is not known whether these cones are polyhedral; undecidability for limits would give
some evidence that they are not. We believe such a theorem can be proved with the
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methods presented here, and hope to include it in a version of our preprint in the near
future.

Representable polymatroids are also representable as joint entropy functions of dis-
crete random variables. Thus, information theoretic inequalities such as the Zhang–
Yeung inequalities are also rank inequalities of the cones Γn,F, see [11]. Limits of rep-
resentable polymatroids are closely related to limits of entropy functions introduced by
Matúš as almost entropic matroids [7].

Main Ideas in the Proof

The proof of Theorem 1.3 reduces subspace arrangement representability to the uniform
word problem for finite groups (UWPFG) which was shown to be undecidable by Slobod-
skoi [10].

Instance A finite presentation 〈S | R〉, that is S is a finite set of generators and R a finite
set of relations in S, together with a word w which is a product of elements in S
and their inverses.

Question Does every group homomorphism from the group defined by the presentation
〈S | R〉 to a finite group G map w to the identity in G?

The finite groups G above can equivalently be replaced with matrix groups, by Mal’cev’s
theorem.

The main idea of the proof is a non-commutative von Staudt construction, encoding
a set of multiplicative relations between matrices of unspecified size. This approach is
inspired by the construction of Dowling geometries from finite groups [2]. This yields
combinatorial data and a corresponding representation problem ("weak" representation
as a c-arrangement) which is easily shown to be undecidable. We then define an op-
eration, which we call inflation, that translates the "weak" problem into a finite set of
c-arrangement representation problems.

The present note is an extended abstract. A preliminary version of the full paper is
available on the arXiv [6]. Due to space limitations many details are omitted here, but
all of them can be found in the preprint.

2 Preliminaries

Definition 2.1. Let V be a vector space over a field F and consider a subspace arrangement
A = {Ui}i∈I where each Ui is a subspace of V. For S ⊆ A, we use the notation AS :=
∑U∈S U.

(a) We call A a c-admissible arrangement if for any subset X ⊆ A the dimension of
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∑U∈X U is a multiple of c. It is a c-arrangement if in addition each of its subspaces
has dimension c.

(b) For any c ≥ 1 we denote by rc
A the normalized rank function rc

A : P(A) → Q by
setting rc

A(X) := 1
c dim(AX).

Hence, an arrangement A of c-dimensional subspaces is a c-arrangement if and only
if its normalized rank function rc

A takes only integral values. Next we state its relation
to matroid representations.

Definition 2.2. Fix a matroid M on the ground set E with rank function r.

(a) A matroid M = (E, r) is called multilinear of order c over a field F if there exists a
c-arrangement A such that their (normalized) rank functions agree, i.e. r = rc

A for
a suitable identification of E and A. We say that the c-arrangement A represents the
matroid M in that case.

(b) To define a weaker representability notion we additionally fix a basis B of the ma-
troid M. If there exists an arrangement A = {Ae}e∈E of c-dimensional subspaces
such that r(X) ≥ rc

A(X) holds for all subsets X ⊆ E and r(Y) = rc
A(Y) for all

subsets Y ⊆ E with |Y \ B| ≤ 1 we say that A weakly represents M with respect to
the basis B. In this case, we also say A is a weak c-representation.

3 A Non-Commutative von Staudt Construction

Before describing the details of the non-commutative von Staudt construction and its
relation to subspace arrangements we state two short lemmas.

Lemma 3.1. Let F be a field and A, B, C ∈ Mk(F) any k× k matrices. Then the block matrix[ −Ik 0 C
A −Ik 0
0 B −Ik

]
has rank 2k + rk(BAC− Ik).

Lemma 3.2. Let σ ∈ Sk be a permutation with no fixed points, i.e. a derangement, and Aσ the
corresponding k× k permutation matrix over some field F. Then rk(Aσ − Ik) ≥ k

2 .

Definition 3.3. A matroid M is a triangle matroid if it is of rank 3 and there exists a
basis {b(1), b(2), b(3)} such that all remaining elements of M are contained in the flats
spanned by {b(1), b(2)}, {b(1), b(3)} or {b(2), b(3)}. We call the flats {b(1), b(2)}, {b(1), b(3)}
or {b(2), b(3)} the sides of the triangle.

Before considering c-arrangement representations, we investigate weak subspace ar-
rangement representations of a triangle matroid with respect to the basis {b(1), b(2), b(3)}.
The triangle matroid will be constructed from a group presentation.
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Definition 3.4. Let 〈S | R〉 be a finite presentation. Using some Tietze transformations if
necessary, we can assume that any relation in R is of length three.

We now construct a triangle matroid NS,R on the ground set ES,R with the basis
B = {b(1), b(2), b(3)} by describing its dependent flats FS,R of rank 2, where we regard
the indices cyclically modulo 3:

ES,R :={b(i), e(i), x(i), x−1(i) | 1 ≤ i ≤ 3 and x ∈ S},
FS,R :={

⋃
a∈ES,R

{a(i)} ∪ {b(i+1)} | for any fixed 1 ≤ i ≤ 3} ∪

{{x(i), x−1(j)
, e(k)} | for x ∈ S and pairwise different 1 ≤ i, j, k ≤ 3} ∪

{{e(1), e(2), e(3)}} ∪ {{x(2), y(1), z(3)} | for any xyz ∈ R}.

In the following theorem we establish the connection between the UWPFG and weak
c-arrangement representations. Without loss of generality we can assume that that both
the relations and the word w are of the length three.

Theorem 3.5. Consider a UWPFG instance given by finite presentation 〈S | R〉 and an element
w ∈ S. Then, the answer to this instance is negative, i.e. there exists a finite group G with a
homomorphism ϕ : GS,R → G and ϕ(w) 6= eG, if and only if there exists a weak c-representation
A = {Ae}e∈ES,R over a field F of the matroid NS,R with respect to the basis {b(1), b(2), b(3)} such
that

rc
A({w(1), e(1)}) > 1. (3.1)

This theorem crucially relies on Malcev’s theorem, stating that finitely generated
matrix groups are residually finite. The reminder of the proof follows standard ideas,
though they become more technical in this setting. A frequently used tool is Lemma 3.1
in connection with the circuits of the form {x(2), y(1), z(3)}.

4 Algebraic Inflation

We develop an algebraic inflation technique to produce a c-arrangement from a weak c-
representation. The inflation consists of two steps. Both steps use an elementary inflation
procedure which we describe first.

4.1 Elementary Inflation

Let U = {Ue}e∈E be a subspace arrangement, c ∈ N and S ⊆ E a subset. Furthermore,
choose a vector space W of dimension at least c. Intuitively, we enlarge each subspace
Ue with e ∈ S by a generic c-dimensional subspace of W.
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Formally, denote the ambient vector space of U by V and embed V together with the
arrangement U in a larger vector space Ṽ of large enough dimension. Let S ⊆ E and
W ≤ Ṽ be a subspace of dimension at least c. Note that W may intersect V non-trivially.
We define a new subspace arrangement Ũ as follows.

(a) Choose |S|-many generic subspaces W1, . . . , W|S| of W each of dimension c.

(b) Let S = {s1, . . . , s|S|}. The new subspace arrangement Ũ lives in Ṽ and consists
of the subspaces Ũsi := Usi + Wi for i = 1, . . . , |S| together with Ũe := Ue for all
e ∈ E \ S.

We note that taking Ṽ of dimension dim(V + W) is sufficient.

Remark 4.1. Up to an automorphism of Ṽ fixing V, a subspace W ≤ Ṽ is determined by
its dimension together with its intersection with V. This will suffice for our uses of this
construction, and we will give this data instead of constructing W, Ṽ in what follows.

Definition 4.2. The arrangement resulting from an application of the elementary infla-
tion construction above to the arrangement U , the subset S ⊆ E, and a subspace W of
dimension d satisfying W ′ = W ∩V will be denoted by EI c(U , S, d, W ′).

4.2 Extensions and Full Arrangements

Before describing the details of inflation, we define a general class of subspace arrange-
ments that arise from the inflation steps which we will call extensions. The main idea of
what follows is to inflate weak representations outside of the subspace spanned by the
basis of the matroid in such a way that, after sufficiently many applications of the pro-
cedure, the ranks of the subspaces no longer depend on the given weak representation
but only on the combinatorics of the matroid.

Definition 4.3. Let U = {Ue}e∈E be a subspace arrangement in a vector space V and let
M = (E, r) be a triangle matroid with a distinguished basis B. We call U an extension of a
weak c-representation of M with respect to B, or for short an extension of M, if {Ue ∩UB}e∈E
is a weak c-representation of M with respect to B and we have for every T ⊆ E and
D ⊆ B

dim(UT ∩UD) ≤ c(r(T) + r(D)− r(T ∪ D)). (4.1)

If inflations of weak c-arrangements are to be extensions, it follows they may never
modify the dimensions of subspaces corresponding to the distinguished basis. Further,
if U = {Ue}e∈E is an extension of a weak c-representation of M and its rank function
depends only on the combinatorics of M, the dimension of UX ∩UB must not depend
on the original weak c-representation. The following definition of a defect gives the
difference between the dimension of each intersection UX ∩UB and what it ought to be.
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Definition 4.4. Let M = (E, r) be a triangle matroid with a distinguished basis B and
U = {Ue}e∈E an extension of a weak c-representation of M with respect to B. For a
subset S ⊆ E we define the defect of S to be defU (S) = c · r(S)− dim(US ∩UB). We call
a subset S ⊆ E full with respect to the basis B, or just full for short, if defU (S) = 0.

4.3 An Inflation Step

b(1) b(2)x(1) y(1)

(a) Inflation of the pair (x, y).

b(1) b(2)
P

x(1) y(1)

(b) Inflation with respect to the basis B.

Figure 1: The two inflation steps.

Let M = (E, r) be a triangle matroid and U = {Ue}e∈E an extension of a weak c-
representation of M with respect to B. We now describe an inflation procedure that given
a subset S ⊆ E \ B yields a subspace arrangement I(U , S) in which S is full. In this
construction, we assume that any proper subset of S is full in U . The procedure is split
up into two steps.

Step 1 We first perform an elementary inflation to the subset S. We call this step S-
inflation. For cases of the form S = {x, y}, with both x and y lying on the same side
of the triangle of M, this is depicted in Figure 1a.

We elementary inflate by setting U 1 := EI c(U , S, c(|S|− 1)+defU (S), 0). At the end
of this step, we have added a c-dimensional subspace to each Us for s ∈ S. Every
proper subset of m of these c-dimensional subspaces spans a subspace of total
dimension m · c. However, taken all together they span a subspace of dimension
c(|S| − 1) + defU(S), which is in general less than c|S|.

Step 2 As second step we inflate the sum of these subspaces with respect to the basis B
which we call B-inflation. Again, the case of S being equal to two points lying on
the same side of the triangle of M is depicted in Figure 1b.
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While the previous step did not depend on M being a triangle matroid, this step
does: Consider the subset CM(S) ⊆ B such that r(S) = r(S∪CM(S)) = rM(CM(S)).
If it exists, it is unique. Otherwise, we write CM(S) = ∅, and in this case it follows
that defU (S) = 0.

Let W ′ be a generic defU (S)-dimensional subspace of U1
CM(S) or 0 if CM(S) = ∅.

Then we elementary inflate again by setting U 2 := EI c(U 1, S, c|S|, W ′).

At the end of this step we have added disjoint c-dimensional subspaces to each Us
for s ∈ S such that S is a full subset in U 2. We set I(U , S) := U 2.

The next theorem describes the difference of the rank functions after both inflation steps.

Theorem 4.5. Let U be an extension of a weak c-representation of a triangle matroid M = (E, r)
with respect to a distinguished basis B. Let S ⊆ E \ B and assume that every subset S′ ( S is
full. Let U ′ = I(U , S) be the inflation.

Then if A ⊆ E is any subset disjoint from S and Z ⊆ S, we have:

rc
U ′(A ∪ Z) =

{
rc
U (A ∪ Z) + 2|Z|, Z ( S,

rc
U (A ∪ S ∪ CM(S)) + 2|S| − 1, Z = S,

where CM(S) is the unique subset of B such that r(S) = r(S ∪ CM(S)) = rM(CM(S)), or ∅ if
it does not exist.

The last theorem enables us to prove that S is full in the inflation I(U , S).

Corollary 4.6. Let U be an extension of a weak c-representation of a triangle matroid M = (E, r)
with respect to a distinguished basis B. Let S ⊆ E \ B such that every S′ ( S is full and let
U ′ = I(U , S) be the inflation. Then U ′ is an extension of M and S is full in U ′.

5 Combinatorial Inflation

This section describes a combinatorial inflation procedure for polymatroids which mir-
rors the algebraic one described in the previous section.

Definition 5.1. Let M = (E, r) be a triangle matroid with a distinguished basis B. We
call a polymatroid g defined on E an extension of M if for all C ⊆ B and S ⊆ E it satisfies

g(C) + g(S)− g(S ∪ C) = r(C) + r(S)− r(S ∪ C). (*)

The condition in Equation (*) reflects the condition of an extension given in Defini-
tion 4.3. It ensures that subspace arrangements representing g are weak c-representations
of M when intersected with the subspace corresponding to B. Note that applying (*) with
S = C implies g(C) = r(C) for all C ⊆ B.
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We define a combinatorial inflation operation on the family of all polymatroid exten-
sions g : P(E) → R≥0 of a triangle matroid M = (E, r) with a distinguished basis B.
This mirrors the algebraic construction as specified in Theorem 4.5.

Definition 5.2. Given g : P(E) → R≥0 which is a polymatroid extension of a triangle
matroid M with distinguished basis B, together with a subset S ⊆ E \ B, we define the
inflation g′ as follows: let A ⊆ E be any subset disjoint from S, and let Z ⊆ S. Then we
define

g′(A ∪ Z) :=

{
g(A ∪ Z) + 2|Z|, Z ( S,
g(A ∪ S ∪ CM(S)) + 2|S| − 1, Z = S,

where CM(S) is the unique subset of B such that r(S) = r(S ∪ CM(S)) = rM(CM(S)), or
∅ if it does not exist. The rank function g′ resulting from this construction, applied to g
and the subset S, will be denoted by Icomb(g, S). The polymatroid Icomb(g, S) is again
an extension of M

Given a weak c-arrangement A and its matroid, one can iteratively inflate each at
every subset, in such a way that every subset is full in the resulting extension of A.
The main part of the next theorem is that the algebraic process is compatible with the
combinatorial one, if inflations are performed in an appropriate order.

Theorem 5.3. Let M = (E, r) be a triangle matroid with distinguished basis B. Then there is a
polymatroid extension g of M such that M has a weak c-representation with respect to B if and
only if c · g has a subspace arrangement representation U , that is rc

U = g.
Moreover, given a weak c-representation A of M, the subspace arrangement U representing

c · g can be chosen to be an extension of A.

6 Bases and Separation

This section has two main purposes. The first is to translate questions about polyma-
troids and c-admissible arrangements to questions about matroids and c-arrangements.
The second is more directly related to inflations and the von Staudt construction: The-
orem 5.3 gives a method by which to iteratively inflate a weak c-representation A of a
triangle matroid into a c-admissible subspace arrangement U . This construction gives an
arrangement of a combinatorial type that does not depend on A.

We want to apply group-theoretic undecidability results to this construction, where
the weak arrangement A is constructed from a group presentation as in Section 3. For
this, we need to check whether some two subspaces of A are different, and this needs to
be encoded in the combinatorics; but the rank function of U contains no such informa-
tion. It does not even know whether A was constructed from a trivial representation of
the group or a faithful one.
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6.1 Expansions and c-Bases

A representation of a polymatroid is a subspace arrangement. There is a way to construct
a vector arrangement from such an object: pick a basis for every subspace, and take the
set of all basis vectors. If we keep track of which vector came from each subspace, the
subspace arrangement can be reconstructed.

The construction above is not purely combinatorial: the resulting matroid depends on
the specific choice of bases. However, if the ground field is large enough and the bases
are chosen generically, this issue disappears. The matroid obtained by such generic
choices depends only on the polymatroid g of the subspace arrangement. It is called the
free expansion F (g).

In fact there are only finitely many possible vector arrangements obtained by picking
bases for a subspace arrangement representing the polymatroid g. The matroids arising
in this way are called the expansions of g, and form a subset of the weak images of F (g).
For further details, see [8] or [9] (with slightly different terminology and notation).

It is routine to check that the above carries over to c-admissible arrangements and
c-arrangements, with the latter replacing vector arrangements. Given a c-admissible
arrangement U we obtain a c-basis by picking c-dimensional subspaces of each element
U in A which minimally generate U.

The results we need are that a polymatroid g has a finite set of expansions, com-
putable from g, together with the fact that a c-admissible subspace arrangement over an
algebraically closed field has c-bases.

6.2 Separated Extensions and Inequalities

Let A = {Ae}e∈E be a weak c-representation of one of the triangle matroids NS,R con-
structed in Section 3. As remarked at the beginning of this section, if U is an arrangement
resulting from an inflation of A such that all subsets of U are full, the rank function rc

U
does not contain enough information to determine whether Ax 6= Ay for given x, y ∈ E.
However, inequalities of the form Ax 6= Ay, or equivalently rc

A({x, y}) > 1 are pre-
cisely what we need in order to apply Slobodskoi’s undecidability theorem, using our
Theorem 3.5.

To overcome this difficulty, the strategy is to modify U by adding a subspace W which
is contained in Ax but not in Ay (provided that they are in fact distinct). Our method
hinges on the fact that the rank function rc

U does not depend on anything other than
combinatorial data. Therefore we need to make sure W can be chosen to have some
pre-determined dimension, and for this it is necessary to bound 1

c dim(Ax ∩ Ay) away
from 1 in a manner independent of c.

We actually need more: it is necessary that the overlap of Ax with any subspace in
U is controlled. That this can be done is a consequence of the following definition and
proposition.
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Definition 6.1. Let M = (E, r) be a triangle matroid with distinguished basis B and let
A = {Ae}e∈E be a weak c-representation of M. An arrangement U = {Ue}e∈E that is
an extension of A is well-separated with respect to a given x ∈ E if for any T ⊆ E, either
Ax ⊆ UT or dim (Ax ∩UT) ≤ 1

2 c.

Proposition 6.2. Let 〈S | R〉 be a finite presentation, let G be a finite group, and let ϕ :
GS,R → G be a homomorphism. Let A = AG,ϕ be the weak c-representation of the matroid

NS,R = (ES,R, r) with respect to the distinguished basis B =
{

b(1), b(2), b(3)
}

induced by the
homomorphism ϕ as in Theorem 3.5. Let U = {Ue}e∈E be an extension of A and assume that
UT is full in U for any T ⊆ ES,R. Then U is well-separated with respect to x(1) ∈ ES,R for any
x ∈ S.

The proof of this is based on Lemma 3.2.
In the notation above, when U is well-separated with respect to x(1), andAx(1) 6= Ay(1)

for some y(1) ∈ ES,R, there is always an expansion r of the rank function 2 · rc
U which

witnesses this fact. That is, ifW = {We,i}e,i has the combinatorial type of r, and we define
U ′ = {U′e}e∈E by U′e = ∑i We,i and A′ = {A′e}e∈E by A′e = U′e ∩U′B, then A′

x(1)
6= A′

y(1)
.

We say r is an expansion separating x(1) from y(1).
Note that in this situation, rU ′ = 2rU , but this is not an issue. One can think of U ′ as

an extension of a weak 2c-arrangement representing NS,R.

7 Proof of Theorem 1.3

In this section we connect our previous results to prove Theorem 1.3.

Theorem 7.1. For each instance of the uniform word problem for finite groups, there exists a
finite set of matroids {M1, . . . , Mn} (computable from the given instance of the problem,) such
that at least one of them is representable as a c-arrangement if and only if the answer to the given
instance of the UWPFG is negative.

Proof. Let 〈S | R〉 be a finite presentation of a group and w ∈ S. Let M = NS,R =
(ES,R, r) be the corresponding matroid with distinguished basis B = {b(1), b(2), b(3)}, as
constructed in Definition 3.4. Let g be the polymatroid extending M constructed in
Theorem 5.3, and let {Mi}n

i=1 be the set of expansions of 2g which separate w(1) from
e(1).

By the results of Section 6.2, at least one of M1, . . . , Mn is representable as a c-
arrangement if and only if there exists a weak c-representation A = {Ae}e∈ES,R of NS,R
such that Aw(1) 6= Ae(1) . This occurs if and only if the solution to the UWPFG instance is
negative by Theorem 3.5.

Hence by Slobodskoi’s theorem [10], existence of c-arrangement representations of
matroids is undecidable. This proves Theorem 1.3.
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