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Abstract. We introduce a family of ideals In,λ,s in Q[x1, . . . , xn] for λ a partition of k ≤ n
and an integer s ≥ `(λ). This family contains both the Tanisaki ideals Iλ and the ideals
In,k of Haglund–Rhoades–Shimozono as special cases. We study the corresponding
quotient rings Rn,λ,s as symmetric group modules. When n = k and s is arbitrary, we
recover the Garsia–Procesi modules, and when λ = (1k) and s = k, we recover the
generalized coinvariant algebras of Haglund–Rhoades–Shimozono.

We give a monomial basis for Rn,λ,s in terms of (n, λ, s)-staircases, unifying the mono-
mial bases studied by Garsia–Procesi and Haglund–Rhoades–Shimozono. We realize
the Sn-module structure of Rn,λ,s in terms of an action on (n, λ, s)-ordered set par-
titions. We find a formula for the Hilbert series of Rn,λ,s in terms of inversion and
diagonal inversion statistics on (n, λ, s)-ordered set partitions. Furthermore, we give
an expansion of the graded Frobenius characteristic of our rings in terms of Gessel’s
fundamental basis and in terms of dual Hall–Littlewood symmetric functions.

We connect our work with Eisenbud–Saltman rank varieties using results of Weyman.
As an application of our results on Rn,λ,s, we give a monomial basis, Hilbert series
formula, and graded Frobenius characteristic formula for the coordinate ring of the
scheme-theoretic intersection of a rank variety with diagonal matrices.

Keywords: Ordered set partitions, symmetric functions, Hall–Littlewood functions,
Springer fibers, rank varieties

1 Introduction

The goal of this paper is to unify the representation theory and combinatorics of the
generalized coinvariant algebras Rn,k introduced by Haglund, Rhoades, and Shimozono [8],
and the cohomology rings Rλ of the Springer fibers introduced by Springer [11]. On the
one hand, the generalized coinvariant algebras are graded modules of the symmetric
group whose combinatorics are controlled by ordered set partitions. On the other hand,
the cohomology rings of the Springer fibers are graded modules of the symmetric group
whose combinatorics are controlled by tabloids.
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We introduce a family of rings Rn,λ,s which are graded modules of the symmetric
group whose combinatorics are controlled by (n, λ, s)-ordered set partitions. We recover
the rings Rn,k and Rλ as special cases of our rings. We then give formulas for the di-
mension, Hilbert series, and graded Frobenius characteristic of Rn,λ,s which generalize
known formulas for Rn,k and Rλ. In particular, we see that the graded Frobenius charac-
teristic of Rn,λ,s has a positive expansion in terms of modified Hall–Littlewood functions.
One of our main techniques to prove these results is to realize Rn,λ,s as the associated
graded ideal of the defining ideal of a finite set of points. This also allows us to iden-
tify a monomial basis of Rn,λ,s generalizing the Artin monomial basis of the coinvariant
algebra. Furthermore, we show that the rings Rn,λ,s have connections to the geometry
of rank varieties defined by Eisenbud and Saltman [4] by using results due to Wey-
man [13]. These rank varieties are not to be confused with the rank varieties of Billey
and Coskun [1].

2 Background on the rings Rn,k and Rλ

Let us recall the generalized coinvariant algebras Rn,k. Fix positive integers k ≤ n, and
let xn = {x1, . . . , xn} be a set of n commuting variables. Let Q[xn] be the polynomial ring
on the variables xn with rational coefficients. We consider Q[xn] as a Sn-module, where
Sn acts by permuting the variables. For 1 ≤ d ≤ n, let ed(xn) be the elementary symmetric
polynomial of degree d in the variables xn, defined by ed(xn) = ∑1≤i1<···<id≤n xi1 xi2 · · · xid .
The ideal In,k is defined to be

In,k = 〈xk
1, xk

2, . . . , xk
n, en(xn), en−1(xn), . . . , en−k+1(xn)〉 ⊆ Q[xn]. (2.1)

Since In,k is homogeneous and stable under the action of Sn, the quotient ring Rn,k has
the structure of a graded Sn-module. Haglund, Rhoades and Shimozono defined the
generalized coinvariant algebra Rn,k to be the quotient ring Rn,k = Q[xn]/In,k. When k = n,
then it can be shown that (see [8, Section 1])

In,n = 〈e1(xn), . . . , en(xn)〉 = 〈Q[xn]
Sn
+ 〉, (2.2)

which is the ideal generated by the positive degree invariants of Q[xn]. Hence, Rn,n is
the well-known coinvariant algebra.

We also recall some terminology from [8]. Let OPn,k be the collection of ordered set
partitions of [n] into k nonempty blocks. The group Sn acts on OPn,k by permuting the
letters 1, 2, . . . , n. Define the usual q-analogues of numbers, factorials, and multinomial
coefficients,

[n]q = 1 + q + · · ·+ qn−1, [n]!q = [n]q[n− 1]q · · · [1]q, (2.3)[
n

a1, . . . , ar

]
q
=

[n]!q

[a1]!q · · · [ar]!q
,

[
n
a

]
q
=

[n]!q

[a]!q[n− a]!q
. (2.4)
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Let x = (x1, x2, . . . ) be an infinite set of variables, and let Z[[x]] be the formal power se-
ries ring over the integers in the variables x. Given f ∈ Z[[x]][q], let f = a0 + a1q +
· · · + anqn be its expansion as a polynomial in q with coefficients in Z[[x]]. Define
revq( f ) = an + an−1q + · · ·+ a0qn.

Given two sequences of nonnegative integers (a1, . . . , ar) and (b1, . . . , bs), a shuffle of
these two sequences is an interleaving (c1, . . . , cr+s) of the two sequences such that the
ai appear in order from left to right and the bi appear in order from left to right. An
(n, k)-staircase is a shuffle of the sequence (0, 1, . . . , k− 1) and the sequence ((k− 1)n−k)
consisting of k− 1 repeated n− k many times.

Haglund, Rhoades, and Shimozono proved that Rn,k has the following properties
which generalize the well-known properties of the coinvariant algebra [8].

• The dimension of Rn,k is given by dimQ(Rn,k) = |OPn,k| = k! · Stir(n, k). The
Hilbert polynomial is

Hilbq(Rn,k) = revq([k]!q · Stirq(n, k)) = ∑
σ∈OPn,k

qcoinv(σ), (2.5)

where Stirq(n, k) is a well-known q-analogue of the Stirling number of the second
kind and coinv(σ) is the coinversion statistic on ordered set partitions.

• The set of monomials

An,k = {xa1
1 · · · x

an
n : (a1, . . . , an) is component-wise ≤ some (n, k)-staircase}

(2.6)

represents a basis of Rn,k, generalizing the Artin basis of the coinvariant algebra.
As a consequence, we have |An,k| = |OPn,k|.

• As Sn-modules,

Rn,k
∼=Sn QOPn,k, (2.7)

where QOPn,k is the vector space over Q whose basis is indexed by OPn,k and
whose Sn-module structure is induced from the natural action of Sn on OPn,k.

• The graded Sn-module structure of Rn,k can be expressed in terms of the dual
Hall–Littlewood symmetric functions Q′µ(x; q) as follows,

Frobq(Rn,k) = revq

[
∑
µ

q∑i≥1(i−1)(µi−1)
[

k
m1(µ), . . . , mn(µ)

]
q

Q′µ(x; q)

]
, (2.8)

where the sum is over partitions µ of n into k parts. See [9] for the definition of a
dual Hall–Littlewood symmetric function.
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• The Sn-module Rn,k is related to the Delta Conjecture of Haglund, Remmel, and
Wilson [7]. Precisely, they prove that

Frobq(Rn,k) = (revq ◦ω)Cn,k(x; q), (2.9)

where Cn,k(x; q) is the expression in the Delta Conjecture at t = 0, and ω is the
involution on symmetric functions sending a Schur function sλ to sλ′ .

For each partition λ ` n, let Rλ be the cohomology ring of the Springer fiber Fλ in-
dexed by λ with rational coefficients. See [2] for more background on Springer fibers.
One remarkable property of Springer fibers is that the cohomology ring Rλ has a sym-
metric group action, due to Springer [11], which does not come from an action on the
variety Fλ itself. We refer to the graded Sn-module Rλ as the Garsia–Procesi module based
on their seminal work in [5] on the Sn-module structure of Rλ.

By work of De Concini and Procesi [3], the ring Rλ has an explicit description in
terms of generators and relations. The particular presentation for Rλ we give next is due
to Tanisaki [12], who simplified the presentation as well as many of the proofs in [3].
Let the conjugate of λ be λ′ = (λ′1 ≥ λ′2 ≥ · · · ≥ λ′n ≥ 0). Here, we pad the conjugate
partition by 0s to make it length n. Let pn

m(λ) = λ′n +λ′n−1 + · · ·+λ′n−m+1 for 1 ≤ m ≤ n.
Given a subset of variables S ⊆ xn and a positive integer d, define ed(S) to be the sum
over all squarefree monomials of degree d in the set of variables S. The Tanisaki ideal Iλ

is defined by

Iλ = 〈ed(S) : S ⊆ xn, |S| ≥ d > |S| − pn
|S|(λ)〉, (2.10)

and the ring Rλ is defined by

Rλ = Q[xn]/Iλ. (2.11)

When λ = (1n), a single column, then the Springer fiber corresponding to (1n) is the
complete flag variety whose cohomology ring is the coinvariant algebra. Indeed, we have
R(1n) = Q[xn]/〈e1(xn), . . . , en(xn)〉, which is the coinvariant algebra.

The ring Rλ has the following properties [5].

• The dimension of Rλ is the multinomial coefficient

dimQ(Rλ) =

(
n

λ1, . . . , λk

)
, (2.12)

where λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0). The Hilbert series of Rλ is given by the gen-
erating function for the cocharge statistic on a certain set of words, see [5, Remark
1.2]. Given λ ` n, we draw the Young diagram of λ in the French convention with
λi cells in the ith row, where we number the rows from bottom to top. We have the
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following alternative characterization of the Hilbert series which follows from [6,
Equation 36] upon setting t = 0,

Hilbq(Rλ) = ∑
σ

qinv(σ), (2.13)

where the sum is over fillings of the Young diagram of λ with the number 1, . . . , n
which increase down each column, and inv is the number of inversions of σ [6].

• There is a monomial basis Aλ of Rλ which specializes to the Artin basis of the
coinvariant algebra when λ = (1n). In [5], this basis is denoted by B(λ).

• As Sn-modules, we have

Rλ
∼=Sn Q(Sn/Sλ1 × · · · × Sλk), (2.14)

where Sλ1 × · · · × Sλk is the Young subgroup of Sn permuting 1, . . . , λ1 among
themselves, λ1 + 1, . . . , λ1 + λ2 among themselves, and so on. Equivalently, Rλ is
isomorphic to the Sn-module given by the action of Sn on tabloids of shape λ.

• The graded Sn-module structure of Rλ is given by the reversal of the dual Hall–
Littlewood symmetric function, which is sometimes referred to as the modified
Hall–Littlewood symmetric function H̃λ(x; q),

Frobq(Rλ) = revq(Q′λ(x; q)) = H̃λ(x; q). (2.15)

See [8] for background on the graded Frobenius characteristic and dual Hall–
Littlewood symmetric functions.

• If λ, µ ` n such that λ ≥dom µ, we have the monotonicity property

[sν]Frobq(Rλ) ≤ [sν]Frobq(Rµ), (2.16)

for all ν ` n, where [sν] f stands for the coefficient of sν in the Schur function expan-
sion of f , and the inequality is a coefficient-wise comparison of two polynomials
in q.

3 The rings Rn,λ,s

Fix positive integers k ≤ n, a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λ` > 0) of k, and an
integers s ≥ `(λ), where `(λ) = ` is the length of the partition. Let the conjugate of λ

be λ′ = (λ′1 ≥ λ′2 ≥ · · · ≥ λ′n ≥ 0), where we pad the conjugate partition by 0s to make
it length n, and define pn

m(λ) = λ′n + λ′n−1 + · · ·+ λ′n−m+1 for 1 ≤ m ≤ n. We introduce
the ring Rn,λ,s, defined as follows.
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Definition 3.1. Define the ideal In,λ,s and quotient ring Rn,λ,s by

In,λ,s = 〈xs
i : 1 ≤ i ≤ n〉+ 〈ed(S) : S ⊆ xn, d > |S| − pn

|S|(λ)〉, (3.1)

Rn,λ,s = Q[xn]/In,λ. (3.2)

Since the ideal In,λ,s is generated by homogeneous polynomials, it is a homogeneous
ideal. Furthermore, since the generating set is closed under the action of Sn, the ideal
In,λ,s is symmetric. Therefore, the quotient ring Rn,λ,s inherits the structure of a graded
Sn-module. For example, let n = 6, λ = (3, 2) and s = 3, so that k = 5. Then the ideal
I6,(3,2),3 is generated by the set of homogenous polynomials

{x3
1, . . . , x3

6} ∪ {e2(x6), e3(x6), e4(x6), e5(x6), e6(x6)} ∪ {e3(S) | S ⊆ x6, |S| = 5} (3.3)

∪{e4(S) | S ⊆ x6, |S| = 5} ∪ {e5(S) | S ⊆ x6, |S| = 5} ∪ {e4(S) | S ⊆ x6, |S| = 4}, (3.4)

which is closed under the action of S6.
The generalized coinvariant algebras Rn,k and the rings Rλ are special cases of the

rings Rn,λ,s. We have

Rn,k = Rn,(1k),k for k ≤ n, (3.5)

Rλ = Rn,λ,`(λ) for λ ` n, (3.6)

where (3.5) follows from Definition 3.1, whereas (3.6) is less obvious. As a bonus, we
also have Rn,k,s = Rn,(1s),k, where Rn,k,s is the ring defined in [8, Section 6].

3.1 Dimension and Hilbert series of Rn,λ,s

We say that an (n, λ, s)-ordered set partition is a weak ordered set partition (B1|B2| · · · |Bs)
of [n] into s parts such that |Bi| ≥ λi for all i ≤ `(λ). Here, we allow Bi to be empty for
i > `(λ). Let OPn,λ,s be the set of (n, λ, s)-ordered set partitions. The group Sn acts on
OPn,λ,s by permuting the letters 1, 2, . . . , n. For example, when n = 4, λ = (2, 1), and
s = 2, we have

OP4,(2,1),2 ={(123|4), (124|3), (134|2), (234|1), (12|34), (3.7)

(13|24), (14|23), (23|14), (24|13), (34|12)}. (3.8)

Our first main result is a combinatorial description of the dimension of the ring Rn,λ,s.

Theorem 3.2. The dimension of Rn,λ,s is given by dimQ(Rn,λ,s) = |OPn,λ,s|

Furthermore, we have a monomial basis for the ring Rn,λ,s. For 1 ≤ j ≤ λ1, let
βj(λ) = (0, 1, . . . , λ′j − 1). An (n, λ, s)-staircase is a shuffle of the compositions β1(λ),
β2(λ),. . . , βλ1(λ), and ((s− 1)n−k).
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Figure 1: On the left, an extended column-increasing filling in ECI12,(3,2,2),4, where
basement cells are in bold. In the middle and right, two examples of attacking pairs of
dg(λ′) for λ = (3, 2, 2).

Theorem 3.3. We have that

An,λ,s = {xa1
1 · · · x

an
n : (a1, . . . , an) is component-wise ≤ some (n, λ, s)-staircase} (3.9)

represents a basis of Rn,λ,s.

Let Par(n, s) be the set of partitions of n into at most s many parts. Given λ ∈
Par(n, s), recall that we draw the Young diagram dg(λ) in the French convention, where
we number the rows from bottom to top. We also number the columns from left to right.
We index the cells of dg(λ) in Cartesian coordinates, so that (i, j) is the cell in the ith
column and jth row.

Define an extended column-increasing filling of λ′ with s columns to consist of

• A diagram D(ϕ) = dg(λ′) ∪ B(ϕ), where B(ϕ) is a possibly empty collection of
basement cells in columns 1 ≤ i ≤ s and rows j ≤ 0, such that in each column i the
basement cells are top justified so that the top basement cell is at coordinates (i, 0),

• A labeling of the cells of D(ϕ) with positive integers which weakly increases down
each column.

Given a cell (i, j) ∈ D(ϕ), we denote by ϕi,j the label of ϕ in the cell (i, j). Let ECIn,λ,s
be the set of extended column-increasing fillings ϕ of λ′ with s columns and n cells.
Let SECIn,λ,s be the subset of ECIn,λ,s consisting of standard extended column-increasing
fillings which use the letters in [n] without repetition. See the left side of Figure 1 for an
example of an extended column-increasing filling in ECI12,(3,2,2),4. Given two cells (i, j)
and (i′, j′) of dg(λ′), we say that ((i, j), (i′, j′)) is an attacking pair if either j = j′ and i < i′,
or j = j′ + 1 and i > i′. See the middle and right side of Figure 1 for two examples of
attacking pairs, where we indicate the cells in the attacking pair with dots.

Given ϕ ∈ ECIn,λ,s, an inversion of ϕ is one of the following,
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1. An attacking pair ((i, j), (i′, j′)) of dg(λ′) such that ϕi,j > ϕi′,j′ ,

2. A pair ((i, 1), (i′, j′)) such that (i, 1) ∈ dg(λ′), and (i′, j′) ∈ B(ϕ) such that i > i′

and ϕi,1 > ϕi′,j′ ,

3. A pair (i, (i′, j′)), where (i′, j′) ∈ B(ϕ) and i is an integer such that 1 ≤ i < i′.

Let inv(ϕ) be the number of inversions of ϕ. For ϕ in Figure 1, we have the following
inversions,

Type 1: ((1, 2), (2, 2)), ((3, 2), (1, 1)), ((2, 1), (3, 1))
Type 2: ((2, 1), (1, 0)), ((2, 1), (1,−1))
Type 3: (1, (3, 0)), (2, (3, 0)), (1, (3,−1)), (2, (3,−1)), (1, (4, 0)), (2, (4, 0)), (3, (4, 0)).

In total, we have inv(ϕ) = 12.
The extended column-increasing fillings defined here are a variation of the fillings in-

troduced by Rhoades–Yu–Zhao in [10] during the preparation of this article. To translate
from our conventions and theirs, simply flip our labelings across the horizontal axis and
convert each basement label into a floating number. They prove that the Hilbert series
of Rn,λ,s is the generating function of a coinversion statistic on ordered set partitions. The
inversion statistic above can be seen to be a slight variation of their coinversion statistic
after identifying a standard extended column-increasing filling ϕ with the ordered set
partition where Bi is the set of labels in the ith column of ϕ. We prove that the generat-
ing function of the inversion statistic on extended column-increasing fillings also gives
a formula for the Hilbert series. Since the results in [10] rely on our theorems, we are
careful to give independent proofs.

Theorem 3.4. We have

Hilbq(Rn,λ,s) = ∑
ϕ∈SECIn,λ,s

qinv(ϕ). (3.10)

3.2 Sn-module structure

In this subsection, we identify Rn,λ,s as a symmetric group module. Our main strategy,
used by Garsia–Procesi [5] and formalized by Haglund–Rhoades–Shimozono [8, Section
4.1], is to show that In,λ,s is the associated graded ideal of the defining ideal of a finite
set of points in Qn.

Fix s distinct rational numbers α1, . . . , αs ∈ Q. Let Xn,λ,s be the set of points p =
(p1, . . . , pn) ∈ Qn such that for each 1 ≤ i ≤ n, we have pi = αj for some j, and for
each 1 ≤ i ≤ s, we have that αi appears as a coordinate in p at least λi many times.
Let I(Xn,λ,s) be the defining ideal of Xn,λ,s as a variety in Qn, and let gr I(Xn,λ,s) be the
associated graded ideal of I(Xn,λ,s). Since Xn,λ,s is closed under the Sn-action permuting
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coordinates, then I(Xn,λ,s) and gr I(Xn,λ,s) are closed under the action permuting the
variables. Hence, the ring Q[xn]/gr I(Xn,λ,s) is an Sn-module.

Theorem 3.5. We have the following chain of equalities and Sn-module isomorphisms

Rn,λ,s =
Q[xn]

gr I(Xn,λ,s)
∼=Sn QXn,λ,s

∼=Sn QOPn,λ,s. (3.11)

Proof Sketch. The middle isomorphism of Sn-modules in (3.11) follows by general facts
about defining ideals and associated graded ideals, see [8, Section 4.1]. In order to
show the first equality in (3.11), we first show directly that each generator of In,λ,s is in
gr I(Xn,λ,s), so we have the containment In,λ,s ⊆ gr I(Xn,λ,s). We then prove that |An,λ,s| =
|Xn,λ,s|, hence by Theorem 3.3, we see that Rn,λ,s and Q[xn]

gr I(Xn,λ,s)
have the same dimension.

Hence, we must have the equality In,λ,s = gr I(Xn,λ,s), and the equality of rings follows.
Finally, the last isomorphism of Sn-modules in (3.11) follows by constructing an explicit
Sn-equivariant bijection between Xn,λ,s and OPn,λ,s.

Given µ ∈ Par(n, s), we say λ is contained in µ if λi ≤ µi for all i ≤ `(λ). Given
µ ∈ Par(n, s) such that λ ⊆ µ, let n(µ, λ) = ∑i (

µ′i−λ′i
2 ).

Using the skewing operators e⊥j utilized in [5, 8], we are able to identify the graded
Frobenius characteristic of Rn,λ,s in terms of dual Hall–Littlewood functions. It can be
checked that our formula for Frobq(Rn,λ,s) specializes to (2.8) when λ = (1k) and (2.15)
when n = k. We also give an expansion of the graded Frobenius characteristic in terms
of the inversion statistic.

Theorem 3.6. We have

Frobq(Rn,λ,s) = revq

 ∑
µ∈Par(n,s),

λ⊆µ

qn(µ,λ) ∏
i≥0

[
µ′i − λ′i+1
µ′i − µ′i+1

]
q

Q′µ(x; q)

 , (3.12)

where we define µ′0 = s.

Theorem 3.7. We have

Frobq(Rn,λ,s) = ∑
ϕ∈ECIn,λ,s

qinv(ϕ)xϕ, (3.13)

where xϕ = ∏i≥1 x#i’s in ϕ
i .

Furthermore, we prove that the coefficients in the Schur expansion of Frobq(Rn,λ,s)
enjoy two types of monotonicity. Here, the relation ≥dom is the usual dominance relation
on partitions. That is, if λ, µ ∈ Par(k, s) then λ ≥dom µ if and only if λ1 + · · · + λi ≥
µ1 + · · ·+ µi for all i ≤ s.
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Theorem 3.8. Let h ≤ k ≤ n be positive integers, let λ ∈ Par(k, s), and let µ ∈ Par(h, s) such
that either h = k and λ ≥dom µ or h < k and λ ⊇ µ. We have the monotonicity property

[sν]Frobq(Rn,λ,s) ≤ [sν]Frobq(Rn,µ,s), (3.14)

for all ν ` n.

Haglund, Rhoades, and Shimozono [8] use Gröbner bases to prove their results. In
particular, they find Gröbner bases of the ideals In,k in terms of Demazure characters. To
the author’s knowledge, such explicit Gröbner bases for the ideals Iλ are not known.
Therefore, different techniques are required to prove our results. Indeed, we prove the
above results without the use of Gröbner bases using techniques similar to those of
Garsia and Procesi. It is an open problem to find explicit Gröbner bases for the ideals
In,λ,s.

4 Rank varieties

Let gln be the set of n × n matrices with entries in Q. For λ ` n, let Oλ ⊆ gln be
the conjugacy class of nilpotent n× n matrices over Q whose Jordan blocks have sizes
recorded by λ. Let Oλ be the closure of Oλ in gln in the Zariski topology. Let t be the
set of diagonal matrices. De Concini and Procesi [3] proved that Rλ is isomorphic to the
coordinate ring of the scheme-theoretic intersection Oλ′ ∩ t.

We connect the rings Rn,λ,s to a generalization of these scheme-theoretic intersections
as follows. Define In,λ to be the ideal

In,λ = 〈ed(S) : S ⊆ xn, d > |S| − pn
|S|(λ)〉. (4.1)

Define the quotient ring Rn,λ = Q[xn]/In,λ. Observe that Rn,λ has positive Krull dimen-
sion when k < n, and hence is infinite-dimensional as a Q-vector space.

Let k ≤ n, and let λ ` k. The Eisenbud–Saltman rank variety is the subvariety of n× n
matrices,

On,λ = {X : rk(Xd) ≤ (n− k) + pn
n−d(λ), d = 1, 2, . . . , n}. (4.2)

The variety On,λ is the same as Xr defined in [4], where r is the rank function defined
by r(d) = (n− k) + pn

n−d(λ). When n = k, we have On,λ = Oλ. When n > k, then On,λ
contains matrices which are not nilpotent. We have the following corollary of work by
Weyman [13], who gave an explicit generating set for the defining ideal I(On,λ).

Corollary 4.1. We have an isomorphism of graded rings

Rn,λ
∼= Q[On,λ′ ∩ t],

where the right-hand side is the coordinate ring of the scheme-theoretic intersection of On,λ′ with
the diagonal matrices t.
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Recall that βj(λ) = (0, 1, . . . , λ′j − 1) for 1 ≤ j ≤ λ1. Define an (n, λ)-staircase to be
a shuffle of β1(λ), β2(λ), . . . , βλ1(λ), and (∞n−k). Combining Corollary 4.1 and Theo-
rem 3.3, we have the following characterization of a monomial basis for this coordinate
ring.

Theorem 4.2. The set

An,λ = {xa1
1 · · · x

an
n : (a1, . . . , an) is component-wise ≤ some (n, λ)-staircase} (4.3)

represents a basis of Rn,λ
∼= Q[On,λ′ ∩ t].

We also give a formula for the Hilbert series and graded Frobenius characteristic of
Rn,λ. Let

ECIn,λ =
⋃

s≥`(λ)
ECIn,λ,s, (4.4)

SECIn,λ =
⋃

s≥`(λ)
SECIn,λ,s, (4.5)

where we identify ϕ ∈ ECIn,λ,s with the extended column-increasing filling in ECIn,λ,s+1
obtained by appending an empty (s + 1)th column to ϕ. We similarly identify each ele-
ment of SECIn,λ,s with its counterpart in SECIn,λ,s+1. Observe that for each ϕ ∈ ECIn,λ,s,
the statistic inv(ϕ) does not depend on the parameter s. Hence, we may consider inv to
be a statistic on elements of ECIn,λ.

Theorem 4.3. For any k ≤ n and partition λ ` k,

Frobq(Rn,λ) = Frobq(Q[On,λ′ ∩ t]) = ∑
ϕ∈ECIn,λ

qinv(ϕ)xϕ. (4.6)

Corollary 4.4. We have

Hilbq(Rn,λ) = Hilbq(Q[On,λ′ ∩ t]) = ∑
ϕ∈SECIn,λ

qinv(ϕ). (4.7)
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